中文版 | English
题名

硝酸根电化学还原中的传质过程调控机制研究

其他题名
MECHANISM STUDY OF MASS TRANSPORT MODULATION IN ELECTROCHEMICAL REDUCTION OF NITRATE
姓名
姓名拼音
YANG Linfeng
学号
12132812
学位类型
硕士
学位专业
0703 化学
学科门类/专业学位类别
07 理学
导师
顾均
导师单位
化学系
论文答辩日期
2024-05-08
论文提交日期
2024-06-20
学位授予单位
南方科技大学
学位授予地点
深圳
摘要

间歇性可再生电力驱动的电化学硝酸根还原是一种很有前途的水处理策略。然而,低离子强度溶液中硝酸根还原活性低。此外,抑制中间体产物,高选择性地还原硝酸根为氨也是目前电化学硝酸根还原的一大挑战。其中,低离子强度溶液中硝酸根还原活性低,其本质是由于带负电荷的阴极对硝酸根阴离子的静电排斥,导致硝酸根阴离子的低电迁移速率。添加支持电解质是促进低浓度溶液中硝酸根还原的最流行的策略之一。硝酸根还原性能的提高是由于支持电解质对界面电场的屏蔽。另一种可能的策略是在催化剂上锚定阳离子位点。为证明这 一策略,采用热解法制备了FeNC催化剂,并通过与铁原子未配的氮原子的甲基化,引入了阳离子位点。催化剂的甲基化导致零电荷电势的负移,催化剂与硝酸根之间的斥力减弱。在低硝酸根浓度的溶液中测试了电催化硝酸根还原的性能,该溶液的离子强度与实际河水相当。甲基化 FeNC 催化剂展示了更高的硝酸根还原反应活性,其氨的分电流密度是 FeNC 催化剂的 9.4 倍。研究表明,用离子基团修饰催化剂是调节低离子强度溶液中电催化活性的一种有效方法。

针对硝酸根还原选择性的问题,其主要在于亚硝酸根中间体的利用效率受其扩散的影响,利用强制对流调制中间体的扩散过程,探究硝酸根还原机理,进而可以提出针对性的措施来提高电化学硝酸根还原为氨的选择性。本研究基于Cu-RDECu-RCE,通过可控强制对流调制扩散过程,系统性地探究了扩散过程对电化学硝酸根还原产物选择性的影响。本研究表明,硝酸根还原过程经历了溶解的亚硝酸根形成的过程。因此,可以通过抑制中间体亚硝酸根的扩散,来提高硝酸根还原为氨的选择性。

关键词
语种
中文
培养类别
独立培养
入学年份
2021
学位授予年份
2024-06
参考文献列表

[1]LEHNERT N, DONG H T, HARLAND J B, et al. Reversing Nitrogen Fixation[J]. Nature Reviews Chemistry, 2018, 2(10): 278-289.
[2]ZENG Y, PRIEST C, WANG G, et al. Restoring the Nitrogen Cycle by Electrochemical Reduction of Nitrate: Progress and Prospects[J]. Small Methods, 2020, 4(12): 2000672.
[3]XU H, MA Y, CHEN J, et al. Electrocatalytic Reduction of Nitrate – A Step Towards a Sustainable Nitrogen Cycle[J]. Chemical Society Reviews, 2022, 51(7): 2710-2758.
[4]CANFIELD D E, GLAZER A N, FALKOWSKI P G. The Evolution and Future of Earth’s Nitrogen Cycle[J]. Science, 2010, 330(6001): 192-196.
[5]KUYPERS M M M, MARCHANT H K, KARTAL B. The Microbial Nitrogen-Cycling Network[J]. Nature Reviews Microbiology, 2018, 16(5): 263-276.
[6]HOAGLAND B, SCHMIDT C, RUSSO T A, et al. Controls on Nitrogen Transformation Rates on Restored Floodplains Along the Cosumnes River, California[J]. Science of The Total Environment, 2019, 649: 979-994.
