[1] EINSTEIN A, PODOLSKY B, ROSEN N. Can quantum-mechanical description of physical reality be considered complete?[J]. Physical Review, 1935, 47(10): 777.
[2] BELL J S. On the einstein podolsky rosen paradox[J]. Physics Physique Fizika, 1964, 1(3): 195.
[3] FREEDMAN S J, CLAUSER J F. Experimental test of local hidden-variable theories[J]. Physical Review Letters, 1972, 28(14): 938.
[4] ASPECT A, GRANGIER P, ROGER G. Experimental tests of realistic local theories via Bell’s theorem[J]. Physical Review Letters, 1981, 47(7): 460.
[5] ASPECT A, GRANGIER P, ROGER G. Experimental realization of Einstein-Podolsky-Rosen-Bohm Gedankenexperiment: A new violation of Bell’s inequalities[J]. Physical Review Letters, 1982, 49(2): 91.
[6] ASPECT A, DALIBARD J, ROGER G. Experimental test of Bell’s inequalities using time-varying analyzers[J]. Physical Review Letters, 1982, 49(25): 1804.
[7] GREENBERGER D M, HORNE M A, ZEILINGER A. Going beyond Bell’s theorem[M]// Bell’s theorem, quantum theory and conceptions of the universe. Springer, 1989: 69-72.
[8] BOUWMEESTER D, PAN J W, MATTLE K, et al. Experimental quantum teleportation[J]. Nature, 1997, 390(6660): 575-579.
[9] SHOR P W. Algorithms for quantum computation: discrete logarithms and factoring[C]// Proceedings 35th Annual Symposium on Foundations of Computer Science. IEEE, 1994: 124-134.
[10] BENNETT C H, BRASSARD G, et al. Proceedings of the ieee international conference on computers, systems and signal processing[M]. IEEE New York, 1984.
[11] GIOVANNETTI V, LLOYD S, MACCONE L. Quantum-enhanced measurements: beating the standard quantum limit[J]. Science, 2004, 306(5700): 1330-1336.
[12] ARUTE F, ARYA K, BABBUSH R, et al. Quantum supremacy using a programmable superconducting processor[J]. Nature, 2019, 574(7779): 505-510.
[13] ZHONG H S, WANG H, DENG Y H, et al. Quantum computational advantage using photons[J]. Science, 2020, 370(6523): 1460-1463.
[14] DENG Y H, GU Y C, LIU H L, et al. Gaussian boson sampling with pseudo-photon-number-resolving detectors and quantum computational advantage[J]. Physical Review Letters, 2023, 131(7): 150601.
[15] EKERT A K. Quantum cryptography based on Bell’s theorem[J]. Physical Review Letters, 1991, 67(6): 661.
[16] GISIN N, RIBORDY G, TITTEL W, et al. Quantum cryptography[J]. Reviews of Modern Physics, 2002, 74(1): 145.
[17] PIRANDOLA S, ANDERSEN U L, BANCHI L, et al. Advances in quantum cryptography[J]. Advances in Optics and Photonics, 2020, 12(4): 1012-1236.
[18] SCARANI V, BECHMANN-PASQUINUCCI H, CERF N J, et al. The security of practical quantum key distribution[J]. Reviews of Modern Physics, 2009, 81(3): 1301.
[19] LIAO S K, CAI W Q, LIU W Y, et al. Satellite-to-ground quantum key distribution[J]. Nature, 2017, 549(7670): 43-47.
[20] DIAMANTI E, LO H K, QI B, et al. Practical challenges in quantum key distribution[J]. npj Quantum Information, 2016, 2(1): 1-12.
[21] TAVAKOLI A, HAMEEDI A, MARQUES B, et al. Quantum random access codes using single d-level systems[J]. Physical Review Letters, 2015, 114(17): 170502.
[22] WANG X R, WU L Y, LIU C X, et al. Experimental generation of entanglement-assisted quantum random access code[J]. Physical Review A, 2019, 99(5): 052313.
[23] AGUILAR E A, BORKAŁA J J, MIRONOWICZ P, et al. Connections between mutually unbiased bases and quantum random access codes[J]. Physical Review Letters, 2018, 121(5): 050501.
[24] PIRANDOLA S, EISERT J, WEEDBROOK C, et al. Advances in quantum teleportation[J]. Nature Photonics, 2015, 9(10): 641-652.
[25] REN J G, XU P, YONG H L, et al. Ground-to-satellite quantum teleportation[J]. Nature, 2017, 549(7670): 70-73.
[26] SHERSON J F, KRAUTER H, OLSSON R K, et al. Quantum teleportation between light and matter[J]. Nature, 2006, 443(7111): 557-560.
