中文版 | English
题名

基于新型离子载体的钙离子选择性电极和光极研究

其他题名
CALCIUM SELECTIVE ELECTRODE AND OPTICAL ELECTRODE RESEARCH BASED ON NOVEL IONOPHORES
姓名
姓名拼音
DAI Longhui
学号
12132730
学位类型
硕士
学位专业
0856 材料与化工
学科门类/专业学位类别
08 工学
导师
谢小江
导师单位
化学系
外机构导师
闫致强
外机构导师单位
深圳湾实验室
论文答辩日期
2024-05-09
论文提交日期
2024-06-18
学位授予单位
南方科技大学
学位授予地点
深圳
摘要

钙离子(Ca2+)作为细胞间传达信息的第二信使,参与了多项重要的生命活动,它的检测在环境、化学生物、工业等领域具有重要意义。在常见钙离子检测方式中,离子选择性电极(ISE)具有长期的可靠性、高灵敏度和准确性,而离子选择性光极(ISO)成本低廉、简便直观,二者均是当下钙离子传感器的研究热点。无论是ISE还是ISO,对Ca2+的选择性传感都高度依赖于钙离子载体的使用,而目前商业钙离子载体数目相对较少,研究进展相对缓慢,新型离子选择性传感器的开发受限,成本较高。本论文拟通过了解钙离子载体设计规则,结合潜在离子载体结构,设计合成在常见阳离子中对Ca2+有良好响应性和选择性的低成本新型钙离子载体,并探究它们在离子选择性电极和光极中的应用。

设计合成并表征了三个离子载体NDB-1、NDB-2和NDB-3。在以Ca2+为目标检测离子时,NDB-1和NDB-3离子选择性电极线性响应区间10-6–10-1 M,电极的实际响应斜率为25.3 mV dec-1和26.7 mV dec-1,NDB-2离子选择性电极线性响应区间10-5–10-1 M,电极响应斜率24.7 mV dec-1。NDB-1的Ca2+选择性和响应性最佳,络合常数对数为9.95±0.08。NDB-1与2-硝基苯辛醚(NPOE)制备的离子选择性电极膜,成功检测稀释10倍胎牛血清中的Ca2+,含量为3.16 mol/L,相对误差4.2%。NDB-1合成简单、原料廉价,制备的离子选择性电极可实现常见阳离子中良好的钙离子选择性,并实现实际样品检测,它作为离子载体在电化学检测钙离子领域具有广阔的应用前景。

上述的三个离子载体也用于制备基于生色离子载体的钙离子选择性纳米颗粒传感器,它们分别作为钙离子载体与pH指示剂生色离子载体Ⅰ、离子交换剂四苯基硼酸钠(NaTFPB)组成钙离子选择性光极。其中,基于NDB-1构建的钙离子选择性纳米传感器响应性最好,实现了平衡模式下的钙离子传感。NDB-1基于通过计算,NDB-1通常与Ca2+以2:1摩尔比络合,该钙离子选择性传感颗粒响应区间为10-5–10-1 M,在常见阳离子中对Ca2+具有良好的选择性。NDB-1制备的离子选择性光极对也能展现良好的钙离子选择性,并且光极为平衡响应模式,可以实现较宽的检测区间,NDB-1作为新型钙离子载体在离子选择性光极中也极具应用潜力。

其他摘要

Calcium ions (Ca2+) play a crucial role as second messengers in intercellular communication, participating in vital life activities. Their detection is of significant importance in the fields of environment, chemical biology, and industry. Among common methods for calcium ion detection, ion-selective electrodes are known for their long-term reliability, high sensitivity, and accuracy. Ion-selective optodes are cost-effective, simple, and intuitive, making them a hot topic in current research on calcium ion sensors. However, the number of commercially available calcium ionophores is relatively limited, the research progress has been sluggish. The development of new ion-selective sensors is constrained and costs are high. This paper, by understanding the design rules of calcium ionophores and combining potential ionic structures, has designed and synthesized a new type of calcium ionophore that exhibits good responsiveness and selectivity for calcium ions among common cations. Both ion-selective electrodes and optodes demonstrate these characteristics at a low cost.