[7]DANNI S O, BOUCHAOU L, ELMOUDEN A, et al. Assessment of water quality and nitrate source in the Massa catchment (Morocco) using δ15N and δ18O tracers[J]. Applied Radiation and Isotopes, 2019, 154: 108859.
[8]LUNDBERG J O, WEITZBERG E, COLE J A, et al. Nitrate, bacteria and human health[J]. Nature Reviews Microbiology, 2004, 2(7): 593-602.
[9]ZHANG X, ZHANG Y, SHI P, et al. The deep challenge of nitrate pollution in river water of China[J]. Science of The Total Environment, 2021, 770: 144674.
[10]GHAFARI S, HASAN M, AROUA M K. Bio-Electrochemical removal of nitrate from water and wastewater – A review[J]. Bioresource Technology, 2008, 99(10): 3965-3974.
[11]PARK J Y, YOO Y J. Biological nitrate removal in industrial wastewater treatment: which electron donor we can choose[J]. Applied Microbiology and Biotechnology, 2009, 82(3): 415-429.
[12]REZVANI F, SARRAFZADEH M-H, EBRAHIMI S, et al. Nitrate removal from drinking water with a focus on biological methods: a review[J]. Environmental Science and Pollution Research, 2019, 26(2): 1124-1141.
[13]CLIFORD D, LIU X. Ion Exchange for Nitrate Removal[J]. Journal AWWA, 1993, 85(4): 135-143.
[14]ANDREWS D A, HARWARD C. Isleham Ion-Exchange Nitrate-Removal Plant[J]. Water and Environment Journal, 1994, 8(2): 120-127.
[15]BARRABéS N, Sá J. Catalytic nitrate removal from water, past, present and future perspectives[J]. Applied Catalysis B: Environmental, 2011, 104(1): 1-5.
[16]MARTíNEZ J, ORTIZ A, ORTIZ I. State-of-the-Art and perspectives of the catalytic and electrocatalytic reduction of aqueous nitrates[J]. Applied Catalysis B: Environmental, 2017, 207: 42-59.
[17]XU B, CHEN Z, ZHANG G, et al. On-Demand Atomic Hydrogen Provision by Exposing Electron-Rich Cobalt Sites in an Open-Framework Structure toward Superior Electrocatalytic Nitrate Conversion to Dinitrogen[J]. Environmental Science & Technology, 2022, 56(1): 614-623.
[18]DJOUADI BELKADA F, KITOUS O, DROUICHE N, et al. Electrodialysis for fluoride and nitrate removal from synthesized photovoltaic industry wastewater[J]. Separation and Purification Technology, 2018, 204: 108-115.
[19]JELíNEK L, PARSCHOVá H, MATĚJKA Z, et al. A Combination of Ion Exchange and Electrochemical Reduction for Nitrate Removal from Drinking Water Part I: Nitrate Removal Using a Selective Anion Exchanger in the Bicarbonate Form with Reuse of the Regenerant Solution[J]. Water Environment Research, 2004, 76(7): 2686-2690.
[20]VORLOP K-D, TACKE T. Erste Schritte auf dem Weg zur edelmetallkatalysierten Nitrat- und Nitrit-Entfernung aus Trinkwasser[J]. Chemie Ingenieur Technik, 1989, 61(10): 836-837.
[21]GARCIA-SEGURA S, LANZARINI-LOPES M, HRISTOVSKI K, et al. Electrocatalytic reduction of nitrate: Fundamentals to full-scale water treatment applications[J]. Applied Catalysis B: Environmental, 2018, 236: 546-568.
[22]JONOUSH Z A, REZAEE A, GHAFFARINEJAD A. Enhanced electrocatalytic denitrification using non-noble Ni-Fe electrode supplied by Fe3O4 nanoparticle and humic acid[J]. Applied Surface Science, 2021, 563: 150142.
[23]GHAZOUANI M, AKROUT H, BOUSSELMI L. Nitrate and carbon matter removals from real effluents using Si/BDD electrode[J]. Environmental Science and Pollution Research, 2017, 24(11): 9895-9906.