[27] AZUMA K, ECONOMOU S E, ELKOUSS D, et al. Quantum repeaters: From quantum networks to the quantum internet[J]. Reviews of Modern Physics, 2023, 95(4): 045006.
[28] BRIEGEL H J, DÜR W, CIRAC J I, et al. Quantum repeaters: the role of imperfect local operations in quantum communication[J]. Physical Review Letters, 1998, 81(26): 5932.
[29] ZHAO Z, YANG T, CHEN Y A, et al. Experimental realization of entanglement concentration and a quantum repeater[J]. Physical Review Letters, 2003, 90(20): 207901.
[30] LIAO S K, CAI W Q, HANDSTEINER J, et al. Satellite-relayed intercontinental quantum network[J]. Physical Review Letters, 2018, 120(3): 030501.
[31] YIN J, CAO Y, LI Y H, et al. Satellite-based entanglement distribution over 1200 kilometers[J]. Science, 2017, 356(6343): 1140-1144.
[32] SEWELL R J, KOSCHORRECK M, NAPOLITANO M, et al. Magnetic sensitivity beyond the projection noise limit by spin squeezing[J]. Physical Review Letters, 2012, 109(25): 253605.
[33] OCKELOEN C F, SCHMIED R, RIEDEL M F, et al. Quantum metrology with a scanning probe atom interferometer[J]. Physical Review Letters, 2013, 111(14): 143001.
[34] WASILEWSKI W, JENSEN K, KRAUTER H, et al. Quantum noise limited and entanglement-assisted magnetometry[J]. Physical Review Letters, 2010, 104(13): 133601.
[35] FERNHOLZ T, KRAUTER H, JENSEN K, et al. Spin squeezing of atomic ensembles via nuclear-electronic spin entanglement[J]. Physical Review Letters, 2008, 101(7): 073601.
[36] LEIBFRIED D, BARRETT M D, SCHAETZ T, et al. Toward Heisenberg-limited spectroscopy with multiparticle entangled states[J]. Science, 2004, 304(5676): 1476-1478.
[37] HIGGINS B L, BERRY D W, BARTLETT S D, et al. Entanglement-free Heisenberg-limited phase estimation[J]. Nature, 2007, 450(7168): 393-396.
[38] NAGATA T, OKAMOTO R, O’BRIEN J L, et al. Beating the standard quantum limit with four-entangled photons[J]. Science, 2007, 316(5825): 726-729.
[39] GREVE G P, LUO C, WU B, et al. Entanglement-enhanced matter-wave interferometry in a high-finesse cavity[J]. Nature, 2022, 610(7932): 472-477.
[40] COUTEAU C. Spontaneous parametric down-conversion[J]. Contemporary Physics, 2018, 59(3): 291-304.
[41] CHANG C S, SABÍN C, FORN-DÍAZ P, et al. Observation of three-photon spontaneous parametric down-conversion in a superconducting parametric cavity[J]. Physical Review X, 2020, 10(1): 011011.
[42] JEON H, KANG J, KIM J, et al. Experimental realization of entangled coherent states in two-dimensional harmonic oscillators of a trapped ion[J]. Scientific Reports, 2024, 14(1): 6847.
[43] CAO S, WU B, CHEN F, et al. Generation of genuine entanglement up to 51 superconducting qubits[J]. Nature, 2023, 619(7971): 738-742.
[44] GRUBER A, DRABENSTEDT A, TIETZ C, et al. Scanning confocal optical microscopy and magnetic resonance on single defect centers[J]. Science, 1997, 276(5321): 2012-2014.
[45] ROBLEDO L, CHILDRESS L, BERNIEN H, et al. High-fidelity projective read-out of a solid-state spin quantum register[J]. Nature, 2011, 477(7366): 574-578.
[46] BALASUBRAMANIAN G, NEUMANN P, TWITCHEN D, et al. Ultralong spin coherence time in isotopically engineered diamond[J]. Nature Materials, 2009, 8(5): 383-387.
[47] RONG X, GENG J, SHI F, et al. Experimental fault-tolerant universal quantum gates with solid-state spins under ambient conditions[J]. Nature Communications, 2015, 6(1): 8748.
[48] CHILDRESS L, HANSON R. Diamond NV centers for quantum computing and quantum networks[J]. MRS Bulletin, 2013, 38(2): 134-138.
[49] PEZZAGNA S, MEIJER J. Quantum computer based on color centers in diamond[J]. Applied Physics Reviews, 2021, 8(1): 011308.
[50] ZHANG J, HEGDE S S, SUTER D. Efficient implementation of a quantum algorithm in a single nitrogen-vacancy center of diamond[J]. Physical Review Letters, 2020, 125(3): 030501.
[51] CASANOVA J, WANG Z Y, PLENIO M B. Noise-resilient quantum computing with a nitrogen-vacancy center and nuclear spins[J]. Physical Review Letters, 2016, 117(13): 130502.
