[1] SCHOLZC, COWIEPA. Determination of total strain from faulting using slip measurements [J]. Nature, 1990, 346(6287): 837-839.
[2] SCHOLZ C H. Earthquakes and friction laws[J]. Nature, 1998, 391(6662): 37-42.
[3] KIKUCHI M, KANAMORI H. Inversion of complex body waves[J]. Bulletin of the Seismological Society of America, 1982, 72(2): 491-506.
[4] OLSON A H, APSEL R J. Finite faults and inverse theory with applications to the 1979 Imperial Valley earthquake[J]. Bulletin of the Seismological Society of America, 1982, 72(6A): 1969-2001.
[5] HARTZELL S H, HEATON T H. Inversion of strong ground motion and teleseismic waveform data for the fault rupture history of the 1979 Imperial Valley, California, earthquake[J]. Bulletin of the Seismological Society of America, 1983, 73(6A): 1553-1583.
[6] CHEN Y T, ZHOU J Y, NI J C. Inversion of near-source-broadband accelerograms for the earthquake source-time function[J]. Tectonophysics, 1991, 197(1): 89-98.
[7] 许力生,陈运泰.震源时间函数与震源破裂过程[J].地震地磁观测与研究,2002,23(6):1-8.
[8] GUTENBERG B, RICHTER C F. Seismicity of the earth and associated phenomena[M]. Princeton University Press, 1949.
[9] HAO J, JI C, YAO Z. Slip history of the 2016 𝑀W 7.0 Kumamoto earthquake: Intraplate rupture in complex tectonic environment[J]. Geophysical Research Letters, 2017, 44(2): 743-750.
[10] YE L, LAY T, KANAMORI H, et al. Rupture characteristics of major and great (𝑀W ≥ 7.0) megathrust earthquakes from 1990 to 2015: 1. Source parameter scaling relationships[J]. Journal of Geophysical Research: Solid Earth, 2016, 121(2): 826-844.
[11] YUE H, SHEN Z K, ZHAO Z, et al. Rupture process of the 2021 𝑀7.4 Maduo earthquake and implication for deformation mode of the Songpan-Ganzi terrane in Tibetan Plateau[J]. Proceedings of the National Academy of Sciences, 2022, 119(23): e2116445119.
[12] 朱音杰,罗艳,赵里,等. 利用区域宽频地震数据反演2021年5月云南漾濞𝑀S6.4地震震源破裂过程[J]. 地球物理学报,2022,65(3): 1021-1031.
[13] HARTZELL S H. Earthquake aftershocks as Green’s functions[J]. Geophysical Research Letters, 1978, 5(1): 1-4.
[14] MUELLER C S. Source pulse enhancement by deconvolution of an empirical Green’s function [J]. Geophysical Research Letters, 1985, 12(1): 33-36.
[15] SHEARERPM, PRIETOGA, HAUKSSONE. Comprehensive analysis of earthquake source spectra in southern California[J]. Journal of Geophysical Research: Solid Earth, 2006, 111: B06303.
[16] CALDERONI G, ROVELLI A, BEN-ZION Y, et al. Along-strike rupture directivity of earthquakes of the 2009 L’Aquila, central Italy, seismic sequence[J]. Geophysical Journal International, 2015, 203(1): 399-415.
[17] SHEARERPM, ABERCROMBIERE, TRUGMANDT, et al. Comparing EGF methods for estimating corner frequency and stress drop from P wave spectra[J]. Journal of Geophysical Research: Solid Earth, 2019, 124(4): 3966-3986.
[18] PRIETO G A, FROMEN T B, YU C, et al. Earthquake rupture below the brittle-ductile transition in continental lithospheric mantle[J]. Science Advances, 2017, 3(3): e1602642.
[19] MCGUIRE J J, ZHAO L, JORDANTH. Teleseismic inversion for the second degree moments of earthquake space-time distributions[J]. Geophysical Journal International, 2001, 145(3): 661-678.
[20] MCGUIRE J J. Estimating finite source properties of small earthquake ruptures[J]. Bulletin of the Seismological Society of America, 2004, 94(2): 377-393.
