[1] PERRONE M, PATERGNANI S, DI MAMBRO T, et al. Calcium homeostasis in the control of mitophagy[J]. Antioxidants & Redox Signaling, 2022, 38(7-9): 581-98.
[2] HE H, LI Y, WANG S, et al. A high precision method for calcium determination in seawater using ion chromatography[J]. Frontiers in Marine Science, 2020, 7.
[3] PAVLOVIC M, RAMIYA RAMESH BABU H K, DJALALI S, et al. Facile monitoring of water hardness levels using responsive complex emulsions[J]. Analytical Chemistry, 2021, 93(27): 9390-6.
[4] YAN L, YANG W, YU H, et al. Recent progress in rechargeable calcium-ion batteries for high-efficiency energy storage[J]. Energy Storage Materials, 2023: 102822.
[5] XIE X, BAKKER E. Ion selective optodes: from the bulk to the nanoscale[J]. Analytical and Bioanalytical Chemistry, 2015, 407(14): 3899-910.
[6] BARANWAL J, BARSE B, GATTO G, et al. Electrochemical sensor and their applications[J]. Chemosensors, 2022, 10.
[7] ARNOLD M A, MEYERHOFF M E. Ion-selective electrodes[J]. Analytical Chemistry, 1984, 56(5): 20-48.
[8] LEWENSTAM A. Chapter 1 clinical analysis of blood gases and electrolytes by ion-selective sensors[M]//ALEGRET S, MERKOçI A. Comprehensive Analytical Chemistry. Elsevier. 2007: 5-24.
[9] DU X, ZHAI J, ZENG D, et al. Distance-based detection of calcium ions with hydrogels entrapping exhaustive ion-selective nanoparticles[J]. Sensors and Actuators B: Chemical, 2020, 319: 128300.
[10] DU X, XIE X. Ion-Selective optodes: alternative approaches for simplified fabrication and signaling[J]. Sensors and Actuators B: Chemical, 2021, 335: 129368.
[11] ELLIS A V, AL-DEEN A, DALAL H, ANDERSSON G G. Structural determination of thermally and hydrazine treated graphene oxide using electron spectroscopic analysis[J]. The Journal of Physical Chemistry C, 2013, 117(41): 21312-9.
[12] KIM J, COTE L J, HUANG J. Two dimensional soft material: new faces of graphene oxide[J]. Accounts of Chemical Research, 2012, 45(8): 1356-64.
[13] LI F, YE J, ZHOU M, et al. All-solid-state potassium-selective electrode using graphene as the solid contact[J]. Analyst, 2012, 137(3): 618-23.
[14] ZHAO Y, ARAKI S, WU J, et al. An expanded palette of genetically encoded Ca²⁺ indicators[J]. Science, 2011, 333(6051): 1888-91.
[15] SINGH Y S, SAWARYNSKI L E, DABIRI P D, et al. Head-to-head comparisons of carbon fiber microelectrode coatings for sensitive and selective neurotransmitter detection by voltammetry[J]. Analytical Chemistry, 2011, 83(17): 6658-66.
[16] CRISCUOLO F, HANITRA M I N, TAURINO I, et al. All-solid-state ion-selective electrodes: a tutorial for correct practice[J]. IEEE Sensors Journal, 2021, 21(20): 22143-54.
[17] MAKARYCHEV-MIKHAILOV S, SHVAREV A, BAKKER E. CHAPTER 4 - new trends in ion-selective electrodes[M]//ZHANG X, JU H, WANG J. Electrochemical Sensors, Biosensors and their Biomedical Applications. San Diego; Academic Press. 2008: 71-114.
[18] RADU A, ANASTASOVA-IVANOVA S, PACZOSA-BATOR B, et al. Diagnostic of functionality of polymer membrane – based ion selective electrodes by impedance spectroscopy[J]. Analytical Methods, 2010, 2(10): 1490-8.
[19] REINHOUDT D N, ENGBERSEN J F J, BRZOZKA Z, et al. Development of durable K+-selective chemically modified field effect transistors with functionalized polysiloxane membranes[J]. Analytical Chemistry, 1994, 66(21): 3618-23.
[20] BOBACKA J, IVASKA A, LEWENSTAM A. Plasticizer-free all-solid-state potassium-selective electrode based on poly(3-octylthiophene) and valinomycin[J]. Analytica Chimica Acta, 1999, 385(1): 195-202.
