中文版 | English
题名

金刚石氮空位色心体系中的纠缠制备、表征和保护

其他题名
CREATING, BENCHMARKING, AND PROTECTING ENTANGLEMENT IN NITROGEN VACANCY CENTERS IN DIAMOND
姓名
姓名拼音
TIAN Yu
学号
11930835
学位类型
博士
学位专业
0702 物理学
学科门类/专业学位类别
07 理学
导师
鲁大为
导师单位
物理系
论文答辩日期
2024-05-09
论文提交日期
2024-06-19
学位授予单位
南方科技大学
学位授予地点
深圳
摘要

量子纠缠是量子力学的基石,是量子物理与经典物理最根本的区别。它揭示了量子实体间可能存在的深刻且略带神秘的联系,从而挑战了传统关于空间分离和因果关系的观念。这种独特的特性不仅在理论上具有重要意义,而且被视为一种宝贵资源,推动了量子信息科学的进步。在量子计算领域,利用量子比特的纠缠状态能够进行并行计算,大大加快了某些问题的解决速度,超越了传统计算的能力。量子通信则通过纠缠态实现了量子密钥分发,提供了理论上绝对安全的通信手段。此外,量子纠缠在突破精密测量的经典技术限制方面也发挥了关键作用。
然而,尽管量子纠缠为量子技术的发展提供了巨大潜力,但在实际应用中有效制备和保护纠缠态的挑战依然存在。纠缠态极其脆弱,容易受到外界环境的干扰,这限制了其在实际应用中的效率和可靠性。另外,虽然纠缠已经在理论和实验物理学中得到广泛研究,人们对量子纠缠的深层机制的理解仍非常有限。因此,深入研究量子纠缠对于推动量子信息技术领域的发展至关重要。
本论文主要讨论了作者围绕量子纠缠展开的相关研究。在成功自主搭建基于金刚石氮空位色心的实验平台之后,作者的主要研究工作包括以下几个方面:(1)研究了氮空位色心电子自旋的光学极化机制以及核自旋的动态核极化过程。为此,我们分别构建了数学模型并进行了数值仿真。通过脉冲激光技术,显著提高了电子自旋和核自旋的初始化效率。这一进步不仅增强了系统的信噪比,也为制备高保真度的纠缠态奠定了坚实基础。(2)研究了纠缠结构的表征方法。利用基于前馈神经网络的机器学习分类器,成功地对理论数据中的纠缠结构进行了表征。此外,通过针对实验系统噪声参数的理论数据预处理,该方法在表征真实实验数据的纠缠结构时展现出了可靠性。(3)研究了一种保护纠缠的方法。该方法融合了基于混合量子经典算法的量子自编码器技术和无消相干子空间的理念,能够将纠缠态压缩编码至相干时间较长的子空间中。在需要时,通过解码操作可以恢复纠缠态,从而有效延长了纠缠的寿命。
上述研究成果将有助于促进量子纠缠在量子信息领域中的应用,为量子信息技术的发展提供技术基础。我们将继续在这一领域努力,以期将这些研究成果应用于量子精密测量等领域。

关键词
语种
中文
培养类别
独立培养
入学年份
2019
学位授予年份
2024-06
参考文献列表

[1] EINSTEIN A, PODOLSKY B, ROSEN N. Can quantum-mechanical description of physical reality be considered complete?[J]. Physical Review, 1935, 47(10): 777.
[2] BELL J S. On the einstein podolsky rosen paradox[J]. Physics Physique Fizika, 1964, 1(3): 195.
[3] FREEDMAN S J, CLAUSER J F. Experimental test of local hidden-variable theories[J]. Physical Review Letters, 1972, 28(14): 938.
[4] ASPECT A, GRANGIER P, ROGER G. Experimental tests of realistic local theories via Bell’s theorem[J]. Physical Review Letters, 1981, 47(7): 460.
[5] ASPECT A, GRANGIER P, ROGER G. Experimental realization of Einstein-Podolsky-Rosen-Bohm Gedankenexperiment: A new violation of Bell’s inequalities[J]. Physical Review Letters, 1982, 49(2): 91.
[6] ASPECT A, DALIBARD J, ROGER G. Experimental test of Bell’s inequalities using time-varying analyzers[J]. Physical Review Letters, 1982, 49(25): 1804.
[7] GREENBERGER D M, HORNE M A, ZEILINGER A. Going beyond Bell’s theorem[M]// Bell’s theorem, quantum theory and conceptions of the universe. Springer, 1989: 69-72.
[8] BOUWMEESTER D, PAN J W, MATTLE K, et al. Experimental quantum teleportation[J]. Nature, 1997, 390(6660): 575-579.
[9] SHOR P W. Algorithms for quantum computation: discrete logarithms and factoring[C]// Proceedings 35th Annual Symposium on Foundations of Computer Science. IEEE, 1994: 124-134.
[10] BENNETT C H, BRASSARD G, et al. Proceedings of the ieee international conference on computers, systems and signal processing[M]. IEEE New York, 1984.
[11] GIOVANNETTI V, LLOYD S, MACCONE L. Quantum-enhanced measurements: beating the standard quantum limit[J]. Science, 2004, 306(5700): 1330-1336.
[12] ARUTE F, ARYA K, BABBUSH R, et al. Quantum supremacy using a programmable superconducting processor[J]. Nature, 2019, 574(7779): 505-510.
[13] ZHONG H S, WANG H, DENG Y H, et al. Quantum computational advantage using photons[J]. Science, 2020, 370(6523): 1460-1463.
[14] DENG Y H, GU Y C, LIU H L, et al. Gaussian boson sampling with pseudo-photon-number-resolving detectors and quantum computational advantage[J]. Physical Review Letters, 2023, 131(7): 150601.
[15] EKERT A K. Quantum cryptography based on Bell’s theorem[J]. Physical Review Letters, 1991, 67(6): 661.
[16] GISIN N, RIBORDY G, TITTEL W, et al. Quantum cryptography[J]. Reviews of Modern Physics, 2002, 74(1): 145.
[17] PIRANDOLA S, ANDERSEN U L, BANCHI L, et al. Advances in quantum cryptography[J]. Advances in Optics and Photonics, 2020, 12(4): 1012-1236.
[18] SCARANI V, BECHMANN-PASQUINUCCI H, CERF N J, et al. The security of practical quantum key distribution[J]. Reviews of Modern Physics, 2009, 81(3): 1301.
[19] LIAO S K, CAI W Q, LIU W Y, et al. Satellite-to-ground quantum key distribution[J]. Nature, 2017, 549(7670): 43-47.