Three potential ionophore have been designed, synthesized, and characterized by us, named NDB-1, 2, and 3. When used as calcium ionophore, the linear response range of the NDB-1 and NDB-3 ion-selective electrodes was between 10-6 M and 10-1 M, with response slopes of 25.3 mV dec-1 and 26.7 mV dec-1, respectively. The NDB-2 ion-selective electrode had a linear response range between 10-5 M and 10-1 M, with a response slope of 24.7 mV dec-1. The ionophore with the best selectivity and responsiveness for calcium ion detection was identified as NDB-1, with a complex constant log of 9.95±0.08. The NPOE ion-selective electrode membrane prepared with NDB-1 successfully detected the calcium ion content in diluted (by 10 times) fetal bovine serum at 3.16 mol/L, with a relative error of 4.2%. NDB-1 is simple to synthesize and cheap in raw materials. It has good calcium ion selectivity among common cations. As an ionophores, it has broad prospects and application value in the field of electrochemical detection of calcium ions.

The three types of potential ionophores mentioned above were formulated into calcium ion-selective optodes based on chromoionophores. NDB-1, NDB-1 typically complexes with calcium ions at a molar ratio of 2:1. Enables it to serve as a calcium ionophores in combination with the pH indicator chromoionophore I and the ion-exchanger NaTFPB, constituting an ion-selective optode. This arrangement facilitates the optode's selective sensing of calcium ions in a balanced mode, leveraging the specific recognition properties of the ionophore, showed a response range of 10-5 M to 10-1 M and exhibited high selectivity for calcium ions among common cations. The ion-selective optode prepared by NDB-1 can also exhibit good calcium ion selectivity, and the optode adopts a balanced response mode, which can achieve a wider detection range. Thus, NDB-1, as a novel calcium ionophores, also has great application potential in ion-selective optodes.

关键词
其他关键词
语种
中文
培养类别
独立培养
入学年份
2021
学位授予年份
2024-07
参考文献列表

[1] PERRONE M, PATERGNANI S, DI MAMBRO T, et al. Calcium homeostasis in the control of mitophagy[J]. Antioxidants & Redox Signaling, 2022, 38(7-9): 581-98.
[2] HE H, LI Y, WANG S, et al. A high precision method for calcium determination in seawater using ion chromatography[J]. Frontiers in Marine Science, 2020, 7.
[3] PAVLOVIC M, RAMIYA RAMESH BABU H K, DJALALI S, et al. Facile monitoring of water hardness levels using responsive complex emulsions[J]. Analytical Chemistry, 2021, 93(27): 9390-6.
[4] YAN L, YANG W, YU H, et al. Recent progress in rechargeable calcium-ion batteries for high-efficiency energy storage[J]. Energy Storage Materials, 2023: 102822.
[5] XIE X, BAKKER E. Ion selective optodes: from the bulk to the nanoscale[J]. Analytical and Bioanalytical Chemistry, 2015, 407(14): 3899-910.
[6] BARANWAL J, BARSE B, GATTO G, et al. Electrochemical sensor and their applications[J]. Chemosensors, 2022, 10.
[7] ARNOLD M A, MEYERHOFF M E. Ion-selective electrodes[J]. Analytical Chemistry, 1984, 56(5): 20-48.
[8] LEWENSTAM A. Chapter 1 clinical analysis of blood gases and electrolytes by ion-selective sensors[M]//ALEGRET S, MERKOçI A. Comprehensive Analytical Chemistry. Elsevier. 2007: 5-24.
[9] DU X, ZHAI J, ZENG D, et al. Distance-based detection of calcium ions with hydrogels entrapping exhaustive ion-selective nanoparticles[J]. Sensors and Actuators B: Chemical, 2020, 319: 128300.
[10] DU X, XIE X. Ion-Selective optodes: alternative approaches for simplified fabrication and signaling[J]. Sensors and Actuators B: Chemical, 2021, 335: 129368.