[21] HENG L Y, HALL E A H. Producing “Self-Plasticizing” ion-selective membranes[J]. Analytical Chemistry, 2000, 72(1): 42-51.
[22] HENG L Y, HALL E A H. One-step synthesis of K+-selective methacrylic-acrylic copolymers containing grafted ionophore and requiring no plasticizer[J]. Electroanalysis, 2000, 12(3): 178-86.
[23] PüNTENER M, VIGASSY T, BAIER E, et al. Improving the lower detection limit of potentiometric sensors by covalently binding the ionophore to a polymer backbone[J]. Analytica Chimica Acta, 2004, 503(2): 187-94.
[24] VAN DER WAL P D, SUDHöLTER E J R, BOUKAMP B A, et al. Impedance spectroscopy and surface study of potassium-selective silicone rubber membranes[J]. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, 1991, 317(1): 153-68.
[25] HENG L Y, HALL E A H. Assessing a photocured self-plasticised acrylic membrane recipe for Na+ and K+ ion selective electrodes[J]. Analytica Chimica Acta, 2001, 443(1): 25-40.
[26] DAUNERT S, BACHAS L G. Ion-selective electrodes using an ionophore covalently attached to carboxylated poly(vinyl chloride)[J]. Analytical Chemistry, 1990, 62(14): 1428-31.
[27] MALINOWSKA E, GAWART L, PARZUCHOWSKI P, et al. Novel approach of immobilization of calix
[4]arene type ionophore in ‘self-plasticized’ polymeric membrane[J]. Analytica Chimica Acta, 2000, 421(1): 93-101.
[28] KIMURA K, SUNAGAWA T, YAJIMA S, et al. Neutral carrier-type ion sensors based on sol−gel-derived membranes incorporating a bis(crown ether) derivative by covalent bonding[J]. Analytical Chemistry, 1998, 70(20): 4309-13.
[29] HOBBY P C, MOODY G J, THOMAS J D R. Calcium ion-selective electrode studies: covalent bonding of organic phosphates and phosphonates to polymer matrices[J]. Analyst, 1983, 108(1286): 581-90.
[30] PAWLAK M, MISTLBERGER G, BAKKER E. In situ surface functionalization of plasticized poly(vinyl chloride) membranes by ‘click chemistry’[J]. Journal of Materials Chemistry, 2012, 22(25): 12796-801.
[31] PAWLAK M, GRYGOLOWICZ-PAWLAK E, CRESPO G A, et al. PVC-based ion-selective electrodes with enhanced biocompatibility by surface modification with “Click” chemistry[J]. Electroanalysis, 2013, 25(8): 1840-6.
[32] MIR M, LUGO R, TAHIRBEGI I B, SAMITIER J. Miniaturizable ion-selective arrays based on highly stable polymer membranes for biomedical applications[J/OL] 2014, 14(7):11844-54
[10.3390/s140711844
[33] YANG C-C, WU G M. Study of microporous PVA/PVC composite polymer membrane and it application to MnO2 capacitors[J]. Materials Chemistry and Physics, 2009, 114(2): 948-55.
[34] ABRAMOVA N, BRATOV A. Photocurable polymers for ion selective field effect transistors. 20 years of applications[J/OL] 2009, 9(9):7097-110
[10.3390/s90907097
[35] MORF W E, SEILER K, LEHMANN B, et al. Carriers for chemical sensors: design features of optical sensors (optodes) based on selective chromoionophores[J]. Pure and Applied Chemistry, 1989, 61(9): 1613-8.
[36] XIE X, MISTLBERGER G, BAKKER E. Ultrasmall fluorescent ion-exchanging nanospheres containing selective ionophores[J]. Analytical Chemistry, 2013, 85(20): 9932-8.
[37] XIE X, SZILAGYI I, ZHAI J, et al. Ion-selective optical nanosensors based on solvatochromic dyes of different lipophilicity: from bulk partitioning to interfacial accumulation[J]. ACS Sensors, 2016, 1(5): 516-20.
[38] JANSOD S, GHAHRAMAN AFSHAR M, CRESPO G A, BAKKER E. Alkalinization of thin layer samples with a selective proton sink membrane electrode for detecting carbonate by carbonate-selective electrodes[J]. Analytical Chemistry, 2016, 88(7): 3444-8.