[52] WU Y, WANG Y, QIN X, et al. A programmable two-qubit solid-state quantum processor under ambient conditions[J]. npj Quantum Information, 2019, 5(1): 9.
[53] CAI J, RETZKER A, JELEZKO F, et al. A large-scale quantum simulator on a diamond surface at room temperature[J]. Nature Physics, 2013, 9(3): 168-173.
[54] JI W, ZHANG L, WANG M, et al. Quantum simulation for three-dimensional chiral topological insulator[J]. Physical Review Letters, 2020, 125(2): 020504.
[55] CHEN B, HOU X, ZHOU F, et al. Detecting the out-of-time-order correlations of dynamical quantum phase transitions in a solid-state quantum simulator[J]. Applied Physics Letters, 2020, 116(19): 194002.
[56] DEGEN C L, REINHARD F, CAPPELLARO P. Quantum sensing[J]. Reviews of Modern Physics, 2017, 89(3): 035002.
[57] COHEN D, NIGMATULLIN R, KENNETH O, et al. Utilising NV based quantum sensing for velocimetry at the nanoscale[J]. Scientific Reports, 2020, 10(1): 5298.
[58] LOVCHINSKY I, SANCHEZ-YAMAGISHI J, URBACH E, et al. Magnetic resonance spectroscopy of an atomically thin material using a single-spin qubit[J]. Science, 2017, 355(6324): 503-507.
[59] BOSS J M, CUJIA K, ZOPES J, et al. Quantum sensing with arbitrary frequency resolution[J]. Science, 2017, 356(6340): 837-840.
[60] GLENN D R, BUCHER D B, LEE J, et al. High-resolution magnetic resonance spectroscopy using a solid-state spin sensor[J]. Nature, 2018, 555(7696): 351-354.
[61] FESCENKO I, LARAOUI A, SMITS J, et al. Diamond magnetic microscopy of malarial hemozoin nanocrystals[J]. Physical review applied, 2019, 11(3): 034029.
[62] LE SAGE D, ARAI K, GLENN D R, et al. Optical magnetic imaging of living cells[J]. Nature, 2013, 496(7446): 486-489.
[63] XIE Y, GENG J, YU H, et al. Dissipative quantum sensing with a magnetometer based on nitrogen-vacancy centers in diamond[J]. Physical Review Applied, 2020, 14(1): 014013.
[64] RAGHUNANDAN M, WRACHTRUP J, WEIMER H. High-density quantum sensing with dissipative first order transitions[J]. Physical Review Letters, 2018, 120(15): 150501.
[65] ROVNY J, YUAN Z, FITZPATRICK M, et al. Nanoscale covariance magnetometry with diamond quantum sensors[J]. Science, 2022, 378(6626): 1301-1305.
[66] POMPILI M, HERMANS S L, BAIER S, et al. Realization of a multinode quantum network of remote solid-state qubits[J]. Science, 2021, 372(6539): 259-264.
[67] HUMPHREYS P C, KALB N, MORITS J P, et al. Deterministic delivery of remote entanglement on a quantum network[J]. Nature, 2018, 558(7709): 268-273.
[68] HERMANS S, POMPILI M, BEUKERS H, et al. Qubit teleportation between non-neighbouring nodes in a quantum network[J]. Nature, 2022, 605(7911): 663-668.
[69] KALB N, REISERER A A, HUMPHREYS P C, et al. Entanglement distillation between solid-state quantum network nodes[J]. Science, 2017, 356(6341): 928-932.
[70] RIZZATO R, BRUCKMAIER F, LIU K, et al. Polarization transfer from optically pumped ensembles of n-v centers to multinuclear spin baths[J]. Physical Review Applied, 2022, 17(2): 024067.
[71] HEALEY A, HALL L, WHITE G, et al. Polarization transfer to external nuclear spins using ensembles of nitrogen-vacancy centers[J]. Physical Review Applied, 2021, 15(5): 054052.
[72] VAN DER SAR T, WANG Z, BLOK M, et al. Decoherence-protected quantum gates for a hybrid solid-state spin register[J]. Nature, 2012, 484(7392): 82-86.
[73] EKERT A, KNIGHT P L. Entangled quantum systems and the Schmidt decomposition[J]. American Journal of Physics, 1995, 63(5): 415-423.
[74] JIN Z X, LI-JOST X, FEI S M, et al. Entanglement measures based on the complete information of reduced states[J]. Physical Review A, 2023, 107(1): 012409.
[75] CHEN R, ZHAO B, WANG X. Near-term efficient quantum algorithms for entanglement analysis[J]. Physical Review Applied, 2023, 20(2): 024071.
[76] PERES A. Separability criterion for density matrices[J]. Physical Review Letters, 1996, 77(8): 1413.