[11] ELLIS A V, AL-DEEN A, DALAL H, ANDERSSON G G. Structural determination of thermally and hydrazine treated graphene oxide using electron spectroscopic analysis[J]. The Journal of Physical Chemistry C, 2013, 117(41): 21312-9.
[12] KIM J, COTE L J, HUANG J. Two dimensional soft material: new faces of graphene oxide[J]. Accounts of Chemical Research, 2012, 45(8): 1356-64.
[13] LI F, YE J, ZHOU M, et al. All-solid-state potassium-selective electrode using graphene as the solid contact[J]. Analyst, 2012, 137(3): 618-23.
[14] ZHAO Y, ARAKI S, WU J, et al. An expanded palette of genetically encoded Ca²⁺ indicators[J]. Science, 2011, 333(6051): 1888-91.
[15] SINGH Y S, SAWARYNSKI L E, DABIRI P D, et al. Head-to-head comparisons of carbon fiber microelectrode coatings for sensitive and selective neurotransmitter detection by voltammetry[J]. Analytical Chemistry, 2011, 83(17): 6658-66.
[16] CRISCUOLO F, HANITRA M I N, TAURINO I, et al. All-solid-state ion-selective electrodes: a tutorial for correct practice[J]. IEEE Sensors Journal, 2021, 21(20): 22143-54.
[17] MAKARYCHEV-MIKHAILOV S, SHVAREV A, BAKKER E. CHAPTER 4 - new trends in ion-selective electrodes[M]//ZHANG X, JU H, WANG J. Electrochemical Sensors, Biosensors and their Biomedical Applications. San Diego; Academic Press. 2008: 71-114.
[18] RADU A, ANASTASOVA-IVANOVA S, PACZOSA-BATOR B, et al. Diagnostic of functionality of polymer membrane – based ion selective electrodes by impedance spectroscopy[J]. Analytical Methods, 2010, 2(10): 1490-8.
[19] REINHOUDT D N, ENGBERSEN J F J, BRZOZKA Z, et al. Development of durable K+-selective chemically modified field effect transistors with functionalized polysiloxane membranes[J]. Analytical Chemistry, 1994, 66(21): 3618-23.
[20] BOBACKA J, IVASKA A, LEWENSTAM A. Plasticizer-free all-solid-state potassium-selective electrode based on poly(3-octylthiophene) and valinomycin[J]. Analytica Chimica Acta, 1999, 385(1): 195-202.
[21] HENG L Y, HALL E A H. Producing “Self-Plasticizing” ion-selective membranes[J]. Analytical Chemistry, 2000, 72(1): 42-51.
[22] HENG L Y, HALL E A H. One-step synthesis of K+-selective methacrylic-acrylic copolymers containing grafted ionophore and requiring no plasticizer[J]. Electroanalysis, 2000, 12(3): 178-86.
[23] PüNTENER M, VIGASSY T, BAIER E, et al. Improving the lower detection limit of potentiometric sensors by covalently binding the ionophore to a polymer backbone[J]. Analytica Chimica Acta, 2004, 503(2): 187-94.
[24] VAN DER WAL P D, SUDHöLTER E J R, BOUKAMP B A, et al. Impedance spectroscopy and surface study of potassium-selective silicone rubber membranes[J]. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, 1991, 317(1): 153-68.
[25] HENG L Y, HALL E A H. Assessing a photocured self-plasticised acrylic membrane recipe for Na+ and K+ ion selective electrodes[J]. Analytica Chimica Acta, 2001, 443(1): 25-40.
[26] DAUNERT S, BACHAS L G. Ion-selective electrodes using an ionophore covalently attached to carboxylated poly(vinyl chloride)[J]. Analytical Chemistry, 1990, 62(14): 1428-31.
[27] MALINOWSKA E, GAWART L, PARZUCHOWSKI P, et al. Novel approach of immobilization of calix
[4]arene type ionophore in ‘self-plasticized’ polymeric membrane[J]. Analytica Chimica Acta, 2000, 421(1): 93-101.