[39] ZHAI J, XIE X, BAKKER E. Solvatochromic dyes as pH-independent indicators for ionophore nanosphere-based complexometric titrations[J]. Analytical Chemistry, 2015, 87(24): 12318-23.
[40] BAKKER E, BüHLMANN P, PRETSCH E. Carrier-based ion-selective electrodes and bulk optodes. 1. general characteristics[J]. Chemical Reviews, 1997, 97(8): 3083-132.
[41] MOORE C, PRESSMAN B C. Mechanism of action of valinomycin on mitochondria[J]. Biochemical and Biophysical Research Communications, 1964, 15(6): 562-7.
[42] DOMOZYCH D S. Perturbation of the secretory network inClosterium acerosum by Na+-selective ionophores[J]. Protoplasma, 1999, 206(1): 41-56.
[43] ROSS J W. Calcium-selective electrode with liquid ion exchanger[J]. Science, 1967, 156(3780): 1378-9.
[44] CATTRALL R W, DREW D M, HAMILTON I C. Some alkylphosphoric acid esters for use in coated-wire calcium-selective electrodes: Part I. Response characteristics[J]. Analytica Chimica Acta, 1975, 76(2): 269-77.
[45] RŮŽIČKA J, HANSEN E H, TJELL J C. Selectrode—the universal ion-selective electrode: Part VI. The calcium(II) selectrode employing a new ion exchanger in a nonporous membrane and a solid-state reference system[J]. Analytica Chimica Acta, 1973, 67(1): 155-78.
[46] CATTRALL R W, DREW D M. Some alkylphosphoric acid esters for use in coated-wire calcium ion-selective electrodes: part II. selectivities and use in potentiometric titrations[J]. Analytica Chimica Acta, 1975, 77: 9-17.
[47] KHALIL S A H, MOODY G J, THOMAS J D R, LIMA J L F C. Epoxy-based all-solid-state poly(vinyl chloride) matrix membrane calcium ion-selective microelectrodes[J]. Analyst, 1986, 111(6): 611-7.
[48] AMMANN D, PRETSCH E, SIMON W. A calcium ion-selective electrode based on a neutral carrier[J]. Analytical Letters, 1972, 5(11): 843-50.
[49] AMMANN D, PRETSCH E, SIMON W. A synthetic, electrically neutral carrier for Ca[J]. Tetrahedron Letters, 1972, 13(24): 2473-6.
[50] ARMSTRONG R D, TODD M. Study of calcium ion selective electrodes containing simon ionophores using impedance methods: bulk properties[J]. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, 1988, 257(1): 161-6.
[51] OKADA T, SUGIHARA H, HIRATANI K. Calcium-selective electrodes based on noncyclic polyether diamides[J]. Analytica Chimica Acta, 1986, 186: 307-11.
[52] SUGIHARA H, OKADA T, HIRATANI K. Noncyclic polyethers containing sulphur atoms: a novel type of neutral carrier for ion-selective PVC membrane electrodes[J]. Journal of the Chemical Society, Chemical Communications, 1985, (14): 957-8.
[53] PRETSCH E, AMMANN D, OSSWALD H F, et al. Ionophores of the 3-oxapentanediamide type[J]. ChemInform, 1980, 11.
[54] SMIRNOVA A L, LEVITCHEV S S, KHITROVA V L, et al. Effect of simultaneous existence of two ion-exchangers with opposite charges of lipophilic groups[J]. Electroanalysis, 1999, 11(10-11): 763-9.
[55] TELTING-DIAZ M, BAKKER E. Mass-produced ionophore-based fluorescent microspheres for trace level determination of lead ions[J]. Analytical Chemistry, 2002, 74(20): 5251-6.
[56] SUZUKI K, WATANABE K, MATSUMOTO Y, et al. Design and synthesis of calcium and magnesium ionophores based on double-armed diazacrown ether compounds and their application to an ion sensing component for an ion-selective electrode[J]. Analytical Chemistry, 1995, 67(2): 324-34.
[57] LIU D, YUAN R, CHEN W-C, YU R-Q. A neutral carrier membrane calcium-sensitive electrode with wide working pH range[J]. Analytical Letters, 1994, 27(9): 1637-46.