[77] HORODECKI M, HORODECKI P, HORODECKI R. Separability of mixed states: necessary and sufficient conditions[J]. Physics Letters A, 1996, 223(1): 1-8.
[78] LEWENSTEIN M, KRAUS B, CIRAC J I, et al. Optimization of entanglement witnesses[J]. Physical Review A, 2000, 62(5): 052310.
[79] CHEN X Y, MIAO M, YIN R, et al. Gaussian entanglement witness and refined Werner-Wolf criterion for continuous variables[J]. Physical Review A, 2023, 107(2): 022410.
[80] GREENWOOD A C, WU L T, ZHU E Y, et al. Machine-learning-derived entanglement witnesses[J]. Physical Review Applied, 2023, 19(3): 034058.
[81] RICO A, HUBER F. Entanglement detection with trace polynomials[J]. Physical Review Letters, 2024, 132(7): 070202.
[82] ISLAM R, MA R, PREISS P M, et al. Measuring entanglement entropy in a quantum many-body system[J]. Nature, 2015, 528(7580): 77-83.
[83] EISERT J, CRAMER M, PLENIO M B. Colloquium: Area laws for the entanglement entropy[J]. Reviews of Modern Physics, 2010, 82(1): 277.
[84] SHAW A L, CHEN Z, CHOI J, et al. Benchmarking highly entangled states on a 60-atom analogue quantum simulator[J]. Nature, 2024, 628(8006): 71-77.
[85] D’EMIDIO J, ORUS R, LAFLORENCIE N, et al. Universal features of entanglement entropy in the honeycomb Hubbard model[J]. Physical Review Letters, 2024, 132(7): 076502.
[86] DÜR W, SKOTINIOTIS M, FRÖWIS F, et al. Improved quantum metrology using quantum error correction[J]. Physical Review Letters, 2014, 112: 080801.
[87] TERHAL B M. Quantum error correction for quantum memories[J]. Reviews of Modern Physics, 2015, 87: 307-346.
[88] KESSLER E M, LOVCHINSKY I, SUSHKOV A O, et al. Quantum error correction for metrology[J]. Physical Review Letters, 2014, 112: 150802.
[89] WALDHERR G, WANG Y, ZAISER S, et al. Quantum error correction in a solid-state hybrid spin register[J]. Nature, 2014, 506: 204-207.
[90] UNDEN T, BALASUBRAMANIAN P, LOUZON D, et al. Quantum metrology enhanced by repetitive quantum error correction[J]. Physical Review Letters, 2016, 116: 230502.
[91] CAI W, MU X, WANG W, et al. Protecting entanglement between logical qubits via quantum error correction[J]. Nature Physics, 2024, 20: 1022-1026.
[92] TAN Q S, HUANG Y, YIN X, et al. Enhancement of parameter-estimation precision in noisy systems by dynamical decoupling pulses[J]. Physical Review A, 2013, 87: 032102.
[93] LANG J, LIU R B, MONTEIRO T. Dynamical-decoupling-based quantum sensing: Floquet spectroscopy[J]. Physical Review X, 2015, 5(4): 041016.
[94] SEKATSKI P, SKOTINIOTIS M, DÜR W. Dynamical decoupling leads to improved scaling in noisy quantum metrology[J]. New Journal of Physics, 2016, 18: 073034.
[95] SOUZA A M, ÁLVAREZ G A, SUTER D. Robust dynamical decoupling for quantum computing and quantum memory[J]. Physical Review Letters, 2011, 106: 240501.
[96] PILTZ C, SCHARFENBERGER B, KHROMOVA A, et al. Protecting conditional quantum gates by robust dynamical decoupling[J]. Physical Review Letters, 2013, 110: 200501.
[97] FARFURNIK D, JARMOLA A, PHAM L M, et al. Optimizing a dynamical decoupling protocol for solid-state electronic spin ensembles in diamond[J]. Physical Review B, 2015, 92: 060301.
[98] WANG Y, RONG X, FENG P, et al. Preservation of bipartite pseudoentanglement in solids using dynamical decoupling[J]. Physical Review Letters, 2011, 106(4): 040501.
[99] GAUTAM A, ARVIND, DORAI K. Protection of noisy multipartite entangled states of superconducting qubits via universally robust dynamical decoupling schemes[J]. International Journal of Quantum Information, 2023, 21(04): 2350016.
[100] TAKOU E, BARNES E, ECONOMOU S E. Generation of genuine all-way entanglement in defect-nuclear spin systems through dynamical decoupling sequences[J]. Quantum, 2024, 8: 1304.
[101] GREENFIELD S, MARTIN L, MOTZOI F, et al. Stabilizing two-qubit entanglement with dynamically decoupled active feedback[J]. Physical Review Applied, 2024, 21(2): 024022.