[20] DIAMANTI E, LO H K, QI B, et al. Practical challenges in quantum key distribution[J]. npj Quantum Information, 2016, 2(1): 1-12.
[21] TAVAKOLI A, HAMEEDI A, MARQUES B, et al. Quantum random access codes using single d-level systems[J]. Physical Review Letters, 2015, 114(17): 170502.
[22] WANG X R, WU L Y, LIU C X, et al. Experimental generation of entanglement-assisted quantum random access code[J]. Physical Review A, 2019, 99(5): 052313.
[23] AGUILAR E A, BORKAŁA J J, MIRONOWICZ P, et al. Connections between mutually unbiased bases and quantum random access codes[J]. Physical Review Letters, 2018, 121(5): 050501.
[24] PIRANDOLA S, EISERT J, WEEDBROOK C, et al. Advances in quantum teleportation[J]. Nature Photonics, 2015, 9(10): 641-652.
[25] REN J G, XU P, YONG H L, et al. Ground-to-satellite quantum teleportation[J]. Nature, 2017, 549(7670): 70-73.
[26] SHERSON J F, KRAUTER H, OLSSON R K, et al. Quantum teleportation between light and matter[J]. Nature, 2006, 443(7111): 557-560.
[27] AZUMA K, ECONOMOU S E, ELKOUSS D, et al. Quantum repeaters: From quantum networks to the quantum internet[J]. Reviews of Modern Physics, 2023, 95(4): 045006.
[28] BRIEGEL H J, DÜR W, CIRAC J I, et al. Quantum repeaters: the role of imperfect local operations in quantum communication[J]. Physical Review Letters, 1998, 81(26): 5932.
[29] ZHAO Z, YANG T, CHEN Y A, et al. Experimental realization of entanglement concentration and a quantum repeater[J]. Physical Review Letters, 2003, 90(20): 207901.
[30] LIAO S K, CAI W Q, HANDSTEINER J, et al. Satellite-relayed intercontinental quantum network[J]. Physical Review Letters, 2018, 120(3): 030501.
[31] YIN J, CAO Y, LI Y H, et al. Satellite-based entanglement distribution over 1200 kilometers[J]. Science, 2017, 356(6343): 1140-1144.
[32] SEWELL R J, KOSCHORRECK M, NAPOLITANO M, et al. Magnetic sensitivity beyond the projection noise limit by spin squeezing[J]. Physical Review Letters, 2012, 109(25): 253605.
[33] OCKELOEN C F, SCHMIED R, RIEDEL M F, et al. Quantum metrology with a scanning probe atom interferometer[J]. Physical Review Letters, 2013, 111(14): 143001.
[34] WASILEWSKI W, JENSEN K, KRAUTER H, et al. Quantum noise limited and entanglement-assisted magnetometry[J]. Physical Review Letters, 2010, 104(13): 133601.
[35] FERNHOLZ T, KRAUTER H, JENSEN K, et al. Spin squeezing of atomic ensembles via nuclear-electronic spin entanglement[J]. Physical Review Letters, 2008, 101(7): 073601.
[36] LEIBFRIED D, BARRETT M D, SCHAETZ T, et al. Toward Heisenberg-limited spectroscopy with multiparticle entangled states[J]. Science, 2004, 304(5676): 1476-1478.
[37] HIGGINS B L, BERRY D W, BARTLETT S D, et al. Entanglement-free Heisenberg-limited phase estimation[J]. Nature, 2007, 450(7168): 393-396.
[38] NAGATA T, OKAMOTO R, O’BRIEN J L, et al. Beating the standard quantum limit with four-entangled photons[J]. Science, 2007, 316(5825): 726-729.
[39] GREVE G P, LUO C, WU B, et al. Entanglement-enhanced matter-wave interferometry in a high-finesse cavity[J]. Nature, 2022, 610(7932): 472-477.
[40] COUTEAU C. Spontaneous parametric down-conversion[J]. Contemporary Physics, 2018, 59(3): 291-304.
[41] CHANG C S, SABÍN C, FORN-DÍAZ P, et al. Observation of three-photon spontaneous parametric down-conversion in a superconducting parametric cavity[J]. Physical Review X, 2020, 10(1): 011011.
[42] JEON H, KANG J, KIM J, et al. Experimental realization of entangled coherent states in two-dimensional harmonic oscillators of a trapped ion[J]. Scientific Reports, 2024, 14(1): 6847.
[43] CAO S, WU B, CHEN F, et al. Generation of genuine entanglement up to 51 superconducting qubits[J]. Nature, 2023, 619(7971): 738-742.
[44] GRUBER A, DRABENSTEDT A, TIETZ C, et al. Scanning confocal optical microscopy and magnetic resonance on single defect centers[J]. Science, 1997, 276(5321): 2012-2014.
[45] ROBLEDO L, CHILDRESS L, BERNIEN H, et al. High-fidelity projective read-out of a solid-state spin quantum register[J]. Nature, 2011, 477(7366): 574-578.
[46] BALASUBRAMANIAN G, NEUMANN P, TWITCHEN D, et al. Ultralong spin coherence time in isotopically engineered diamond[J]. Nature Materials, 2009, 8(5): 383-387.
[47] RONG X, GENG J, SHI F, et al. Experimental fault-tolerant universal quantum gates with solid-state spins under ambient conditions[J]. Nature Communications, 2015, 6(1): 8748.
[48] CHILDRESS L, HANSON R. Diamond NV centers for quantum computing and quantum networks[J]. MRS Bulletin, 2013, 38(2): 134-138.
[49] PEZZAGNA S, MEIJER J. Quantum computer based on color centers in diamond[J]. Applied Physics Reviews, 2021, 8(1): 011308.
[50] ZHANG J, HEGDE S S, SUTER D. Efficient implementation of a quantum algorithm in a single nitrogen-vacancy center of diamond[J]. Physical Review Letters, 2020, 125(3): 030501.
[51] CASANOVA J, WANG Z Y, PLENIO M B. Noise-resilient quantum computing with a nitrogen-vacancy center and nuclear spins[J]. Physical Review Letters, 2016, 117(13): 130502.
[52] WU Y, WANG Y, QIN X, et al. A programmable two-qubit solid-state quantum processor under ambient conditions[J]. npj Quantum Information, 2019, 5(1): 9.
[53] CAI J, RETZKER A, JELEZKO F, et al. A large-scale quantum simulator on a diamond surface at room temperature[J]. Nature Physics, 2013, 9(3): 168-173.