[58] PETRUKHIN O M, AVDEEVA E N, ZHUKOV A F, et al. Bidentate organophosphorus compounds as ionophores for calcium- and uranyl-selective electrodes[J]. Analyst, 1991, 116(7): 715-9.
[59] KOLYCHEVA N, MüLLER H. Flow-through calcium-selective electrode: application in flow-injection analysis and ion chromatography[J]. Analytica Chimica Acta, 1991, 242: 65-72.
[60] SHEN Y-F, TSAI M-R, CHEN S-C, et al. Imaging endogenous bilirubins with two-photon fluorescence of bilirubin dimers[J]. Analytical Chemistry, 2015, 87(15): 7575-82.
[61] DIETZ M L, CHIARIZIA R, HORWITZ E P, et al. Effect of crown ethers on the ion-exchange behavior of alkaline earth metals. toward improved ion-exchange methods for the separation and preconcentration of radium[J]. Analytical Chemistry, 1997, 69(15): 3028-37.
[62] OSTERGAARD H L, TROWBRIDGE I S. Negative regulation of CD45 Protein tyrosine phosphatase activity by ionomycin in T cells[J]. Science, 1991, 253(5026): 1423-5.
[63] DUNCAN D M, COCKAYNE J S. Application of calixarene ionophores in PVC based ISEs for uranium detection[J]. Sensors and Actuators B: Chemical, 2001, 73(2): 228-35.
[64] LIU Y, LIU Z, ZHAO F, TIAN Y. Long-term tracking and dynamically quantifying of reversible changes of extracellular Ca2+ in multiple brain regions of freely moving animals[J]. Angewandte Chemie International Edition, 2021, 60(26): 14429-37.
[65] SUZUKI K, TOHDA K, TANDA Y, et al. Fiber-optic magnesium and calcium ion sensor based on a natural carboxylic polyether antibiotic[J]. Analytical Chemistry, 1989, 61(4): 382-4.
[66] ZHAI J, ZHU C, PENG X, XIE X. Ionophore-based heterogeneous calcium optical titration[J]. Electroanalysis, 2018, 30(4): 705-9.
[67] AMMANN D, BISSIG R, GüGGI M, et al. Preparation of neutral ionophores for alkali and alkaline earth metal cations and their application in ion selective membrane electrodes[J]. Helvetica Chimica Acta, 1975, 58(6): 1535-48.
[68] WUN T-C, BITTMAN R, BOROWITZ I J. Binding properties of neutral diamide ligands for alkaline-earth cations[J]. Biochemistry, 1977, 1610: 2074-9.
[69] BOROWITZ I J, LIN W-O, WUN T-C, et al. The preparation and properties of neutral diamide ionophores for group IIa metal cations[J]. Tetrahedron, 1977, 33(14): 1697-705.
[70] BOROWITZ I J, BOROWITZ G B, WEISS L M, RICKMAN B H. Cation-induced shifts in the proton NMR spectroscopy of dioxydiacetamide ionophores[J]. Tetrahedron, 1997, 53: 17235-40.
[71] KADEN H. The history of the glass electrode[J]. Chemia Analityczna, 2009, 54: 1089-108.
[72] DEMARCO R, CLARKE G, PEJCIC B. Ion-selective electrode potentiometry in environmental analysis[J]. Electroanalysis, 2007, 19(19-20): 1987-2001.
[73] BISWAS C K, RAMOS J M, KERR D N S. Heparin effect on ionised calcium concentration[J]. Clinica Chimica Acta, 1981, 116(3): 343-7.
[74] THODE J, HOLMEGAARD S N, TRANSBøL I, et al. Adjusted ionized calcium (at pH 7.4) and actual ionized calcium (at actual pH) in capillary blood compared for clinical evaluation of patients with disorders of calcium metabolism[J]. Clinical Chemistry, 1990, 36(3): 541-4.
[75] SACHS C, CHANEAC M, RABOUINE P, et al. Anomalies in pH 7.40 correction in ionised calcium analysers[J]. Annals of Clinical Biochemistry, 1989, 26(6): 542-6.
[76] LOKEN H F, HAVEL R J, GORDAN G S, WHITTINGTON S L. Ultracentrifugal analysis of protein-bound and free calcium in human serum[J]. Journal of Biological Chemistry, 1960, 235(12): 3654-8.