[24]LI M, FENG C, ZHANG Z, et al. Optimization of process parameters for electrochemical nitrate removal using Box–Behnken design[J]. Electrochimica Acta, 2010, 56(1): 265-270.
[25]DUAN W, LI G, LEI Z, et al. Highly active and durable carbon electrocatalyst for nitrate reduction reaction[J]. Water Research, 2019, 161: 126-135.
[26]ZHOU J, ZHU Y, WEN K, et al. Efficient and Selective Electrochemical Nitrate Reduction to N2 Using a Flow-Through Zero-Gap Electrochemical Reactor with a Reconstructed Cu(OH)2 Cathode: Insights into the Importance of Inter-Electrode Distance[J]. Environmental Science & Technology, 2024, 58(10): 4824-4836.
[27]KYRIAKOU V, GARAGOUNIS I, VOURROS A, et al. An Electrochemical Haber-Bosch Process[J]. Joule, 2020, 4(1): 142-158.
[28]LIAO W, WANG J, NI G, et al. Sustainable conversion of alkaline nitrate to ammonia at activities greater than 2 A cm−2[J]. Nature Communications, 2024, 15(1): 1264.
[29]FU X. Some thoughts about the electrochemical nitrate reduction reaction[J]. Chinese Journal of Catalysis, 2023, 53: 8-12.
[30]JOHN J, MACFARLANE D R, SIMONOV A N. The why and how of NOx electroreduction to ammonia[J]. Nature Catalysis, 2023, 6(12): 1125-1130.
[31]ZHOU N, WANG Z, ZHANG N, et al. Potential-Induced Synthesis and Structural Identification of Oxide-Derived Cu Electrocatalysts for Selective Nitrate Reduction to Ammonia[J]. ACS Catalysis, 2023, 13(11): 7529-7537.
[32]LU H, CHANDRAN K, STENSEL D. Microbial ecology of denitrification in biological wastewater treatment[J]. Water Research, 2014, 64: 237-254.
[33]DI CAPUA F, PIROZZI F, LENS P N L, et al. Electron donors for autotrophic denitrification[J]. Chemical Engineering Journal, 2019, 362: 922-937.
[34]FU X, HOU R, YANG P, et al. Application of external carbon source in heterotrophic denitrification of domestic sewage: A review[J]. Science of The Total Environment, 2022, 817: 153061.
[35]PANG Y, WANG J. Various electron donors for biological nitrate removal: A review[J]. Science of The Total Environment, 2021, 794: 148699.
[36]TOKAZHANOV G, RAMAZANOVA E, HAMID S, et al. Advances in the catalytic reduction of nitrate by metallic catalysts for high efficiency and N2 selectivity: A review[J]. Chemical Engineering Journal, 2020, 384: 123252.
[37]RADJENOVIC J, SEDLAK D L. Challenges and Opportunities for Electrochemical Processes as Next-Generation Technologies for the Treatment of Contaminated Water[J]. Environmental Science & Technology, 2015, 49(19): 11292-11302.
[38]WANG J, SHARAF F, KANWAL A. Nitrate pollution and its solutions with special emphasis on electrochemical reduction removal[J]. Environmental Science and Pollution Research, 2023, 30(4): 9290-9310.
[39]GAO J, JIANG B, NI C, et al. Enhanced reduction of nitrate by noble metal-free electrocatalysis on P doped three-dimensional Co3O4 cathode: Mechanism exploration from both experimental and DFT studies[J]. Chemical Engineering Journal, 2020, 382: 123034.
[40]LUO H, LI S, WU Z, et al. Modulating the Active Hydrogen Adsorption on Fe─N Interface for Boosted Electrocatalytic Nitrate Reduction with Ultra-Long Stability[J]. Advanced Materials, 2023, 35(46): 2304695.
[41]LIU F, LIU K, LI M, et al. Fabrication and characterization of a Ni-TNTA bimetallic nanoelectrode to electrochemically remove nitrate from groundwater[J]. Chemosphere, 2019, 223: 560-568.