[54] JI W, ZHANG L, WANG M, et al. Quantum simulation for three-dimensional chiral topological insulator[J]. Physical Review Letters, 2020, 125(2): 020504.
[55] CHEN B, HOU X, ZHOU F, et al. Detecting the out-of-time-order correlations of dynamical quantum phase transitions in a solid-state quantum simulator[J]. Applied Physics Letters, 2020, 116(19): 194002.
[56] DEGEN C L, REINHARD F, CAPPELLARO P. Quantum sensing[J]. Reviews of Modern Physics, 2017, 89(3): 035002.
[57] COHEN D, NIGMATULLIN R, KENNETH O, et al. Utilising NV based quantum sensing for velocimetry at the nanoscale[J]. Scientific Reports, 2020, 10(1): 5298.
[58] LOVCHINSKY I, SANCHEZ-YAMAGISHI J, URBACH E, et al. Magnetic resonance spectroscopy of an atomically thin material using a single-spin qubit[J]. Science, 2017, 355(6324): 503-507.
[59] BOSS J M, CUJIA K, ZOPES J, et al. Quantum sensing with arbitrary frequency resolution[J]. Science, 2017, 356(6340): 837-840.
[60] GLENN D R, BUCHER D B, LEE J, et al. High-resolution magnetic resonance spectroscopy using a solid-state spin sensor[J]. Nature, 2018, 555(7696): 351-354.
[61] FESCENKO I, LARAOUI A, SMITS J, et al. Diamond magnetic microscopy of malarial hemozoin nanocrystals[J]. Physical review applied, 2019, 11(3): 034029.
[62] LE SAGE D, ARAI K, GLENN D R, et al. Optical magnetic imaging of living cells[J]. Nature, 2013, 496(7446): 486-489.
[63] XIE Y, GENG J, YU H, et al. Dissipative quantum sensing with a magnetometer based on nitrogen-vacancy centers in diamond[J]. Physical Review Applied, 2020, 14(1): 014013.
[64] RAGHUNANDAN M, WRACHTRUP J, WEIMER H. High-density quantum sensing with dissipative first order transitions[J]. Physical Review Letters, 2018, 120(15): 150501.
[65] ROVNY J, YUAN Z, FITZPATRICK M, et al. Nanoscale covariance magnetometry with diamond quantum sensors[J]. Science, 2022, 378(6626): 1301-1305.
[66] POMPILI M, HERMANS S L, BAIER S, et al. Realization of a multinode quantum network of remote solid-state qubits[J]. Science, 2021, 372(6539): 259-264.
[67] HUMPHREYS P C, KALB N, MORITS J P, et al. Deterministic delivery of remote entanglement on a quantum network[J]. Nature, 2018, 558(7709): 268-273.
[68] HERMANS S, POMPILI M, BEUKERS H, et al. Qubit teleportation between non-neighbouring nodes in a quantum network[J]. Nature, 2022, 605(7911): 663-668.
[69] KALB N, REISERER A A, HUMPHREYS P C, et al. Entanglement distillation between solid-state quantum network nodes[J]. Science, 2017, 356(6341): 928-932.
[70] RIZZATO R, BRUCKMAIER F, LIU K, et al. Polarization transfer from optically pumped ensembles of n-v centers to multinuclear spin baths[J]. Physical Review Applied, 2022, 17(2): 024067.
[71] HEALEY A, HALL L, WHITE G, et al. Polarization transfer to external nuclear spins using ensembles of nitrogen-vacancy centers[J]. Physical Review Applied, 2021, 15(5): 054052.
[72] VAN DER SAR T, WANG Z, BLOK M, et al. Decoherence-protected quantum gates for a hybrid solid-state spin register[J]. Nature, 2012, 484(7392): 82-86.
[73] EKERT A, KNIGHT P L. Entangled quantum systems and the Schmidt decomposition[J]. American Journal of Physics, 1995, 63(5): 415-423.
[74] JIN Z X, LI-JOST X, FEI S M, et al. Entanglement measures based on the complete information of reduced states[J]. Physical Review A, 2023, 107(1): 012409.
[75] CHEN R, ZHAO B, WANG X. Near-term efficient quantum algorithms for entanglement analysis[J]. Physical Review Applied, 2023, 20(2): 024071.
[76] PERES A. Separability criterion for density matrices[J]. Physical Review Letters, 1996, 77(8): 1413.
[77] HORODECKI M, HORODECKI P, HORODECKI R. Separability of mixed states: necessary and sufficient conditions[J]. Physics Letters A, 1996, 223(1): 1-8.
[78] LEWENSTEIN M, KRAUS B, CIRAC J I, et al. Optimization of entanglement witnesses[J]. Physical Review A, 2000, 62(5): 052310.
[79] CHEN X Y, MIAO M, YIN R, et al. Gaussian entanglement witness and refined Werner-Wolf criterion for continuous variables[J]. Physical Review A, 2023, 107(2): 022410.
[80] GREENWOOD A C, WU L T, ZHU E Y, et al. Machine-learning-derived entanglement witnesses[J]. Physical Review Applied, 2023, 19(3): 034058.
[81] RICO A, HUBER F. Entanglement detection with trace polynomials[J]. Physical Review Letters, 2024, 132(7): 070202.
[82] ISLAM R, MA R, PREISS P M, et al. Measuring entanglement entropy in a quantum many-body system[J]. Nature, 2015, 528(7580): 77-83.
[83] EISERT J, CRAMER M, PLENIO M B. Colloquium: Area laws for the entanglement entropy[J]. Reviews of Modern Physics, 2010, 82(1): 277.
[84] SHAW A L, CHEN Z, CHOI J, et al. Benchmarking highly entangled states on a 60-atom analogue quantum simulator[J]. Nature, 2024, 628(8006): 71-77.
[85] D’EMIDIO J, ORUS R, LAFLORENCIE N, et al. Universal features of entanglement entropy in the honeycomb Hubbard model[J]. Physical Review Letters, 2024, 132(7): 076502.
[86] DÜR W, SKOTINIOTIS M, FRÖWIS F, et al. Improved quantum metrology using quantum error correction[J]. Physical Review Letters, 2014, 112: 080801.
[87] TERHAL B M. Quantum error correction for quantum memories[J]. Reviews of Modern Physics, 2015, 87: 307-346.
[88] KESSLER E M, LOVCHINSKY I, SUSHKOV A O, et al. Quantum error correction for metrology[J]. Physical Review Letters, 2014, 112: 150802.
[89] WALDHERR G, WANG Y, ZAISER S, et al. Quantum error correction in a solid-state hybrid spin register[J]. Nature, 2014, 506: 204-207.