[28] KIMURA K, SUNAGAWA T, YAJIMA S, et al. Neutral carrier-type ion sensors based on sol−gel-derived membranes incorporating a bis(crown ether) derivative by covalent bonding[J]. Analytical Chemistry, 1998, 70(20): 4309-13.
[29] HOBBY P C, MOODY G J, THOMAS J D R. Calcium ion-selective electrode studies: covalent bonding of organic phosphates and phosphonates to polymer matrices[J]. Analyst, 1983, 108(1286): 581-90.
[30] PAWLAK M, MISTLBERGER G, BAKKER E. In situ surface functionalization of plasticized poly(vinyl chloride) membranes by ‘click chemistry’[J]. Journal of Materials Chemistry, 2012, 22(25): 12796-801.
[31] PAWLAK M, GRYGOLOWICZ-PAWLAK E, CRESPO G A, et al. PVC-based ion-selective electrodes with enhanced biocompatibility by surface modification with “Click” chemistry[J]. Electroanalysis, 2013, 25(8): 1840-6.
[32] MIR M, LUGO R, TAHIRBEGI I B, SAMITIER J. Miniaturizable ion-selective arrays based on highly stable polymer membranes for biomedical applications[J/OL] 2014, 14(7):11844-54
[10.3390/s140711844
[33] YANG C-C, WU G M. Study of microporous PVA/PVC composite polymer membrane and it application to MnO2 capacitors[J]. Materials Chemistry and Physics, 2009, 114(2): 948-55.
[34] ABRAMOVA N, BRATOV A. Photocurable polymers for ion selective field effect transistors. 20 years of applications[J/OL] 2009, 9(9):7097-110
[10.3390/s90907097
[35] MORF W E, SEILER K, LEHMANN B, et al. Carriers for chemical sensors: design features of optical sensors (optodes) based on selective chromoionophores[J]. Pure and Applied Chemistry, 1989, 61(9): 1613-8.
[36] XIE X, MISTLBERGER G, BAKKER E. Ultrasmall fluorescent ion-exchanging nanospheres containing selective ionophores[J]. Analytical Chemistry, 2013, 85(20): 9932-8.
[37] XIE X, SZILAGYI I, ZHAI J, et al. Ion-selective optical nanosensors based on solvatochromic dyes of different lipophilicity: from bulk partitioning to interfacial accumulation[J]. ACS Sensors, 2016, 1(5): 516-20.
[38] JANSOD S, GHAHRAMAN AFSHAR M, CRESPO G A, BAKKER E. Alkalinization of thin layer samples with a selective proton sink membrane electrode for detecting carbonate by carbonate-selective electrodes[J]. Analytical Chemistry, 2016, 88(7): 3444-8.
[39] ZHAI J, XIE X, BAKKER E. Solvatochromic dyes as pH-independent indicators for ionophore nanosphere-based complexometric titrations[J]. Analytical Chemistry, 2015, 87(24): 12318-23.
[40] BAKKER E, BüHLMANN P, PRETSCH E. Carrier-based ion-selective electrodes and bulk optodes. 1. general characteristics[J]. Chemical Reviews, 1997, 97(8): 3083-132.
[41] MOORE C, PRESSMAN B C. Mechanism of action of valinomycin on mitochondria[J]. Biochemical and Biophysical Research Communications, 1964, 15(6): 562-7.
[42] DOMOZYCH D S. Perturbation of the secretory network inClosterium acerosum by Na+-selective ionophores[J]. Protoplasma, 1999, 206(1): 41-56.
[43] ROSS J W. Calcium-selective electrode with liquid ion exchanger[J]. Science, 1967, 156(3780): 1378-9.
[44] CATTRALL R W, DREW D M, HAMILTON I C. Some alkylphosphoric acid esters for use in coated-wire calcium-selective electrodes: Part I. Response characteristics[J]. Analytica Chimica Acta, 1975, 76(2): 269-77.
[45] RŮŽIČKA J, HANSEN E H, TJELL J C. Selectrode—the universal ion-selective electrode: Part VI. The calcium(II) selectrode employing a new ion exchanger in a nonporous membrane and a solid-state reference system[J]. Analytica Chimica Acta, 1973, 67(1): 155-78.