[42]DING T, WANG M, WU F, et al. Recent Advances in Electrocatalytic Nitrate Reduction: Strategies to Promote Ammonia Synthesis[J]. ACS Applied Energy Materials, 2024
[43]FU X, ZHANG J, KANG Y. Recent advances and challenges of electrochemical ammonia synthesis[J]. Chem Catalysis, 2022, 2(10): 2590-2613.
[44]TENG M, YE J, WAN C, et al. Research Progress on Cu-Based Catalysts for Electrochemical Nitrate Reduction Reaction to Ammonia[J]. Industrial & Engineering Chemistry Research, 2022, 61(40): 14731-14746.
[45]ZHANG H, WANG H, CAO X, et al. Unveiling Cutting-Edge Developments in Electrocatalytic Nitrate-to-Ammonia Conversion[J]. Advanced Materials, 2024: 2312746.
[46]KATSOUNAROS I. On the assessment of electrocatalysts for nitrate reduction[J]. Current Opinion in Electrochemistry, 2021, 28: 100721.
[47]查全性. 电极过程动力学导论[M]. 北京: 科学出版社, 2002.
[48]SHEN J, BIRDJA Y Y, KOPER M T M. Electrocatalytic Nitrate Reduction by a Cobalt Protoporphyrin Immobilized on a Pyrolytic Graphite Electrode[J]. Langmuir, 2015, 31(30): 8495-8501.
[49]LI J, ZHAN G, YANG J, et al. Efficient Ammonia Electrosynthesis from Nitrate on Strained Ruthenium Nanoclusters[J]. Journal of the American Chemical Society, 2020, 142(15): 7036-7046.
[50]HAN Y, ZHANG X, CAI W, et al. Facet-controlled palladium nanocrystalline for enhanced nitrate reduction towards ammonia[J]. Journal of Colloid and Interface Science, 2021, 600: 620-628.
[51]LIU H, LANG X, ZHU C, et al. Efficient Electrochemical Nitrate Reduction to Ammonia with Copper-Supported Rhodium Cluster and Single-Atom Catalysts[J]. Angewandte Chemie International Edition, 2022, 61(23): e202202556.
[52]HU Q, YANG K, PENG O, et al. Ammonia Electrosynthesis from Nitrate Using a Ruthenium–Copper Cocatalyst System: A Full Concentration Range Study[J]. Journal of the American Chemical Society, 2024, 146(1): 668-676.
[53]YANG J, QI H, LI A, et al. Potential-Driven Restructuring of Cu Single Atoms to Nanoparticles for Boosting the Electrochemical Reduction of Nitrate to Ammonia[J]. Journal of the American Chemical Society, 2022, 144(27): 12062-12071.
[54]ZHU T, CHEN Q, LIAO P, et al. Single-Atom Cu Catalysts for Enhanced Electrocatalytic Nitrate Reduction with Significant Alleviation of Nitrite Production[J]. Small, 2020, 16(49): 2004526.
[55]WANG Y, ZHANG L, NIU Y, et al. Boosting NH3 production from nitrate electroreduction via electronic structure engineering of Fe3C nanoflakes[J]. Green Chemistry, 2021, 23(19): 7594-7608.
[56]CARVALHO O Q, MARKS R, NGUYEN H K K, et al. Role of Electronic Structure on Nitrate Reduction to Ammonium: A Periodic Journey[J]. Journal of the American Chemical Society, 2022, 144(32): 14809-14818.
[57]GU J, LIU S, NI W, et al. Modulating electric field distribution by alkali cations for CO2 electroreduction in strongly acidic medium[J]. Nature Catalysis, 2022, 5(4): 268-276.
[58]LIU C, ZHANG G, ZHANG W, et al. Specifically adsorbed ferrous ions modulate interfacial affinity for high-rate ammonia electrosynthesis from nitrate in neutral media[J]. Proceedings of the National Academy of Sciences, 2023, 120(3): e2209979120.
[59]ZOU X, GU J. Strategies for efficient CO2 electroreduction in acidic conditions[J]. Chinese Journal of Catalysis, 2023, 52: 14-31.