[90] UNDEN T, BALASUBRAMANIAN P, LOUZON D, et al. Quantum metrology enhanced by repetitive quantum error correction[J]. Physical Review Letters, 2016, 116: 230502.
[91] CAI W, MU X, WANG W, et al. Protecting entanglement between logical qubits via quantum error correction[J]. Nature Physics, 2024, 20: 1022-1026.
[92] TAN Q S, HUANG Y, YIN X, et al. Enhancement of parameter-estimation precision in noisy systems by dynamical decoupling pulses[J]. Physical Review A, 2013, 87: 032102.
[93] LANG J, LIU R B, MONTEIRO T. Dynamical-decoupling-based quantum sensing: Floquet spectroscopy[J]. Physical Review X, 2015, 5(4): 041016.
[94] SEKATSKI P, SKOTINIOTIS M, DÜR W. Dynamical decoupling leads to improved scaling in noisy quantum metrology[J]. New Journal of Physics, 2016, 18: 073034.
[95] SOUZA A M, ÁLVAREZ G A, SUTER D. Robust dynamical decoupling for quantum computing and quantum memory[J]. Physical Review Letters, 2011, 106: 240501.
[96] PILTZ C, SCHARFENBERGER B, KHROMOVA A, et al. Protecting conditional quantum gates by robust dynamical decoupling[J]. Physical Review Letters, 2013, 110: 200501.
[97] FARFURNIK D, JARMOLA A, PHAM L M, et al. Optimizing a dynamical decoupling protocol for solid-state electronic spin ensembles in diamond[J]. Physical Review B, 2015, 92: 060301.
[98] WANG Y, RONG X, FENG P, et al. Preservation of bipartite pseudoentanglement in solids using dynamical decoupling[J]. Physical Review Letters, 2011, 106(4): 040501.
[99] GAUTAM A, ARVIND, DORAI K. Protection of noisy multipartite entangled states of superconducting qubits via universally robust dynamical decoupling schemes[J]. International Journal of Quantum Information, 2023, 21(04): 2350016.
[100] TAKOU E, BARNES E, ECONOMOU S E. Generation of genuine all-way entanglement in defect-nuclear spin systems through dynamical decoupling sequences[J]. Quantum, 2024, 8: 1304.
[101] GREENFIELD S, MARTIN L, MOTZOI F, et al. Stabilizing two-qubit entanglement with dynamically decoupled active feedback[J]. Physical Review Applied, 2024, 21(2): 024022.
[102] KWIAT P G, BERGLUND A J, ALTEPETER J B, et al. Experimental verification of decoherence-free subspaces[J]. Science, 2000, 290: 498-501.
[103] FRIESEN M, GHOSH J, ERIKSSON M A, et al. A decoherence-free subspace in a charge quadrupole qubit[J]. Nature Communications, 2017, 8: 15923.
[104] MOHSENI M, LUNDEEN J S, RESCH K J, et al. Experimental application of decoherence-free subspaces in an optical quantum-computing algorithm[J]. Physical Review Letters, 2003, 91: 187903.
[105] BACON D, KEMPE J, LIDAR D A, et al. Universal fault-tolerant quantum computation on decoherence-free subspaces[J]. Physical Review Letters, 2000, 85: 1758-1761.
[106] WANG H R, YUAN D, ZHANG S Y, et al. Embedding quantum many-body scars into decoherence-free subspaces[J]. Physical Review Letters, 2024, 132(15): 150401.
[107] ZHANG C, YU P, JADBABAIE A, et al. Quantum-enhanced metrology for molecular symmetry violation using decoherence-free subspaces[J]. Physical Review Letters, 2023, 131(19): 193602.
[108] CARRASQUILLA J, MELKO R G. Machine learning phases of matter[J]. Nature Physics, 2017, 13(5): 431-434.
[109] CARRASQUILLA J, TORLAI G. How to use neural networks to investigate quantum many-body physics[J]. PRX Quantum, 2021, 2(4): 040201.
[110] CARRASQUILLA J. Machine learning for quantum matter[J]. Advances in Physics: X, 2020, 5(1): 1797528.
[111] MELKO R G, CARLEO G, CARRASQUILLA J, et al. Restricted Boltzmann machines in quantum physics[J]. Nature Physics, 2019, 15(9): 887-892.
[112] TORLAI G, MELKO R G. Neural decoder for topological codes[J]. Physical Review Letters, 2017, 119(3): 030501.
[113] TORLAI G, MELKO R G. Learning thermodynamics with Boltzmann machines[J]. Physical Review B, 2016, 94(16): 165134.
[114] SCHMITT M, HEYL M. Quantum many-body dynamics in two dimensions with artificial neural networks[J]. Physical Review Letters, 2020, 125(10): 100503.
[115] BURAU H, HEYL M. Unitary long-time evolution with quantum renormalization groups and artificial neural networks[J]. Physical Review Letters, 2021, 127(5): 050601.
[116] DENG D L, LI X, SARMA S D. Machine learning topological states[J]. Physical Review B, 2017, 96(19): 195145.
[117] ZHANG P, SHEN H, ZHAI H. Machine learning topological invariants with neural networks[J]. Physical Review Letters, 2018, 120(6): 066401.
[118] CARLEO G, TROYER M. Solving the quantum many-body problem with artificial neural networks[J]. Science, 2017, 355(6325): 602-606.
[119] SUN N, YI J, ZHANG P, et al. Deep learning topological invariants of band insulators[J]. Physical Review B, 2018, 98(8): 085402.
[120] BIAMONTE J, WITTEK P, PANCOTTI N, et al. Quantum machine learning[J]. Nature, 2017, 549(7671): 195-202.
[121] WIEBE N, GRANADE C, CORY D G. Quantum bootstrapping via compressed quantum Hamiltonian learning[J]. New Journal of Physics, 2015, 17(2): 022005.
[122] LU Z, SHEN P X, DENG D L. Markovian quantum neuroevolution for machine learning[J]. Physical Review Applied, 2021, 16(4): 044039.
[123] SANTAGATI R, GENTILE A A, KNAUER S, et al. Magnetic-field learning using a single electronic spin in diamond with one-photon readout at room temperature[J]. Physical Review X, 2019, 9(2): 021019.
[124] BOLENS A, HEYL M. Reinforcement learning for digital quantum simulation[J]. Physical Review Letters, 2021, 127(11): 110502.
[125] SHEN H, LIU J, FU L. Self-learning Monte Carlo with deep neural networks[J]. Physical Review B, 2018, 97(20): 205140.