[21] MENG H, MCGUIRE J J, BEN-ZION Y. Semiautomated estimates of directivity and related source properties of small to moderate Southern California earthquakes using second seismic moments[J]. Journal of Geophysical Research: Solid Earth, 2020, 125(4): e2019JB018566.
[22] WARREN L M, SHEARER P M. Mapping lateral variations in upper mantle attenuation by stacking P and PP spectra[J]. Journal of Geophysical Research: Solid Earth, 2002, 107(B12): ESE 6-1-ESE 6-11.
[23] AKI K. Scaling law of seismic spectrum[J]. Journal of Geophysical Research, 1967, 72(4): 1217-1231.
[24] PRIETO G A, SHEARER P M, VERNON F L, et al. Earthquake source scaling and selfsimilarity estimation from stacking P and S spectra[J]. Journal of Geophysical Research: Solid Earth, 2004, 109: B08310.
[25] BRUNEJN. Tectonic stress and the spectra of seismic shear waves from earthquakes[J]. Journal of Geophysical Research, 1970, 75(26): 4997-5009.
[26] KANE D L, SHEARER P M, GOERTZ-ALLMANN B P, et al. Rupture directivity of small earthquakes at Parkfield[J]. Journal of Geophysical Research: Solid Earth, 2013, 118(1): 212-221.
[27] TRUGMAN D T, SHEARER P M. Application of an improved spectral decomposition method to examine earthquake source scaling in Southern California[J]. Journal of Geophysical Research: Solid Earth, 2017, 122(4): 2890-2910.
[28] 赵翠萍,陈章立,华卫,等. 中国大陆主要地震活动区中小地震震源参数研究[J]. 地球物理学报,2011, 54(6): 1478-1489.
[29] 左可桢,陈继锋,蒲举,等. 2016-01-21青海门源𝑀S6.4地震震前应力降变化特征研究[J].大地测量与地球动力学,2018,38(6): 629-633.
[30] 周少辉,蒋海昆,曲均浩,等. 应力降研究进展综述[J]. 中国地震,2018,34(4): 591-605.
[31] 盛敏汉,储日升,王清东,等. 2019年12月26日湖北应城𝑀4.9地震震源参数及余震活动性研究[J]. 中国地震,2021,37(2): 463-471.
[32] MAYEDA K, WALTER W R. Moment, energy, stress drop, and source spectra of western United States earthquakes from regional coda envelopes[J]. Journal of Geophysical Research: Solid Earth, 1996, 101(B5): 11195-11208.
[33] SATO T, HIRASAWA T. Body wave spectra from propagating shear cracks[J]. Journal of Physics of the Earth, 1973, 21(4): 415-431.
[34] 梁尚鸿, 李幼铭,束沛镒,等. 利用区域地震台网P、S振幅比资料测定小震震源参数[J].地球物理学报,1984,27(3): 249-257.
[35] ABERCROMBIE R E. Investigating uncertainties in empirical Green’s function analysis of earthquake source parameters[J]. Journal of Geophysical Research: Solid Earth, 2015, 120(6): 4263-4277.
[36] ABERCROMBIE R E, POLI P, BANNISTER S. Earthquake directivity, orientation, and stress drop within the subducting plate at the Hikurangi margin, New Zealand[J]. Journal of Geophysical Research: Solid Earth, 2017, 122(12): 10176-10188.
[37] SILVER P G, JORDAN T H. Total-moment spectra of fourteen large earthquakes[J]. Journal of Geophysical Research: Solid Earth, 1983, 88(B4): 3273-3293.
[38] MENG H, FAN W. Immediate foreshocks indicating cascading rupture developments for 527 M 0.9 to 5.4 Ridgecrest earthquakes[J]. Geophysical Research Letters, 2021, 48(19): e2021GL095704.
[39] KANEKO Y, SHEARER P M. Variability of seismic source spectra, estimated stress drop, and radiated energy, derived from cohesive-zone models of symmetrical and asymmetrical circular and elliptical ruptures[J]. Journal of Geophysical Research: Solid Earth, 2015, 120(2): 1053-1079.