[77] KOTTEGODA S, SHAIK I, SHIPPY S A. Demonstration of low flow push–pull perfusion[J]. Journal of Neuroscience Methods, 2002, 121(1): 93-101.
[78] LINDNER E, BUCK R P. Microfabricated potentiometric electrodes and their in vivo applications[J]. Analytical Chemistry, 2000, 72(9): 336 A-45 A.
[79] IZATT R M, PAWLAK K, BRADSHAW J S, BRUENING R L. Thermodynamic and kinetic data for macrocycle interaction with cations, anions, and neutral molecules[J]. Chemical Reviews, 1995, 95: 2529-86.
[80] YE J, BALDWIN R P. Determination of amino acids and peptides by capillary electrophoresis and electrochemical detection at a copper electrode[J]. Analytical Chemistry, 1994, 66(17): 2669-74.
[81] CHEN S-P, HOSTEN C, VIVONI A, et al. SERS investigation of NAD(+) adsorbed on a silver electrode[J]. Langmuir, 2002, 18.
[82] FREINER D, KUNZ R E, CITTERIO D, et al. Integrated optical sensors based on refractometry of ion-selective membranes[J]. Sensors and Actuators B: Chemical, 1995, 29(1): 277-85.
[83] DU X, ZHAI J, ZENG D, et al. Distance-based detection of calcium ions with hydrogels entrapping exhaustive ion-selective nanoparticles[J]. Sensors and Actuators B-chemical, 2020, 319: 128300.
[84] CUI Y, ZHAI J, WANG Y, XIE X. Polymersome-based ion-selective nano-optodes containing ionophores[J]. Sensors & Diagnostics, 2023, 2(5): 1286-91.
[85] SHIBATA H, HIRUTA Y, CITTERIO D. Fully inkjet-printed distance-based paper microfluidic devices for colorimetric calcium determination using ion-selective optodes[J]. Analyst, 2019, 144(4): 1178-86.
[86] RONG G, KIM E H, POSKANZER K E, CLARK H A. A method for estimating intracellular ion concentration using optical nanosensors and ratiometric imaging[J]. Scientific Reports, 2017, 7(1): 10819.
[87] WANG R, DU X, MA X, et al. Ionophore-based pH independent detection of ions utilizing aggregation-induced effects[J]. Analyst, 2020, 145(11): 3846-50.
[88] JANSOD S, BAKKER E. Tunable optical sensing with pvc-membrane-based ion-selective bipolar electrodes[J]. ACS Sensors, 2019, 4(4): 1008-16.
[89] RUSSELL J T. Imaging calcium signals in vivo: a powerful tool in physiology and pharmacology[J]. Br J Pharmacol, 2011, 163(8): 1605-25.
[90] ORRENIUS S, ZHIVOTOVSKY B, NICOTERA P. Regulation of cell death: The calcium-apoptosis link[J]. Nature Reviews Molecular Cell Biology, 2003, 4(7): 552-65.
[91] HE D, ZHU Z, ZHAO L, et al. A practical method for measuring high precision calcium isotope ratios without chemical purification for calcium carbonate samples by multiple collector inductively coupled plasma mass spectrometry[J]. Chemical Geology, 2019, 514: 105-11.
[92] DEY D, BHATTACHARJEE D, CHAKRABORTY S, HUSSAIN S A. Development of hard water sensor using fluorescence resonance energy transfer[J]. Sensors and Actuators B: Chemical, 2013, 184: 268-73.
[93] WILLIS J B. Determination of calcium and magnesium in urine by atomic absorption spectroscopy[J]. Analytical Chemistry, 1961, 33(4): 556-9.
[94] DENG L, ZHAI J, XIE X. Chemiluminescent ion sensing platform based on ionophores[J]. Analytical Chemistry, 2019, 91(13): 8638-43.
[95] LAUTENSCHLäGER J, STEPHENS A D, FUSCO G, et al. C-terminal calcium binding of α-synuclein modulates synaptic vesicle interaction[J]. Nature Communications, 2018, 9(1): 712.
[96] BARANWAL J, BARSE B, GATTO G, et al. Electrochemical sensors and their applications: a review[J/OL] 2022, 10(9):10.3390/chemosensors10090363
[97] FRANT M S. Historical perspective. history of the early commercialization of ion-selective electrodes[J]. Analyst, 1994, 119(11): 2293-301.