[126] VALENTI A, VAN NIEUWENBURG E, HUBER S, et al. Hamiltonian learning for quantum error correction[J]. Physical Review Research, 2019, 1(3): 033092.
[127] CH’NG K, CARRASQUILLA J, MELKO R G, et al. Machine learning phases of strongly correlated fermions[J]. Physical Review X, 2017, 7(3): 031038.
[128] WANG J, PAESANI S, SANTAGATI R, et al. Experimental quantum Hamiltonian learning[J]. Nature Physics, 2017, 13(6): 551-555.
[129] WIEBE N, GRANADE C, FERRIE C, et al. Hamiltonian learning and certification using quantum resources[J]. Physical Review Letters, 2014, 112(19): 190501.
[130] GRANADE C E, FERRIE C, WIEBE N, et al. Robust online Hamiltonian learning[J]. New Journal of Physics, 2012, 14(10): 103013.
[131] CHE L, WEI C, HUANG Y, et al. Learning quantum Hamiltonians from single-qubit measurements[J]. Physical Review Research, 2021, 3(2): 023246.
[132] DAVIES G, HAMER M. Optical studies of the 1.945 eV vibronic band in diamond[J]. Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences, 1976, 348(1653): 285-298.
[133] LOUBSER J, VAN WYK J. Electron spin resonance in the study of diamond[J]. Reports on Progress in Physics, 1978, 41(8): 1201.
[134] DOHERTY M W, MANSON N B, DELANEY P, et al. The nitrogen-vacancy colour centre in diamond[J]. Physics Reports, 2013, 528(1): 1-45.
[135] ROGERS L J, JAHNKE K D, DOHERTY M W, et al. Electronic structure of the negatively charged silicon-vacancy center in diamond[J]. Physical Review B, 2014, 89(23): 235101.
[136] HEPP C, MÜLLER T, WASELOWSKI V, et al. Electronic structure of the silicon vacancy color center in diamond[J]. Physical Review Letters, 2014, 112(3): 036405.
[137] IWASAKI T, ISHIBASHI F, MIYAMOTO Y, et al. Germanium-vacancy single color centers in diamond[J]. Scientific reports, 2015, 5(1): 12882.
[138] SIYUSHEV P, METSCH M H, IJAZ A, et al. Optical and microwave control of germanium-vacancy center spins in diamond[J]. Physical Review B, 2017, 96(8): 081201.
[139] JELEZKO F, GAEBEL T, POPA I, et al. Observation of coherent oscillation of a single nuclear spin and realization of a two-qubit conditional quantum gate[J]. Physical Review Letters, 2004, 93(13): 130501.
[140] LADD T D, JELEZKO F, LAFLAMME R, et al. Quantum computers[J]. Nature, 2010, 464(7285): 45-53.
[141] JU C, LEI C, XU X, et al. NV-center-based digital quantum simulation of a quantum phase transition in topological insulators[J]. Physical Review B, 2014, 89(4): 045432.
[142] BALASUBRAMANIAN G, CHAN I, KOLESOV R, et al. Nanoscale imaging magnetometry with diamond spins under ambient conditions[J]. Nature, 2008, 455(7213): 648-651.
[143] DEGEN C. Scanning magnetic field microscope with a diamond single-spin sensor[J]. Applied Physics Letters, 2008, 92(24): 243111.
[144] MAZE J R, STANWIX P L, HODGES J S, et al. Nanoscale magnetic sensing with an individual electronic spin in diamond[J]. Nature, 2008, 455(7213): 644-647.
[145] TAYLOR J M, CAPPELLARO P, CHILDRESS L, et al. High-sensitivity diamond magnetometer with nanoscale resolution[J]. Nature Physics, 2008, 4(10): 810-816.
[146] COLE J H, HOLLENBERG L C. Scanning quantum decoherence microscopy[J]. Nanotechnology, 2009, 20(49): 495401.
[147] DOLDE F, FEDDER H, DOHERTY M W, et al. Electric-field sensing using single diamond spins[J]. Nature Physics, 2011, 7(6): 459-463.
[148] SARKAR N, BASU A. Phase transitions and continuously variable scaling in a chiral quenched disordered model[J]. Physical Review E, 2013, 87(3): 032118.
[149] KUCSKO G, MAURER P C, YAO N Y, et al. Nanometre-scale thermometry in a living cell[J]. Nature, 2013, 500(7460): 54-58.
[150] NEUMANN P, JAKOBI I, DOLDE F, et al. High-precision nanoscale temperature sensing using single defects in diamond[J]. Nano Letters, 2013, 13(6): 2738-2742.
[151] TOYLI D M, DE LAS CASAS C F, CHRISTLE D J, et al. Fluorescence thermometry enhanced by the quantum coherence of single spins in diamond[J]. Proceedings of the National Academy of Sciences, 2013, 110(21): 8417-8421.
[152] DOHERTY M W, STRUZHKIN V V, SIMPSON D A, et al. Electronic properties and metrology applications of the diamond NV- center under pressure[J]. Physical Review Letters, 2014, 112(4): 047601.
[153] BARSON M S, PEDDIBHOTLA P, OVARTCHAIYAPONG P, et al. Nanomechanical sensing using spins in diamond[J]. Nano Letters, 2017, 17(3): 1496-1503.
[154] RONDIN L, DANTELLE G, SLABLAB A, et al. Surface-induced charge state conversion of nitrogen-vacancy defects in nanodiamonds[J]. Physical Review B, 2010, 82(11): 115449.
[155] LENEF A, RAND S. Electronic structure of the N-V center in diamond: Theory[J]. Physical Review B, 1996, 53(20): 13441.
[156] CHEN X D, ZOU C L, SUN F W, et al. Optical manipulation of the charge state of nitrogen-vacancy center in diamond[J]. Applied Physics Letters, 2013, 103(1): 013112.
[157] CHEN X D, ZHOU L M, ZOU C L, et al. Spin depolarization effect induced by charge state conversion of nitrogen vacancy center in diamond[J]. Physical Review B, 2015, 92(10): 104301.
[158] ROBERTS R P, JUAN M L, MOLINA-TERRIZA G. Spin-dependent charge state interconversion of nitrogen vacancy centers in nanodiamonds[J]. Physical Review B, 2019, 99(17): 174307.
[159] ASLAM N, WALDHERR G, NEUMANN P, et al. Photo-induced ionization dynamics of the nitrogen vacancy defect in diamond investigated by single-shot charge state detection[J]. New Journal of Physics, 2013, 15(1): 013064.