[40] MCGUIRE J J, KANEKO Y. Directly estimating earthquake rupture area using second moments to reduce the uncertainty in stress drop[J]. Geophysical Journal International, 2018, 214(3): 2224-2235.
[41] MCGUIRE J J. A MATLAB toolbox for estimating the second moments of earthquake ruptures [J]. Seismological Research Letters, 2017, 88(2A): 371-378.
[42] BERTERO M,BINDI D,BOCCACCI P ,et al. Application of the projected Landweber method to the estimation of the source time function in seismology[J]. Inverse Problems, 1997, 13(2): 465-486.
[43] LANZA V,SPALLAROSSA D,CATTANEOM, et al. Source parameters of small events using constrained deconvolution with empirical Green’s functions[J]. Geophysical Journal International, 1999, 137(3): 651-662.
[44] SHEARER P M. Introduction to seismology[M]. 2th ed. New York: United States of America by Cambridge University Press, 2009.
[45] AKI K, RICHARDS P G. Quantitative seismology[M]. University Science Books, 2002.
[46] MCGUIRE J J. A MATLAB Toolbox for Estimating the Second Moments of Earthquake Ruptures[J]. Seismological Research Letters, 2017, 88(2A): 371-378.
[47] BOYD S P, VANDENBERGHE L. Convex optimization[M]. Cambridge University Press, 2004.
[48] GRANT M C, BOYD S P. Graph implementations for nonsmooth convex programs[C]//Recent advances in learning and control. Springer London, 2008: 95-110.
[49] PRIETO G A, PARKER RL,VERNON III F L. A Fortran 90 library for multitaper spectrum analysis[J]. Computers & Geosciences, 2009, 35(8): 1701-1710.
[50] BOATWRIGHT J. A spectral theory for circular seismic sources; simple estimates of source dimension, dynamic stress drop, and radiated seismic energy[J]. Bulletin of the Seismological Society of America, 1980, 70(1): 1-27.
[51] ABERCROMBIERE,BANNISTERS,RISTAUJ,etal.Variabilityofearthquakestressdropin a subduction setting, the Hikurangi Margin, New Zealand [J]. Geophysical Journal International, 2017, 208(1): 306-320.
[52] HUANG Y, BEROZA G C, ELLSWORTH W L. Stress drop estimates of potentially induced earthquakes in the Guy-Greenbrier sequence[J]. Journal of Geophysical Research: Solid Earth, 2016, 121(9): 6597-6607.
[53] KANEKO Y, SHEARER P M. Seismic source spectra and estimated stress drop derived from cohesive-zone models of circular subshear rupture[J]. Geophysical Journal International, 2014,197(2): 1002-1015.
[54] SILVER P. Retrieval of source-extent parameters and the interpretation of corner frequency[J]. Bulletin of the Seismological Society of America, 1983, 73(6A): 1499-1511.
[55] ESHELBY J D. The determination of the elastic field of an ellipsoidal inclusion, and related problems[J]. Mathematical and Physical Sciences, 1957, 241(1226): 376-396.
[56] MADARIAGA R. Dynamics of an expanding circular fault[J]. Bulletin of the Seismological Society of America, 1976, 66(3): 639-666.
[57] BAO X, EATON D W. Fault activation by hydraulic fracturing in western Canada[J]. Science, 2016, 354(6318): 1406-1409.
[58] SCHULTZ R, WANG R. Newly emerging cases of hydraulic fracturing induced seismicity in the Duvernay East Shale Basin[J]. Tectonophysics, 2020, 779: 228393.
[59] 张捷,况文欢,张雄,等. 全球油气开采诱发地震的研究现状与对策[J]. 地球与行星物理论评,2021, 52(3): 239-265.
[60] EATON D W, IGONIN N, POULIN A, et al. Induced seismicity characterization during hydraulic-fracture monitoring with a shallow-wellbore geophone array and broadband sensors[J]. Seismological Research Letters, 2018, 89(5): 1641-1651.