[102] KWIAT P G, BERGLUND A J, ALTEPETER J B, et al. Experimental verification of decoherence-free subspaces[J]. Science, 2000, 290: 498-501.
[103] FRIESEN M, GHOSH J, ERIKSSON M A, et al. A decoherence-free subspace in a charge quadrupole qubit[J]. Nature Communications, 2017, 8: 15923.
[104] MOHSENI M, LUNDEEN J S, RESCH K J, et al. Experimental application of decoherence-free subspaces in an optical quantum-computing algorithm[J]. Physical Review Letters, 2003, 91: 187903.
[105] BACON D, KEMPE J, LIDAR D A, et al. Universal fault-tolerant quantum computation on decoherence-free subspaces[J]. Physical Review Letters, 2000, 85: 1758-1761.
[106] WANG H R, YUAN D, ZHANG S Y, et al. Embedding quantum many-body scars into decoherence-free subspaces[J]. Physical Review Letters, 2024, 132(15): 150401.
[107] ZHANG C, YU P, JADBABAIE A, et al. Quantum-enhanced metrology for molecular symmetry violation using decoherence-free subspaces[J]. Physical Review Letters, 2023, 131(19): 193602.
[108] CARRASQUILLA J, MELKO R G. Machine learning phases of matter[J]. Nature Physics, 2017, 13(5): 431-434.
[109] CARRASQUILLA J, TORLAI G. How to use neural networks to investigate quantum many-body physics[J]. PRX Quantum, 2021, 2(4): 040201.
[110] CARRASQUILLA J. Machine learning for quantum matter[J]. Advances in Physics: X, 2020, 5(1): 1797528.
[111] MELKO R G, CARLEO G, CARRASQUILLA J, et al. Restricted Boltzmann machines in quantum physics[J]. Nature Physics, 2019, 15(9): 887-892.
[112] TORLAI G, MELKO R G. Neural decoder for topological codes[J]. Physical Review Letters, 2017, 119(3): 030501.
[113] TORLAI G, MELKO R G. Learning thermodynamics with Boltzmann machines[J]. Physical Review B, 2016, 94(16): 165134.
[114] SCHMITT M, HEYL M. Quantum many-body dynamics in two dimensions with artificial neural networks[J]. Physical Review Letters, 2020, 125(10): 100503.
[115] BURAU H, HEYL M. Unitary long-time evolution with quantum renormalization groups and artificial neural networks[J]. Physical Review Letters, 2021, 127(5): 050601.
[116] DENG D L, LI X, SARMA S D. Machine learning topological states[J]. Physical Review B, 2017, 96(19): 195145.
[117] ZHANG P, SHEN H, ZHAI H. Machine learning topological invariants with neural networks[J]. Physical Review Letters, 2018, 120(6): 066401.
[118] CARLEO G, TROYER M. Solving the quantum many-body problem with artificial neural networks[J]. Science, 2017, 355(6325): 602-606.
[119] SUN N, YI J, ZHANG P, et al. Deep learning topological invariants of band insulators[J]. Physical Review B, 2018, 98(8): 085402.
[120] BIAMONTE J, WITTEK P, PANCOTTI N, et al. Quantum machine learning[J]. Nature, 2017, 549(7671): 195-202.
[121] WIEBE N, GRANADE C, CORY D G. Quantum bootstrapping via compressed quantum Hamiltonian learning[J]. New Journal of Physics, 2015, 17(2): 022005.
[122] LU Z, SHEN P X, DENG D L. Markovian quantum neuroevolution for machine learning[J]. Physical Review Applied, 2021, 16(4): 044039.
[123] SANTAGATI R, GENTILE A A, KNAUER S, et al. Magnetic-field learning using a single electronic spin in diamond with one-photon readout at room temperature[J]. Physical Review X, 2019, 9(2): 021019.
[124] BOLENS A, HEYL M. Reinforcement learning for digital quantum simulation[J]. Physical Review Letters, 2021, 127(11): 110502.
[125] SHEN H, LIU J, FU L. Self-learning Monte Carlo with deep neural networks[J]. Physical Review B, 2018, 97(20): 205140.
[126] VALENTI A, VAN NIEUWENBURG E, HUBER S, et al. Hamiltonian learning for quantum error correction[J]. Physical Review Research, 2019, 1(3): 033092.
[127] CH’NG K, CARRASQUILLA J, MELKO R G, et al. Machine learning phases of strongly correlated fermions[J]. Physical Review X, 2017, 7(3): 031038.
[128] WANG J, PAESANI S, SANTAGATI R, et al. Experimental quantum Hamiltonian learning[J]. Nature Physics, 2017, 13(6): 551-555.