[160] GROTZ B, HAUF M V, DANKERL M, et al. Charge state manipulation of qubits in diamond[J]. Nature communications, 2012, 3(1): 729.
[161] WALDHERR G, BECK J, STEINER M, et al. Dark states of single nitrogen-vacancy centers in diamond unraveled by single shot NMR[J]. Physical Review Letters, 2011, 106(15): 157601.
[162] BARSON M S, KRAUSZ E, MANSON N B, et al. The fine structure of the neutral nitrogen-vacancy center in diamond[J]. Nanophotonics, 2019, 8(11): 1985-1991.
[163] BAIER S, BRADLEY C, MIDDELBURG T, et al. Orbital and spin dynamics of single neutrally-charged nitrogen-vacancy centers in diamond[J]. Physical Review Letters, 2020, 125(19): 193601.
[164] DOHERTY M W, MANSON N B, DELANEY P, et al. The negatively charged nitrogen-vacancy centre in diamond: the electronic solution[J]. New Journal of Physics, 2011, 13(2): 025019.
[165] MAZE J R, GALI A, TOGAN E, et al. Properties of nitrogen-vacancy centers in diamond: the group theoretic approach[J]. New Journal of Physics, 2011, 13(2): 025025.
[166] HARRISON J, SELLARS M, MANSON N. Optical spin polarisation of the NV centre in diamond[J]. Journal of Luminescence, 2004, 107(1-4): 245-248.
[167] MANSON N, HARRISON J, SELLARS M. Nitrogen-vacancy center in diamond: Model of the electronic structure and associated dynamics[J]. Physical Review B, 2006, 74(10): 104303.
[168] ROGERS L, ARMSTRONG S, SELLARS M, et al. Infrared emission of the NV centre in diamond: Zeeman and uniaxial stress studies[J]. New Journal of Physics, 2008, 10(10): 103024.
[169] KEHAYIAS P, DOHERTY M, ENGLISH D, et al. Infrared absorption band and vibronic structure of the nitrogen-vacancy center in diamond[J]. Physical Review B, 2013, 88(16): 165202.
[170] NIZOVTSEV A, KILIN S Y, JELEZKO F, et al. Spin-selective low temperature spectroscopy on single molecules with a triplet-triplet optical transition: Application to the NV defect center in diamond[J]. Optics and Spectroscopy, 2003, 94: 848-858.
[171] BATALOV A, ZIERL C, GAEBEL T, et al. Temporal coherence of photons emitted by single nitrogen-vacancy defect centers in diamond using optical Rabi-oscillations[J]. Physical Review Letters, 2008, 100(7): 077401.
[172] IVÁDY V, ABRIKOSOV I A, GALI A. First principles calculation of spin-related quantities for point defect qubit research[J]. npj Computational Materials, 2018, 4(1): 76.
[173] DOHERTY M, DOLDE F, FEDDER H, et al. Theory of the ground-state spin of the NV- center in diamond[J]. Physical Review B, 2012, 85(20): 205203.
[174] FELTON S, EDMONDS A, NEWTON M E, et al. Hyperfine interaction in the ground state of the negatively charged nitrogen vacancy center in diamond[J]. Physical Review B, 2009, 79(7): 075203.
[175] HADDEN J, HARRISON J, STANLEY-CLARKE A C, et al. Strongly enhanced photon collection from diamond defect centers under microfabricated integrated solid immersion lenses[J]. Applied Physics Letters, 2010, 97(24): 241901.
[176] JAMALI M, GERHARDT I, REZAI M, et al. Microscopic diamond solid-immersion-lenses fabricated around single defect centers by focused ion beam milling[J]. Review of Scientific Instruments, 2014, 85(12): 123703.
[177] CHAKRABORTY T, ZHANG J, SUTER D. Polarizing the electronic and nuclear spin of the NV-center in diamond in arbitrary magnetic fields: analysis of the optical pumping process[J]. New Journal of Physics, 2017, 19(7): 073030.
[178] ROBLEDO L, BERNIEN H, VAN DER SAR T, et al. Spin dynamics in the optical cycle of single nitrogen-vacancy centres in diamond[J]. New Journal of Physics, 2011, 13(2): 025013.
[179] GOLDMAN M L, DOHERTY M, SIPAHIGIL A, et al. State-selective intersystem crossing in nitrogen-vacancy centers[J]. Physical Review B, 2015, 91(16): 165201.
[180] GOLDMAN M L, SIPAHIGIL A, DOHERTY M, et al. Phonon-induced population dynamics and intersystem crossing in nitrogen-vacancy centers[J]. Physical Review Letters, 2015, 114(14): 145502.
[181] BARRY J F, SCHLOSS J M, BAUCH E, et al. Sensitivity optimization for NV-diamond magnetometry[J]. Reviews of Modern Physics, 2020, 92(1): 015004.
[182] FUCHS G, BURKARD G, KLIMOV P, et al. A quantum memory intrinsic to single nitrogen–vacancy centres in diamond[J]. Nature Physics, 2011, 7(10): 789-793.
[183] JIANG L, HODGES J, MAZE J, et al. Repetitive readout of a single electronic spin via quantum logic with nuclear spin ancillae[J]. Science, 2009, 326(5950): 267-272.
[184] DOLDE F, JAKOBI I, NAYDENOV B, et al. Room-temperature entanglement between single defect spins in diamond[J]. Nature Physics, 2013, 9(3): 139-143.
[185] DOLDE F, BERGHOLM V, WANG Y, et al. High-fidelity spin entanglement using optimal control[J]. Nature Communications, 2014, 5(1): 3371.
[186] PFAFF W, TAMINIAU T H, ROBLEDO L, et al. Demonstration of entanglement-by-measurement of solid-state qubits[J]. Nature Physics, 2013, 9(1): 29-33.
[187] YANG S, WANG Y, RAO D B, et al. High-fidelity transfer and storage of photon states in a single nuclear spin[J]. Nature Photonics, 2016, 10(8): 507-511.
[188] ZAISER S, RENDLER T, JAKOBI I, et al. Enhancing quantum sensing sensitivity by a quantum memory[J]. Nature Communications, 2016, 7(1): 12279.
[189] JAKOBI I, NEUMANN P, WANG Y, et al. Measuring broadband magnetic fields on the nanoscale using a hybrid quantum register[J]. Nature Nanotechnology, 2017, 12(1): 67-72.
[190] PFENDER M, ASLAM N, SUMIYA H, et al. Nonvolatile nuclear spin memory enables sensor-unlimited nanoscale spectroscopy of small spin clusters[J]. Nature Communications, 2017, 8(1): 834.