[46] CATTRALL R W, DREW D M. Some alkylphosphoric acid esters for use in coated-wire calcium ion-selective electrodes: part II. selectivities and use in potentiometric titrations[J]. Analytica Chimica Acta, 1975, 77: 9-17.
[47] KHALIL S A H, MOODY G J, THOMAS J D R, LIMA J L F C. Epoxy-based all-solid-state poly(vinyl chloride) matrix membrane calcium ion-selective microelectrodes[J]. Analyst, 1986, 111(6): 611-7.
[48] AMMANN D, PRETSCH E, SIMON W. A calcium ion-selective electrode based on a neutral carrier[J]. Analytical Letters, 1972, 5(11): 843-50.
[49] AMMANN D, PRETSCH E, SIMON W. A synthetic, electrically neutral carrier for Ca[J]. Tetrahedron Letters, 1972, 13(24): 2473-6.
[50] ARMSTRONG R D, TODD M. Study of calcium ion selective electrodes containing simon ionophores using impedance methods: bulk properties[J]. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, 1988, 257(1): 161-6.
[51] OKADA T, SUGIHARA H, HIRATANI K. Calcium-selective electrodes based on noncyclic polyether diamides[J]. Analytica Chimica Acta, 1986, 186: 307-11.
[52] SUGIHARA H, OKADA T, HIRATANI K. Noncyclic polyethers containing sulphur atoms: a novel type of neutral carrier for ion-selective PVC membrane electrodes[J]. Journal of the Chemical Society, Chemical Communications, 1985, (14): 957-8.
[53] PRETSCH E, AMMANN D, OSSWALD H F, et al. Ionophores of the 3-oxapentanediamide type[J]. ChemInform, 1980, 11.
[54] SMIRNOVA A L, LEVITCHEV S S, KHITROVA V L, et al. Effect of simultaneous existence of two ion-exchangers with opposite charges of lipophilic groups[J]. Electroanalysis, 1999, 11(10-11): 763-9.
[55] TELTING-DIAZ M, BAKKER E. Mass-produced ionophore-based fluorescent microspheres for trace level determination of lead ions[J]. Analytical Chemistry, 2002, 74(20): 5251-6.
[56] SUZUKI K, WATANABE K, MATSUMOTO Y, et al. Design and synthesis of calcium and magnesium ionophores based on double-armed diazacrown ether compounds and their application to an ion sensing component for an ion-selective electrode[J]. Analytical Chemistry, 1995, 67(2): 324-34.
[57] LIU D, YUAN R, CHEN W-C, YU R-Q. A neutral carrier membrane calcium-sensitive electrode with wide working pH range[J]. Analytical Letters, 1994, 27(9): 1637-46.
[58] PETRUKHIN O M, AVDEEVA E N, ZHUKOV A F, et al. Bidentate organophosphorus compounds as ionophores for calcium- and uranyl-selective electrodes[J]. Analyst, 1991, 116(7): 715-9.
[59] KOLYCHEVA N, MüLLER H. Flow-through calcium-selective electrode: application in flow-injection analysis and ion chromatography[J]. Analytica Chimica Acta, 1991, 242: 65-72.
[60] SHEN Y-F, TSAI M-R, CHEN S-C, et al. Imaging endogenous bilirubins with two-photon fluorescence of bilirubin dimers[J]. Analytical Chemistry, 2015, 87(15): 7575-82.
[61] DIETZ M L, CHIARIZIA R, HORWITZ E P, et al. Effect of crown ethers on the ion-exchange behavior of alkaline earth metals. toward improved ion-exchange methods for the separation and preconcentration of radium[J]. Analytical Chemistry, 1997, 69(15): 3028-37.
[62] OSTERGAARD H L, TROWBRIDGE I S. Negative regulation of CD45 Protein tyrosine phosphatase activity by ionomycin in T cells[J]. Science, 1991, 253(5026): 1423-5.
[63] DUNCAN D M, COCKAYNE J S. Application of calixarene ionophores in PVC based ISEs for uranium detection[J]. Sensors and Actuators B: Chemical, 2001, 73(2): 228-35.