[60]LIU Z, YAN T, SHI H, et al. Acidic Electrocatalytic CO2 Reduction Using Space-Confined Nanoreactors[J]. ACS Applied Materials & Interfaces, 2022, 14(6): 7900-7908.
[61]SONG Z, LIU Y, ZHONG Y, et al. Efficient Electroreduction of Nitrate into Ammonia at Ultralow Concentrations Via an Enrichment Effect[J]. Advanced Materials, 2022, 34(36): 2204306.
[62]GU J, HSU C-S, BAI L, et al. Atomically dispersed Fe3+ sites catalyze efficient CO2 electroreduction to CO[J]. Science, 2019, 364(6445): 1091-1094.
[63]WU Z-Y, KARAMAD M, YONG X, et al. Electrochemical ammonia synthesis via nitrate reduction on Fe single atom catalyst[J]. Nature Communications, 2021, 12(1): 2870.
[64]DUCA M, KOPER M T M. Powering denitrification: the perspectives of electrocatalytic nitrate reduction[J]. Energy & Environmental Science, 2012, 5(12): 9726-9742.
[65]ZHANG X, WANG Y, LIU C, et al. Recent advances in non-noble metal electrocatalysts for nitrate reduction[J]. Chemical Engineering Journal, 2021, 403: 126269.
[66]NAKAYAMA N, TAKAHASHI M. Catalytic Hydrogenation of Nitrate in Water Using a Pd–Cu/Al2O3 Catalyst and Dilute H2 Microbubbles[J]. Catalysis Letters, 2015, 145(9): 1756-1763.
[67]ZHANG Z, XU Y, SHI W, et al. Electrochemical-catalytic reduction of nitrate over Pd–Cu/γAl2O3 catalyst in cathode chamber: Enhanced removal efficiency and N2 selectivity[J]. Chemical Engineering Journal, 2016, 290: 201-208.
[68]WANG Y, YU Y, JIA R, et al. Electrochemical synthesis of nitric acid from air and ammonia through waste utilization[J]. National Science Review, 2019, 6(4): 730-738.
[69]MUSHTAQ M A, KUMAR A, YASIN G, et al. 3D interconnected porous Mo-doped WO3@CdS hierarchical hollow heterostructures for efficient photoelectrochemical nitrogen reduction to ammonia[J]. Applied Catalysis B: Environmental, 2022, 317: 121711.
[70]GUO Z, YE W, FANG X, et al. Amorphous cobalt–iron hydroxides as high-efficiency oxygen-evolution catalysts based on a facile electrospinning process[J]. Inorganic Chemistry Frontiers, 2019, 6(3): 687-693.
[71]TANG C, QIAO S-Z. How to explore ambient electrocatalytic nitrogen reduction reliably and insightfully[J]. Chemical Society Reviews, 2019, 48(12): 3166-3180.
[72]WANG Y, ZHOU W, JIA R, et al. Unveiling the Activity Origin of a Copper-based Electrocatalyst for Selective Nitrate Reduction to Ammonia[J]. Angewandte Chemie International Edition, 2020, 59(13): 5350-5354.
[73]VAN LANGEVELDE P H, KATSOUNAROS I, KOPER M T M. Electrocatalytic Nitrate Reduction for Sustainable Ammonia Production[J]. Joule, 2021, 5(2): 290-294.
[74]MUSHTAQ M A, ARIF M, FANG X, et al. Photoelectrochemical reduction of N2 to NH3 under ambient conditions through hierarchical MoSe2@g-C3N4 heterojunctions[J]. Journal of Materials Chemistry A, 2021, 9(5): 2742-2753.
[75]YANG S, YE W, ZHANG D, et al. Layered double hydroxide derived bimetallic nickel–iron selenide as an active electrocatalyst for nitrogen fixation under ambient conditions[J]. Inorganic Chemistry Frontiers, 2021, 8(7): 1762-1770.
[76]ZHANG D, YANG S, FANG X, et al. In situ localization of BiVO4 onto two-dimensional MXene promoting photoelectrochemical nitrogen reduction to ammonia[J]. Chinese Chemical Letters, 2022, 33(10): 4669-4674.