[191] ROSSKOPF T, ZOPES J, BOSS J M, et al. A quantum spectrum analyzer enhanced by a nuclear spin memory[J]. npj Quantum Information, 2017, 3(1): 33.
[192] ASLAM N, PFENDER M, NEUMANN P, et al. Nanoscale nuclear magnetic resonance with chemical resolution[J]. Science, 2017, 357(6346): 67-71.
[193] JACQUES V, NEUMANN P, BECK J, et al. Dynamic polarization of single nuclear spins by optical pumping of nitrogen-vacancy color centers in diamond at room temperature[J]. Physical Review Letters, 2009, 102(5): 057403.
[194] FISCHER R, BRETSCHNEIDER C O, LONDON P, et al. Bulk nuclear polarization enhanced at room temperature by optical pumping[J]. Physical Review Letters, 2013, 111(5): 057601.
[195] WANG P, LIU B, YANG W. Strongly polarizing weakly coupled 13C nuclear spins with optically pumped nitrogen-vacancy center[J]. Scientific Reports, 2015, 5(1): 15847.
[196] WANG H J, SHIN C S, AVALOS C E, et al. Sensitive magnetic control of ensemble nuclear spin hyperpolarization in diamond[J]. Nature Communications, 2013, 4(1): 1940.
[197] GENG J, WU Y, WANG X, et al. Experimental time-optimal universal control of spin qubits in solids[J]. Physical Review Letters, 2016, 117(17): 170501.
[198] ZU C, WANG W B, HE L, et al. Experimental realization of universal geometric quantum gates with solid-state spins[J]. Nature, 2014, 514(7520): 72-75.
[199] PAGLIERO D, LARAOUI A, HENSHAW J D, et al. Recursive polarization of nuclear spins in diamond at arbitrary magnetic fields[J]. Applied Physics Letters, 2014, 105(24): 242402.
[200] NEUMANN P, BECK J, STEINER M, et al. Single-shot readout of a single nuclear spin[J]. Science, 2010, 329(5991): 542-544.
[201] DRÉAU A, SPINICELLI P, MAZE J, et al. Single-shot readout of multiple nuclear spin qubits in diamond under ambient conditions[J]. Physical Review Letters, 2013, 110(6): 060502.
[202] CHILDRESS L, GURUDEV DUTT M, TAYLOR J, et al. Coherent dynamics of coupled electron and nuclear spin qubits in diamond[J]. Science, 2006, 314(5797): 281-285.
[203] TERHAL B M. A family of indecomposable positive linear maps based on entangled quantum states[J]. Linear Algebra and its Applications, 2001, 323(1-3): 61-73.
[204] GÜHNE O, TÓTH G. Entanglement detection[J]. Physics Reports, 2009, 474(1-6): 1-75.
[205] SPERLING J, VOGEL W. Multipartite entanglement witnesses[J]. Physical Review Letters, 2013, 111(11): 110503.
[206] LU H, ZHAO Q, LI Z D, et al. Entanglement structure: entanglement partitioning in multipartite systems and its experimental detection using optimizable witnesses[J]. Physical Review X, 2018, 8(2): 021072.
[207] LIANG Y C, ROSSET D, BANCAL J D, et al. Family of bell-like inequalities as device-independent witnesses for entanglement depth[J]. Physical Review Letters, 2015, 114(19): 190401.
[208] SØRENSEN A S, MØLMER K. Entanglement and extreme spin squeezing[J]. Physical Review Letters, 2001, 86(20): 4431.
[209] ZHOU Y. Entanglement detection under coherent noise: Greenberger-Horne-Zeilinger-like states[J]. Physical Review A, 2020, 101(1): 012301.
[210] DÜR W, CIRAC J I. Classification of multiqubit mixed states: Separability and distillability properties[J]. Physical Review A, 2000, 61(4): 042314.
[211] LIN P S, HUNG J C, CHEN C H, et al. Exploring Bell inequalities for the device-independent certification of multipartite entanglement depth[J]. Physical Review A, 2019, 99(6): 062338.
[212] TORLAI G, MAZZOLA G, CARRASQUILLA J, et al. Neural-network quantum state tomography[J]. Nature Physics, 2018, 14(5): 447-450.
[213] XIN T, LU S, CAO N, et al. Local-measurement-based quantum state tomography via neural networks[J]. npj Quantum Information, 2019, 5(1): 1-8.
[214] CARRASQUILLA J, TORLAI G, MELKO R G, et al. Reconstructing quantum states with generative models[J]. Nature Machine Intelligence, 2019, 1(3): 155-161.
[215] DENG D L, LI X, SARMA S D. Quantum entanglement in neural network states[J]. Physical Review X, 2017, 7(2): 021021.
[216] XIN T, NIE X, KONG X, et al. Quantum pure state tomography via variational hybrid quantum-classical method[J]. Physical Review Applied, 2020, 13(2): 024013.
[217] MA Y C, YUNG M H. Transforming Bell’s inequalities into state classifiers with machine learning[J]. npj Quantum Information, 2018, 4(1): 1-10.
[218] CHEN C, REN C, LIN H, et al. Entanglement structure detection via machine learning[J]. Quantum Science and Technology, 2021, 6(3): 035017.
[219] REN C, CHEN C. Steerability detection of an arbitrary two-qubit state via machine learning[J]. Physical Review A, 2019, 100(2): 022314.
[220] CANABARRO A, BRITO S, CHAVES R. Machine learning nonlocal correlations[J]. Physical Review Letters, 2019, 122(20): 200401.
[221] DENG D L. Machine learning detection of bell nonlocality in quantum many-body systems[J]. Physical Review Letters, 2018, 120(24): 240402.
[222] ACIN A, BRUSS D, LEWENSTEIN M, et al. Classification of mixed three-qubit states[J]. Physical Review Letters, 2001, 87(4): 040401.
[223] BOURENNANE M, EIBL M, KURTSIEFER C, et al. Experimental detection of multipartite entanglement using witness operators[J]. Physical Review Letters, 2004, 92(8): 087902.
[224] TÓTH G, GÜHNE O. Detecting genuine multipartite entanglement with two local measurements[J]. Physical Review Letters, 2005, 94(6): 060501.
[225] GOODFELLOW I, BENGIO Y, HINTON G. Deep learning[M]. Cambridge: MIT Press, 2016.
[226] KINGMA D P, BA J. Adam: A method for stochastic optimization[A]. 2014: arXiv:1412.6980.