[64] LIU Y, LIU Z, ZHAO F, TIAN Y. Long-term tracking and dynamically quantifying of reversible changes of extracellular Ca2+ in multiple brain regions of freely moving animals[J]. Angewandte Chemie International Edition, 2021, 60(26): 14429-37.
[65] SUZUKI K, TOHDA K, TANDA Y, et al. Fiber-optic magnesium and calcium ion sensor based on a natural carboxylic polyether antibiotic[J]. Analytical Chemistry, 1989, 61(4): 382-4.
[66] ZHAI J, ZHU C, PENG X, XIE X. Ionophore-based heterogeneous calcium optical titration[J]. Electroanalysis, 2018, 30(4): 705-9.
[67] AMMANN D, BISSIG R, GüGGI M, et al. Preparation of neutral ionophores for alkali and alkaline earth metal cations and their application in ion selective membrane electrodes[J]. Helvetica Chimica Acta, 1975, 58(6): 1535-48.
[68] WUN T-C, BITTMAN R, BOROWITZ I J. Binding properties of neutral diamide ligands for alkaline-earth cations[J]. Biochemistry, 1977, 1610: 2074-9.
[69] BOROWITZ I J, LIN W-O, WUN T-C, et al. The preparation and properties of neutral diamide ionophores for group IIa metal cations[J]. Tetrahedron, 1977, 33(14): 1697-705.
[70] BOROWITZ I J, BOROWITZ G B, WEISS L M, RICKMAN B H. Cation-induced shifts in the proton NMR spectroscopy of dioxydiacetamide ionophores[J]. Tetrahedron, 1997, 53: 17235-40.
[71] KADEN H. The history of the glass electrode[J]. Chemia Analityczna, 2009, 54: 1089-108.
[72] DEMARCO R, CLARKE G, PEJCIC B. Ion-selective electrode potentiometry in environmental analysis[J]. Electroanalysis, 2007, 19(19-20): 1987-2001.
[73] BISWAS C K, RAMOS J M, KERR D N S. Heparin effect on ionised calcium concentration[J]. Clinica Chimica Acta, 1981, 116(3): 343-7.
[74] THODE J, HOLMEGAARD S N, TRANSBøL I, et al. Adjusted ionized calcium (at pH 7.4) and actual ionized calcium (at actual pH) in capillary blood compared for clinical evaluation of patients with disorders of calcium metabolism[J]. Clinical Chemistry, 1990, 36(3): 541-4.
[75] SACHS C, CHANEAC M, RABOUINE P, et al. Anomalies in pH 7.40 correction in ionised calcium analysers[J]. Annals of Clinical Biochemistry, 1989, 26(6): 542-6.
[76] LOKEN H F, HAVEL R J, GORDAN G S, WHITTINGTON S L. Ultracentrifugal analysis of protein-bound and free calcium in human serum[J]. Journal of Biological Chemistry, 1960, 235(12): 3654-8.
[77] KOTTEGODA S, SHAIK I, SHIPPY S A. Demonstration of low flow push–pull perfusion[J]. Journal of Neuroscience Methods, 2002, 121(1): 93-101.
[78] LINDNER E, BUCK R P. Microfabricated potentiometric electrodes and their in vivo applications[J]. Analytical Chemistry, 2000, 72(9): 336 A-45 A.
[79] IZATT R M, PAWLAK K, BRADSHAW J S, BRUENING R L. Thermodynamic and kinetic data for macrocycle interaction with cations, anions, and neutral molecules[J]. Chemical Reviews, 1995, 95: 2529-86.
[80] YE J, BALDWIN R P. Determination of amino acids and peptides by capillary electrophoresis and electrochemical detection at a copper electrode[J]. Analytical Chemistry, 1994, 66(17): 2669-74.
[81] CHEN S-P, HOSTEN C, VIVONI A, et al. SERS investigation of NAD(+) adsorbed on a silver electrode[J]. Langmuir, 2002, 18.