[129] WIEBE N, GRANADE C, FERRIE C, et al. Hamiltonian learning and certification using quantum resources[J]. Physical Review Letters, 2014, 112(19): 190501.
[130] GRANADE C E, FERRIE C, WIEBE N, et al. Robust online Hamiltonian learning[J]. New Journal of Physics, 2012, 14(10): 103013.
[131] CHE L, WEI C, HUANG Y, et al. Learning quantum Hamiltonians from single-qubit measurements[J]. Physical Review Research, 2021, 3(2): 023246.
[132] DAVIES G, HAMER M. Optical studies of the 1.945 eV vibronic band in diamond[J]. Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences, 1976, 348(1653): 285-298.
[133] LOUBSER J, VAN WYK J. Electron spin resonance in the study of diamond[J]. Reports on Progress in Physics, 1978, 41(8): 1201.
[134] DOHERTY M W, MANSON N B, DELANEY P, et al. The nitrogen-vacancy colour centre in diamond[J]. Physics Reports, 2013, 528(1): 1-45.
[135] ROGERS L J, JAHNKE K D, DOHERTY M W, et al. Electronic structure of the negatively charged silicon-vacancy center in diamond[J]. Physical Review B, 2014, 89(23): 235101.
[136] HEPP C, MÜLLER T, WASELOWSKI V, et al. Electronic structure of the silicon vacancy color center in diamond[J]. Physical Review Letters, 2014, 112(3): 036405.
[137] IWASAKI T, ISHIBASHI F, MIYAMOTO Y, et al. Germanium-vacancy single color centers in diamond[J]. Scientific reports, 2015, 5(1): 12882.
[138] SIYUSHEV P, METSCH M H, IJAZ A, et al. Optical and microwave control of germanium-vacancy center spins in diamond[J]. Physical Review B, 2017, 96(8): 081201.
[139] JELEZKO F, GAEBEL T, POPA I, et al. Observation of coherent oscillation of a single nuclear spin and realization of a two-qubit conditional quantum gate[J]. Physical Review Letters, 2004, 93(13): 130501.
[140] LADD T D, JELEZKO F, LAFLAMME R, et al. Quantum computers[J]. Nature, 2010, 464(7285): 45-53.
[141] JU C, LEI C, XU X, et al. NV-center-based digital quantum simulation of a quantum phase transition in topological insulators[J]. Physical Review B, 2014, 89(4): 045432.
[142] BALASUBRAMANIAN G, CHAN I, KOLESOV R, et al. Nanoscale imaging magnetometry with diamond spins under ambient conditions[J]. Nature, 2008, 455(7213): 648-651.
[143] DEGEN C. Scanning magnetic field microscope with a diamond single-spin sensor[J]. Applied Physics Letters, 2008, 92(24): 243111.
[144] MAZE J R, STANWIX P L, HODGES J S, et al. Nanoscale magnetic sensing with an individual electronic spin in diamond[J]. Nature, 2008, 455(7213): 644-647.
[145] TAYLOR J M, CAPPELLARO P, CHILDRESS L, et al. High-sensitivity diamond magnetometer with nanoscale resolution[J]. Nature Physics, 2008, 4(10): 810-816.
[146] COLE J H, HOLLENBERG L C. Scanning quantum decoherence microscopy[J]. Nanotechnology, 2009, 20(49): 495401.
[147] DOLDE F, FEDDER H, DOHERTY M W, et al. Electric-field sensing using single diamond spins[J]. Nature Physics, 2011, 7(6): 459-463.
[148] SARKAR N, BASU A. Phase transitions and continuously variable scaling in a chiral quenched disordered model[J]. Physical Review E, 2013, 87(3): 032118.
[149] KUCSKO G, MAURER P C, YAO N Y, et al. Nanometre-scale thermometry in a living cell[J]. Nature, 2013, 500(7460): 54-58.
[150] NEUMANN P, JAKOBI I, DOLDE F, et al. High-precision nanoscale temperature sensing using single defects in diamond[J]. Nano Letters, 2013, 13(6): 2738-2742.
[151] TOYLI D M, DE LAS CASAS C F, CHRISTLE D J, et al. Fluorescence thermometry enhanced by the quantum coherence of single spins in diamond[J]. Proceedings of the National Academy of Sciences, 2013, 110(21): 8417-8421.
[152] DOHERTY M W, STRUZHKIN V V, SIMPSON D A, et al. Electronic properties and metrology applications of the diamond NV- center under pressure[J]. Physical Review Letters, 2014, 112(4): 047601.
[153] BARSON M S, PEDDIBHOTLA P, OVARTCHAIYAPONG P, et al. Nanomechanical sensing using spins in diamond[J]. Nano Letters, 2017, 17(3): 1496-1503.