[98] MOODY G J, THOMAS J D R. 2 The bio-medical and related roles of ion-selective membrane electrodes[M]//ELLIS G P, WEST G B. Progress in Medicinal Chemistry. Elsevier. 1977: 51-104.
[99] FRANT M S. Where did ion selective electrodes come from? the story of their development and commercialization[J]. Journal of Chemical Education, 1997, 74(2): 159.
[100]AMMANN D, GüGGI M, PRETSCH E, SIMON W. Improved calcium ion-selective electrode based on a neutral carrier[J]. Analytical Letters, 1975, 8(10): 709-20.
[101]PRESTIPINO G, FALUGI C, FALCHETTO R, GAZZOTTI P. The ionophore ETH 129 as Ca2+ translocator in artificial and natural membranes[J]. Anal Biochem, 1993, 210(1): 119-22.
[102]GEHRIG P, RUSTERHOLZ B, SIMON W. Very lipophilic Ca2+-selective ionophore for chemical sensors of high lifetime[J]. Chimia, 1989, 43(12): 377-9.
[103]WUN T C, BITTMAN R. Ionophorous properties of neutral diamide ligands toward calcium[J]. Biochemistry, 1977, 16(10): 2080-6.
[104]WANG W, ZHENG L, LI W, et al. Design, synthesis, and structure–activity relationship studies of novel indolyalkylpiperazine derivatives as selective 5-ht1a receptor agonists[J]. Journal of Chemical Information and Modeling, 2020, 60(1): 235-48.
[105]LI H, YANG T, DING L, WANG W. Synthesis, characterization, fluorescence and DNA-binding studies of europium(III) pirates complexes with amide-based 2,3-dihydroxynaphthalene derivatives[J]. Journal of Rare Earths, 2012, 30(4): 297-303.
[106]GARCIA-RUBIA A, LASALA F, GINEX T, et al. N′-Phenylacetohydrazide derivatives as potent ebola virus entry inhibitors with an improved pharmacokinetic profile[J]. Journal of Medicinal Chemistry, 2023, 66(8): 5465-83.
[107]MU Q C, WANG X B, YE F, et al. Palladium-catalyzed olefination of aryl/alkyl halides with trimethylsilyldiazomethane via carbene migratory insertion[J]. Chemical Communications, 2018, 54(92): 12994-7.
[108]MI Y, BAKKER E. Determination of complex formation constants of lipophilic neutral ionophores in solvent polymeric membranes with segmented sandwich membranes[J]. Analytical Chemistry, 1999, 71(23): 5279-87.
[109]SCHEFER U, AMMANN D, PRETSCH E, et al. Neutral carrier based calcium(2+)-selective electrode with detection limit in the sub-nanomolar range[J]. Analytical Chemistry, 1986, 58(11): 2282-5.
[110]HINDS T R, VINCENZI F F. The effect of ETH 1001 on ion fluxes across red blood cell membranes[J]. Cell Calcium, 1985, 6(3): 265-79.
[111]SHUL'GA A A, AHLERS B, CAMMANN K. Ion-selective conductometric microsensors based on the phenomenon of specific salt extraction[J]. Journal of Electroanalytical Chemistry, 1995, 395(1): 305-8.
[112]HISAMOTO H, WATANABE K, NAKAGAWA E, et al. Flow-through type calcium ion selective optodes based on novel neutral ionophores and a lipophilic anionic dye[J]. Analytica Chimica Acta, 1994, 299(2): 179-87.
[113]QIN Y, MI Y, BAKKER E. Determination of complex formation constants of 18 neutral alkali and alkaline earth metal ionophores in poly(vinyl chloride) sensing membranes plasticized with bis(2-ethylhexyl)sebacate and o-nitrophenyloctylether[J]. Analytica Chimica Acta, 2000, 421(2): 207-20.
[114]DU X, WANG R, ZHAI J, et al. Ionophore-based ion-selective nanosensors from brush block copolymer nanodots[J]. ACS Applied Nano Materials, 2020, 3(1): 782-8.
[115]XIE X, GUTIéRREZ A, TROFIMOV V, et al. Charged solvatochromic dyes as signal transducers in ph independent fluorescent and colorimetric ion selective nanosensors[J]. Analytical Chemistry, 2015, 87(19): 9954-9.
修改评论