[82] FREINER D, KUNZ R E, CITTERIO D, et al. Integrated optical sensors based on refractometry of ion-selective membranes[J]. Sensors and Actuators B: Chemical, 1995, 29(1): 277-85.
[83] DU X, ZHAI J, ZENG D, et al. Distance-based detection of calcium ions with hydrogels entrapping exhaustive ion-selective nanoparticles[J]. Sensors and Actuators B-chemical, 2020, 319: 128300.
[84] CUI Y, ZHAI J, WANG Y, XIE X. Polymersome-based ion-selective nano-optodes containing ionophores[J]. Sensors & Diagnostics, 2023, 2(5): 1286-91.
[85] SHIBATA H, HIRUTA Y, CITTERIO D. Fully inkjet-printed distance-based paper microfluidic devices for colorimetric calcium determination using ion-selective optodes[J]. Analyst, 2019, 144(4): 1178-86.
[86] RONG G, KIM E H, POSKANZER K E, CLARK H A. A method for estimating intracellular ion concentration using optical nanosensors and ratiometric imaging[J]. Scientific Reports, 2017, 7(1): 10819.
[87] WANG R, DU X, MA X, et al. Ionophore-based pH independent detection of ions utilizing aggregation-induced effects[J]. Analyst, 2020, 145(11): 3846-50.
[88] JANSOD S, BAKKER E. Tunable optical sensing with pvc-membrane-based ion-selective bipolar electrodes[J]. ACS Sensors, 2019, 4(4): 1008-16.
[89] RUSSELL J T. Imaging calcium signals in vivo: a powerful tool in physiology and pharmacology[J]. Br J Pharmacol, 2011, 163(8): 1605-25.
[90] ORRENIUS S, ZHIVOTOVSKY B, NICOTERA P. Regulation of cell death: The calcium-apoptosis link[J]. Nature Reviews Molecular Cell Biology, 2003, 4(7): 552-65.
[91] HE D, ZHU Z, ZHAO L, et al. A practical method for measuring high precision calcium isotope ratios without chemical purification for calcium carbonate samples by multiple collector inductively coupled plasma mass spectrometry[J]. Chemical Geology, 2019, 514: 105-11.
[92] DEY D, BHATTACHARJEE D, CHAKRABORTY S, HUSSAIN S A. Development of hard water sensor using fluorescence resonance energy transfer[J]. Sensors and Actuators B: Chemical, 2013, 184: 268-73.
[93] WILLIS J B. Determination of calcium and magnesium in urine by atomic absorption spectroscopy[J]. Analytical Chemistry, 1961, 33(4): 556-9.
[94] DENG L, ZHAI J, XIE X. Chemiluminescent ion sensing platform based on ionophores[J]. Analytical Chemistry, 2019, 91(13): 8638-43.
[95] LAUTENSCHLäGER J, STEPHENS A D, FUSCO G, et al. C-terminal calcium binding of α-synuclein modulates synaptic vesicle interaction[J]. Nature Communications, 2018, 9(1): 712.
[96] BARANWAL J, BARSE B, GATTO G, et al. Electrochemical sensors and their applications: a review[J/OL] 2022, 10(9):10.3390/chemosensors10090363
[97] FRANT M S. Historical perspective. history of the early commercialization of ion-selective electrodes[J]. Analyst, 1994, 119(11): 2293-301.
[98] MOODY G J, THOMAS J D R. 2 The bio-medical and related roles of ion-selective membrane electrodes[M]//ELLIS G P, WEST G B. Progress in Medicinal Chemistry. Elsevier. 1977: 51-104.
[99] FRANT M S. Where did ion selective electrodes come from? the story of their development and commercialization[J]. Journal of Chemical Education, 1997, 74(2): 159.
[100]AMMANN D, GüGGI M, PRETSCH E, SIMON W. Improved calcium ion-selective electrode based on a neutral carrier[J]. Analytical Letters, 1975, 8(10): 709-20.
[101]PRESTIPINO G, FALUGI C, FALCHETTO R, GAZZOTTI P. The ionophore ETH 129 as Ca2+ translocator in artificial and natural membranes[J]. Anal Biochem, 1993, 210(1): 119-22.