[227] JOHNSON J W, EVANOFF D P, SAVARD M E, et al. Cyclobutanone mimics of penicillins: effects of substitution on conformation and hemiketal stability[J]. The Journal of Organic Chemistry, 2008, 73(18): 6970-6982.
[228] LU D, LI K, LI J, et al. Enhancing quantum control by bootstrapping a quantum processor of 12 qubits[J]. npj Quantum Information, 2017, 3(1): 1-7.
[229] XIN T, CHE L, XI C, et al. Experimental quantum principal component analysis via parametrized quantum circuits[J]. Physical Review Letters, 2021, 126(11): 110502.
[230] NIE X, WEI B B, CHEN X, et al. Experimental observation of equilibrium and dynamical quantum phase transitions via out-of-time-ordered correlators[J]. Physical Review Letters, 2020, 124(25): 250601.
[231] QIU C, NIE X, LU D. Quantum simulations with nuclear magnetic resonance system[J]. Chinese Physics B, 2021, 30(4): 048201.
[232] KNILL E, LAFLAMME R, MARTINEZ R, et al. An algorithmic benchmark for quantum information processing[J]. Nature, 2000, 404(6776): 368-370.
[233] CORY D G, FAHMY A F, HAVEL T F. Ensemble quantum computing by NMR spectroscopy[J]. Proceedings of the National Academy of Sciences, 1997, 94(5): 1634-1639.
[234] GERSHENFELD N A, CHUANG I L. Bulk spin-resonance quantum computation[J]. Science, 1997, 275(5298): 350-356.
[235] LU D, LI H, TROTTIER D A, et al. Experimental estimation of average fidelity of a Clifford gate on a 7-qubit quantum processor[J]. Physical Review Letters, 2015, 114(14): 140505.
[236] VAN NIEUWENBURG E P, LIU Y H, HUBER S D. Learning phase transitions by confusion[J]. Nature Physics, 2017, 13(5): 435-439.
[237] HU W, SINGH R R P, SCALETTAR R T. Discovering phases, phase transitions, and crossovers through unsupervised machine learning: A critical examination[J]. Physical Review E, 2017, 95(6): 062122.
[238] WANG L. Discovering phase transitions with unsupervised learning[J]. Physical Review B, 2016, 94(19): 195105.
[239] HUEMBELI P, DAUPHIN A, WITTEK P. Identifying quantum phase transitions with adversarial neural networks[J]. Physical Review B, 2018, 97(13): 134109.
[240] GREPLOVA E, VALENTI A, BOSCHUNG G, et al. Unsupervised identification of topological phase transitions using predictive models[J]. New Journal of Physics, 2020, 22(4): 045003.
[241] HARNEY C, PIRANDOLA S, FERRARO A, et al. Entanglement classification via neural network quantum states[J]. New Journal of Physics, 2020, 22(4): 045001.
[242] ROMERO J, OLSON J P, ASPURU-GUZIK A. Quantum autoencoders for efficient compression of quantum data[J]. Quantum Science and Technology, 2017, 2(4): 045001.
[243] BAUER B, WECKER D, MILLIS A J, et al. Hybrid quantum-classical approach to correlated materials[J]. Physical Review X, 2016, 6: 031045.
[244] BRAVYI S, SMITH G, SMOLIN J A. Trading classical and quantum computational resources[J]. Physical Review X, 2016, 6: 021043.
[245] MCCLEAN J R, ROMERO J, BABBUSH R, et al. The theory of variational hybrid quantum-classical algorithms[J]. New Journal of Physics, 2016, 18: 023023.
[246] YANG X, CHEN X, LI J, et al. Hybrid quantum-classical approach to enhanced quantum metrology[J]. Scientific Reports, 2021, 11: 672.
[247] LI J, YANG X, PENG X, et al. Hybrid quantum-classical approach to quantum optimal control[J]. Physical Review Letters, 2017, 118: 150503.
[248] LECUN Y, BENGIO Y, HINTON G. Deep learning[J]. Nature, 2015, 521: 436-444.
[249] HINTON G E, SALAKHUTDINOV R R. Reducing the dimensionality of data with neural networks[J]. Science, 2006, 313: 504-507.
[250] ROMERO J, OLSON J P, ASPURU-GUZIK A. Quantum autoencoders for efficient compression of quantum data[J]. Quantum Science and Technology, 2017, 2: 045001.
[251] PEPPER A, TISCHLER N, PRYDE G J. Experimental realization of a quantum autoencoder: the compression of qutrits via machine learning[J]. Physical Review Letters, 2019, 122: 060501.
[252] LU D, LI K, LI J, et al. Enhancing quantum control by bootstrapping a quantum processor of 12 qubits[J]. npj Quantum Information, 2017, 3: 45.
[253] FENG G, CHO F H, KATIYAR H, et al. Gradient-based closed-loop quantum optimal control in a solid-state two-qubit system[J]. Physical Review A, 2018, 98: 052341.
[254] BENEDETTI M, LLOYD E, SACK S, et al. Parameterized quantum circuits as machine learning models[J]. Quantum Science and Technology, 2019, 4(4): 043001.
[255] CHOI S, YAO N Y, LUKIN M D. Quantum metrology based on strongly correlated matter[A]. 2017: arXiv:1801.00042.
[256] FEDOTOV I, BLAKLEY S, SEREBRYANNIKOV E, et al. Fiber-based thermometry using optically detected magnetic resonance[J]. Applied Physics Letters, 2014, 105(26): 261109.
[257] CHEN E H, CLEVENSON H A, JOHNSON K A, et al. High-sensitivity spin-based electrometry with an ensemble of nitrogen-vacancy centers in diamond[J]. Physical Review A, 2017, 95(5): 053417.
[258] MICHL J, STEINER J, DENISENKO A, et al. Robust and accurate electric field sensing with solid state spin ensembles[J]. Nano Letters, 2019, 19(8): 4904-4910.
[259] KIM D, IBRAHIM M I, FOY C, et al. A CMOS-integrated quantum sensor based on nitrogen–vacancy centres[J]. Nature Electronics, 2019, 2(7): 284-289.

所在学位评定分委会
物理学
国内图书分类号
O413
来源库
人工提交
成果类型学位论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/765715
专题南方科技大学
理学院_物理系
推荐引用方式
GB/T 7714
田宇. 金刚石氮空位色心体系中的纠缠制备、表征和保护[D]. 深圳. 南方科技大学,2024.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可 操作
11930835-田宇-物理系.pdf(12414KB)----限制开放--请求全文
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[田宇]的文章
百度学术
百度学术中相似的文章
[田宇]的文章
必应学术
必应学术中相似的文章
[田宇]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。