[154] RONDIN L, DANTELLE G, SLABLAB A, et al. Surface-induced charge state conversion of nitrogen-vacancy defects in nanodiamonds[J]. Physical Review B, 2010, 82(11): 115449.
[155] LENEF A, RAND S. Electronic structure of the N-V center in diamond: Theory[J]. Physical Review B, 1996, 53(20): 13441.
[156] CHEN X D, ZOU C L, SUN F W, et al. Optical manipulation of the charge state of nitrogen-vacancy center in diamond[J]. Applied Physics Letters, 2013, 103(1): 013112.
[157] CHEN X D, ZHOU L M, ZOU C L, et al. Spin depolarization effect induced by charge state conversion of nitrogen vacancy center in diamond[J]. Physical Review B, 2015, 92(10): 104301.
[158] ROBERTS R P, JUAN M L, MOLINA-TERRIZA G. Spin-dependent charge state interconversion of nitrogen vacancy centers in nanodiamonds[J]. Physical Review B, 2019, 99(17): 174307.
[159] ASLAM N, WALDHERR G, NEUMANN P, et al. Photo-induced ionization dynamics of the nitrogen vacancy defect in diamond investigated by single-shot charge state detection[J]. New Journal of Physics, 2013, 15(1): 013064.
[160] GROTZ B, HAUF M V, DANKERL M, et al. Charge state manipulation of qubits in diamond[J]. Nature communications, 2012, 3(1): 729.
[161] WALDHERR G, BECK J, STEINER M, et al. Dark states of single nitrogen-vacancy centers in diamond unraveled by single shot NMR[J]. Physical Review Letters, 2011, 106(15): 157601.
[162] BARSON M S, KRAUSZ E, MANSON N B, et al. The fine structure of the neutral nitrogen-vacancy center in diamond[J]. Nanophotonics, 2019, 8(11): 1985-1991.
[163] BAIER S, BRADLEY C, MIDDELBURG T, et al. Orbital and spin dynamics of single neutrally-charged nitrogen-vacancy centers in diamond[J]. Physical Review Letters, 2020, 125(19): 193601.
[164] DOHERTY M W, MANSON N B, DELANEY P, et al. The negatively charged nitrogen-vacancy centre in diamond: the electronic solution[J]. New Journal of Physics, 2011, 13(2): 025019.
[165] MAZE J R, GALI A, TOGAN E, et al. Properties of nitrogen-vacancy centers in diamond: the group theoretic approach[J]. New Journal of Physics, 2011, 13(2): 025025.
[166] HARRISON J, SELLARS M, MANSON N. Optical spin polarisation of the NV centre in diamond[J]. Journal of Luminescence, 2004, 107(1-4): 245-248.
[167] MANSON N, HARRISON J, SELLARS M. Nitrogen-vacancy center in diamond: Model of the electronic structure and associated dynamics[J]. Physical Review B, 2006, 74(10): 104303.
[168] ROGERS L, ARMSTRONG S, SELLARS M, et al. Infrared emission of the NV centre in diamond: Zeeman and uniaxial stress studies[J]. New Journal of Physics, 2008, 10(10): 103024.
[169] KEHAYIAS P, DOHERTY M, ENGLISH D, et al. Infrared absorption band and vibronic structure of the nitrogen-vacancy center in diamond[J]. Physical Review B, 2013, 88(16): 165202.
[170] NIZOVTSEV A, KILIN S Y, JELEZKO F, et al. Spin-selective low temperature spectroscopy on single molecules with a triplet-triplet optical transition: Application to the NV defect center in diamond[J]. Optics and Spectroscopy, 2003, 94: 848-858.
[171] BATALOV A, ZIERL C, GAEBEL T, et al. Temporal coherence of photons emitted by single nitrogen-vacancy defect centers in diamond using optical Rabi-oscillations[J]. Physical Review Letters, 2008, 100(7): 077401.
[172] IVÁDY V, ABRIKOSOV I A, GALI A. First principles calculation of spin-related quantities for point defect qubit research[J]. npj Computational Materials, 2018, 4(1): 76.
[173] DOHERTY M, DOLDE F, FEDDER H, et al. Theory of the ground-state spin of the NV- center in diamond[J]. Physical Review B, 2012, 85(20): 205203.
[174] FELTON S, EDMONDS A, NEWTON M E, et al. Hyperfine interaction in the ground state of the negatively charged nitrogen vacancy center in diamond[J]. Physical Review B, 2009, 79(7): 075203.
[175] HADDEN J, HARRISON J, STANLEY-CLARKE A C, et al. Strongly enhanced photon collection from diamond defect centers under microfabricated integrated solid immersion lenses[J]. Applied Physics Letters, 2010, 97(24): 241901.