[102]GEHRIG P, RUSTERHOLZ B, SIMON W. Very lipophilic Ca2+-selective ionophore for chemical sensors of high lifetime[J]. Chimia, 1989, 43(12): 377-9.
[103]WUN T C, BITTMAN R. Ionophorous properties of neutral diamide ligands toward calcium[J]. Biochemistry, 1977, 16(10): 2080-6.
[104]WANG W, ZHENG L, LI W, et al. Design, synthesis, and structure–activity relationship studies of novel indolyalkylpiperazine derivatives as selective 5-ht1a receptor agonists[J]. Journal of Chemical Information and Modeling, 2020, 60(1): 235-48.
[105]LI H, YANG T, DING L, WANG W. Synthesis, characterization, fluorescence and DNA-binding studies of europium(III) pirates complexes with amide-based 2,3-dihydroxynaphthalene derivatives[J]. Journal of Rare Earths, 2012, 30(4): 297-303.
[106]GARCIA-RUBIA A, LASALA F, GINEX T, et al. N′-Phenylacetohydrazide derivatives as potent ebola virus entry inhibitors with an improved pharmacokinetic profile[J]. Journal of Medicinal Chemistry, 2023, 66(8): 5465-83.
[107]MU Q C, WANG X B, YE F, et al. Palladium-catalyzed olefination of aryl/alkyl halides with trimethylsilyldiazomethane via carbene migratory insertion[J]. Chemical Communications, 2018, 54(92): 12994-7.
[108]MI Y, BAKKER E. Determination of complex formation constants of lipophilic neutral ionophores in solvent polymeric membranes with segmented sandwich membranes[J]. Analytical Chemistry, 1999, 71(23): 5279-87.
[109]SCHEFER U, AMMANN D, PRETSCH E, et al. Neutral carrier based calcium(2+)-selective electrode with detection limit in the sub-nanomolar range[J]. Analytical Chemistry, 1986, 58(11): 2282-5.
[110]HINDS T R, VINCENZI F F. The effect of ETH 1001 on ion fluxes across red blood cell membranes[J]. Cell Calcium, 1985, 6(3): 265-79.
[111]SHUL'GA A A, AHLERS B, CAMMANN K. Ion-selective conductometric microsensors based on the phenomenon of specific salt extraction[J]. Journal of Electroanalytical Chemistry, 1995, 395(1): 305-8.
[112]HISAMOTO H, WATANABE K, NAKAGAWA E, et al. Flow-through type calcium ion selective optodes based on novel neutral ionophores and a lipophilic anionic dye[J]. Analytica Chimica Acta, 1994, 299(2): 179-87.
[113]QIN Y, MI Y, BAKKER E. Determination of complex formation constants of 18 neutral alkali and alkaline earth metal ionophores in poly(vinyl chloride) sensing membranes plasticized with bis(2-ethylhexyl)sebacate and o-nitrophenyloctylether[J]. Analytica Chimica Acta, 2000, 421(2): 207-20.
[114]DU X, WANG R, ZHAI J, et al. Ionophore-based ion-selective nanosensors from brush block copolymer nanodots[J]. ACS Applied Nano Materials, 2020, 3(1): 782-8.
[115]XIE X, GUTIéRREZ A, TROFIMOV V, et al. Charged solvatochromic dyes as signal transducers in ph independent fluorescent and colorimetric ion selective nanosensors[J]. Analytical Chemistry, 2015, 87(19): 9954-9.

所在学位评定分委会
化学
国内图书分类号
Q512
来源库
人工提交
成果类型学位论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/765711
专题南方科技大学
理学院_化学系
推荐引用方式
GB/T 7714
戴隆辉. 基于新型离子载体的钙离子选择性电极和光极研究[D]. 深圳. 南方科技大学,2024.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可 操作
12132730-戴隆辉-化学系.pdf(5789KB)----限制开放--请求全文
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[戴隆辉]的文章
百度学术
百度学术中相似的文章
[戴隆辉]的文章
必应学术
必应学术中相似的文章
[戴隆辉]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。