[77]WANG Y, XU A, WANG Z, et al. Enhanced Nitrate-to-Ammonia Activity on Copper–Nickel Alloys via Tuning of Intermediate Adsorption[J]. Journal of the American Chemical Society, 2020, 142(12): 5702-5708.
[78]WANG J, CAI C, WANG Y, et al. Electrocatalytic Reduction of Nitrate to Ammonia on Low-Cost Ultrathin CoOx Nanosheets[J]. ACS Catalysis, 2021, 11(24): 15135-15140.
[79]LI P, JIN Z, FANG Z, et al. A single-site iron catalyst with preoccupied active centers that achieves selective ammonia electrosynthesis from nitrate[J]. Energy & Environmental Science, 2021, 14(6): 3522-3531.
[80]CHEN F-Y, WU Z-Y, GUPTA S, et al. Efficient conversion of low-concentration nitrate sources into ammonia on a Ru-dispersed Cu nanowire electrocatalyst[J]. Nature Nanotechnology, 2022, 17(7): 759-767.
[81]FRUMKIN A N, PETRY O A, NIKOLAEVA-FEDOROVICH N V. On the determination of the value of the charge of the reacting particle and of the constant α from the dependence of the rate of electro-reduction on the potential and concentration of the solution[J]. Electrochimica Acta, 1963, 8(4): 177-192.
[82]FAWCETT W R. Fifty years of studies of double layer effects in electrode kinetics–a personal view[J]. Journal of Solid State Electrochemistry, 2011, 15(7): 1347-1358.
[83]Bard A J, Faulkner L R. electrochemical methods: fundamentals and applications[M]. New York: John wiley & Sons, Inc., 2001.
[84]ZHANG Y, SHI P, LI F, et al. Quantification of nitrate sources and fates in rivers in an irrigated agricultural area using environmental isotopes and a Bayesian isotope mixing model[J]. Chemosphere, 2018, 208: 493-501.
[85]LIU W, ZHANG L, LIU X, et al. Discriminating Catalytically Active FeNx Species of Atomically Dispersed Fe–N–C Catalyst for Selective Oxidation of the C–H Bond[J]. Journal of the American Chemical Society, 2017, 139(31): 10790-10798.
[86]ZHAO C X, REN D, WANG J, et al. Regeneration of single-atom catalysts deactivated under acid oxygen reduction reaction conditions[J]. Journal of Energy Chemistry, 2022, 73: 478-484.
[87]REN W, TAN X, JIA C, et al. Electronic Regulation of Nickel Single Atoms by Confined Nickel Nanoparticles for Energy-Efficient CO2 Electroreduction[J]. Angewandte Chemie International Edition, 2022, 61(26): e202203335.
[88]ZITOLO A, GOELLNER V, ARMEL V, et al. Identification of catalytic sites for oxygen reduction in iron- and nitrogen-doped graphene materials[J]. Nature Materials, 2015, 14(9): 937-942.
[89]JU W, BAGGER A, HAO G P, et al. Understanding activity and selectivity of metal-nitrogen-doped carbon catalysts for electrochemical reduction of CO2[J]. Nature Communications, 2017, 8(1): 944.
[90]MO C, JIAN J, LI J, et al. Boosting water oxidation on metal-free carbon nanotubes via directional interfacial charge-transfer induced by an adsorbed polyelectrolyte[J]. Energy & Environmental Science, 2018, 11(12): 3334-3341.
[91]MEN S, MITCHELL D S, LOVELOCK K R J, et al. X-ray Photoelectron Spectroscopy of Pyridinium-Based Ionic Liquids: Comparison to Imidazolium- and Pyrrolidinium-Based Analogues[J]. ChemPhysChem, 2015, 16(10): 2211-2218.
[92]PARK J C, CHUN D H, YANG J I, et al. Cs promoted Fe5C2/charcoal nanocatalysts for sustainable liquid fuel production[J]. RSC Advances, 2015, 5(55): 44211-44217.