[61] ZHANG F, WANG R, CHEN Y, et al. Spatiotemporal variations and quantifying mechanisms during multistage hydraulic fracturing in Western Canada[J]. Journal of Geophysical Research: Solid Earth, 2022, 127(8): e2022JB024744.
[62] ZHANG H, EATON D W, RODRIGUEZ G, et al. Source-mechanism analysis and stress inversion for hydraulic-fracturing-induced event sequences near Fox Creek, Alberta[J]. Bulletin of the Seismological Society of America, 2019, 109(2): 636-651.
[63] HUI G, CHEN S, CHEN Z, et al. An integrated approach to characterize hydraulic fracturing induced seismicity in shale reservoirs[J]. Journal of Petroleum Science and Engineering, 2021, 196: 107624.
[64] OJO A O, KAO H, VISSER R, et al. Spatiotemporal changes in seismic velocity associated with hydraulic fracturing-induced earthquakes near Fox Creek, Alberta, Canada[J]. Journal of Petroleum Science and Engineering, 2022, 208: 109390.
[65] ZHUW, BEROZAGC. PhaseNet: a deep-neural-network-based seismic arrival-time picking method[J]. Geophysical Journal International, 2019, 216(1): 261-273.
[66] KANAMORIH. The energy release in great earthquakes[J]. Journal of Geophysical Research,1977, 82(20): 2981-2987.
[67] 吕江宁,沈正康,王敏. 川滇地区现代地壳运动速度场和活动块体模型研究[J]. 地震地质, 2003, 25(4): 543-554.
[68] 常祖峰,常昊,臧阳,等. 维西—乔后断裂新活动特征及其与红河断裂的关系[J]. 地质力学学报,2016, 22(3): 517-530.
[69] YANGT, LI B, FANGL, et al. Relocation of the Foreshocks and Aftershocks of the 2021 𝑀S 6.4 Yangbi Earthquake Sequence, Yunnan, China[J]. Journal of Earth Science, 2022, 33(4): 892-900.
[70] 王莹,赵韬,胡景,等. 2021年云南漾濞6.4级地震序列重定位及震源机制解特征分析[J].地震地质,2021,43(4): 847-863.
[71] 万永革, 王昱茹,靳志同. 2021年云南漾濞6.4级地震震源区地壳应力不均匀性研究[J].地震地质,2023,45(4): 1025-1040.
[72] 刘昌伟,常祖峰,王光明,等. 2021年云南漾濞𝑀S6.4地震震区断裂构造特征[J]. 地震研究,2023, 46(3): 323-331.
[73] GONG W, YE L, QIU Y, et al. Rupture directivity of the 2021 𝑀W 6.0 Yangbi, Yunnan earthquake[J]. Journal of Geophysical Research: Solid Earth, 2022, 127(9): e2022JB024321.
[74] WANG W, HE J, WANG X, et al. Rupture process models of the Yangbi and Maduo earthquakes that struck the eastern Tibetan Plateau in May 2021[J]. Science Bulletin, 2022, 67(5): 466-469.
[75] COCHARDA, MADARIAGAR. Dynamic faulting underrate-dependent friction[J]. Pure and Applied Geophysics, 1994, 142: 419-445.
[76] FUKUYAMA E, MADARIAGA R. Integral equation method for plane crack with arbitrary shape in 3D elastic medium[J]. Bulletin of the Seismological Society of America, 1995, 85(2): 614-628.
[77] AOCHI H, FUKUYAMA E, MATSU’URA M. Spontaneous rupture propagation on a non-planar fault in 3-D elastic medium[J]. Pure and Applied Geophysics, 2000, 157: 2003-2027.
[78] ZHANG H, CHEN X. Dynamic rupture on a planar fault in three-dimensional half space—I. Theory[J]. Geophysical Journal International, 2006, 164(3): 633-652.
[79] WEI X, XU J, LIU Y, et al. The slow self-arresting nature of low-frequency earthquakes[J]. Nature Communications, 2021, 12(1): 5464.
修改评论