[93]TIAN Z, WANG C, YUE J, et al. Effect of a potassium promoter on the Fischer–Tropsch synthesis of light olefins over iron carbide catalysts encapsulated in graphene-like carbon[J]. Catalysis Science & Technology, 2019, 9(11): 2728-2741.
[94]CREIGHTON J R. Surface stoichiometry and the role of adsorbates during GaAs atomic layer epitaxy[J]. Applied Surface Science, 1994, 82-83: 171-179.
[95]KONG M J, LEE S S, LYUBOVITSKY J, et al. Infrared spectroscopy of methyl groups on silicon[J]. Chemical Physics Letters, 1996, 263(1): 1-7.
[96]SIVARAMAN P, MISHRA S P, POTPHODE D D, et al. A supercapacitor based on longitudinal unzipping of multi-walled carbon nanotubes for high temperature application[J]. RSC Advances, 2015, 5(102): 83546-83557.
[97]MORALES-GUIO C G, LIARDET L, HU X L. Oxidatively Electrodeposited Thin-Film Transition Metal (Oxy)hydroxides as Oxygen Evolution Catalysts[J]. Journal of the American Chemical Society, 2016, 138(28): 8946-8957.
[98]DONG S, ZENG Z, CAI W, et al. The zeta potentials of g-C3N4 nanoparticles: Effect of electrolyte, ionic strength, pH, and humic acid[J]. Journal of Nanoparticle Research, 2019, 21(11): 233.
[99]GAO P, XUE Z H, ZHANG S N, et al. Schottky Barrier-Induced Surface Electric Field Boosts Universal Reduction of NOx− in Water to Ammonia[J]. Angewandte Chemie International Edition, 2021, 60(38): 20711-20716.
[100]LEI F, XU W, YU J, et al. Electrochemical synthesis of ammonia by nitrate reduction on indium incorporated in sulfur doped graphene[J]. Chemical Engineering Journal, 2021, 426: 131317.
[101]LIU E, LI J, JIAO L, et al. Unifying the Hydrogen Evolution and Oxidation Reactions Kinetics in Base by Identifying the Catalytic Roles of Hydroxyl-Water-Cation Adducts[J]. Journal of the American Chemical Society, 2019, 141(7): 3232-3239.
[102]CHENG T, WANG L, MERINOV B V, et al. Explanation of Dramatic pH-Dependence of Hydrogen Binding on Noble Metal Electrode: Greatly Weakened Water Adsorption at High pH[J]. Journal of the American Chemical Society, 2018, 140(25): 7787-7790.
[103]YE W, YANG Y, ARIF M, et al. Fe, Mo–N/C Hollow Porous Nitrogen-Doped Carbon Nanorods as an Effective Electrocatalyst for N2 Reduction Reaction[J]. ACS Sustainable Chemistry & Engineering, 2020, 8(42): 15946-15952.
[104]HUANG J E, LI F, OZDEN A, et al. CO2 electrolysis to multicarbon products in strong acid[J]. Science, 2021, 372(6546): 1074-1078.
[105]MONTEIRO M C O, DATTILA F, HAGEDOORN B, et al. Absence of CO2 electroreduction on copper, gold and silver electrodes without metal cations in solution[J]. Nature Catalysis, 2021, 4(8): 654-662.
[106]ZHANG J, HE W, QUAST T, et al. Single-entity Electrochemistry Unveils Dynamic Transformation during Tandem Catalysis of Cu2O and Co3O4 for Converting NO3− to NH3[J]. Angewandte Chemie International Edition, 2023, 62(8): e202214830.

所在学位评定分委会
化学
国内图书分类号
O646.5
来源库
人工提交
成果类型学位论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/765714
专题南方科技大学
理学院_化学系
推荐引用方式
GB/T 7714
杨林峰. 硝酸根电化学还原中的传质过程调控机制研究[D]. 深圳. 南方科技大学,2024.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可 操作
12132812-杨林峰-化学系.pdf(5250KB)----限制开放--请求全文
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[杨林峰]的文章
百度学术
百度学术中相似的文章
[杨林峰]的文章
必应学术
必应学术中相似的文章
[杨林峰]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。