[176] JAMALI M, GERHARDT I, REZAI M, et al. Microscopic diamond solid-immersion-lenses fabricated around single defect centers by focused ion beam milling[J]. Review of Scientific Instruments, 2014, 85(12): 123703.
[177] CHAKRABORTY T, ZHANG J, SUTER D. Polarizing the electronic and nuclear spin of the NV-center in diamond in arbitrary magnetic fields: analysis of the optical pumping process[J]. New Journal of Physics, 2017, 19(7): 073030.
[178] ROBLEDO L, BERNIEN H, VAN DER SAR T, et al. Spin dynamics in the optical cycle of single nitrogen-vacancy centres in diamond[J]. New Journal of Physics, 2011, 13(2): 025013.
[179] GOLDMAN M L, DOHERTY M, SIPAHIGIL A, et al. State-selective intersystem crossing in nitrogen-vacancy centers[J]. Physical Review B, 2015, 91(16): 165201.
[180] GOLDMAN M L, SIPAHIGIL A, DOHERTY M, et al. Phonon-induced population dynamics and intersystem crossing in nitrogen-vacancy centers[J]. Physical Review Letters, 2015, 114(14): 145502.
[181] BARRY J F, SCHLOSS J M, BAUCH E, et al. Sensitivity optimization for NV-diamond magnetometry[J]. Reviews of Modern Physics, 2020, 92(1): 015004.
[182] FUCHS G, BURKARD G, KLIMOV P, et al. A quantum memory intrinsic to single nitrogen–vacancy centres in diamond[J]. Nature Physics, 2011, 7(10): 789-793.
[183] JIANG L, HODGES J, MAZE J, et al. Repetitive readout of a single electronic spin via quantum logic with nuclear spin ancillae[J]. Science, 2009, 326(5950): 267-272.
[184] DOLDE F, JAKOBI I, NAYDENOV B, et al. Room-temperature entanglement between single defect spins in diamond[J]. Nature Physics, 2013, 9(3): 139-143.
[185] DOLDE F, BERGHOLM V, WANG Y, et al. High-fidelity spin entanglement using optimal control[J]. Nature Communications, 2014, 5(1): 3371.
[186] PFAFF W, TAMINIAU T H, ROBLEDO L, et al. Demonstration of entanglement-by-measurement of solid-state qubits[J]. Nature Physics, 2013, 9(1): 29-33.
[187] YANG S, WANG Y, RAO D B, et al. High-fidelity transfer and storage of photon states in a single nuclear spin[J]. Nature Photonics, 2016, 10(8): 507-511.
[188] ZAISER S, RENDLER T, JAKOBI I, et al. Enhancing quantum sensing sensitivity by a quantum memory[J]. Nature Communications, 2016, 7(1): 12279.
[189] JAKOBI I, NEUMANN P, WANG Y, et al. Measuring broadband magnetic fields on the nanoscale using a hybrid quantum register[J]. Nature Nanotechnology, 2017, 12(1): 67-72.
[190] PFENDER M, ASLAM N, SUMIYA H, et al. Nonvolatile nuclear spin memory enables sensor-unlimited nanoscale spectroscopy of small spin clusters[J]. Nature Communications, 2017, 8(1): 834.
[191] ROSSKOPF T, ZOPES J, BOSS J M, et al. A quantum spectrum analyzer enhanced by a nuclear spin memory[J]. npj Quantum Information, 2017, 3(1): 33.
[192] ASLAM N, PFENDER M, NEUMANN P, et al. Nanoscale nuclear magnetic resonance with chemical resolution[J]. Science, 2017, 357(6346): 67-71.
[193] JACQUES V, NEUMANN P, BECK J, et al. Dynamic polarization of single nuclear spins by optical pumping of nitrogen-vacancy color centers in diamond at room temperature[J]. Physical Review Letters, 2009, 102(5): 057403.
[194] FISCHER R, BRETSCHNEIDER C O, LONDON P, et al. Bulk nuclear polarization enhanced at room temperature by optical pumping[J]. Physical Review Letters, 2013, 111(5): 057601.
[195] WANG P, LIU B, YANG W. Strongly polarizing weakly coupled 13C nuclear spins with optically pumped nitrogen-vacancy center[J]. Scientific Reports, 2015, 5(1): 15847.
[196] WANG H J, SHIN C S, AVALOS C E, et al. Sensitive magnetic control of ensemble nuclear spin hyperpolarization in diamond[J]. Nature Communications, 2013, 4(1): 1940.
[197] GENG J, WU Y, WANG X, et al. Experimental time-optimal universal control of spin qubits in solids[J]. Physical Review Letters, 2016, 117(17): 170501.
[198] ZU C, WANG W B, HE L, et al. Experimental realization of universal geometric quantum gates with solid-state spins[J]. Nature, 2014, 514(7520): 72-75.
[199] PAGLIERO D, LARAOUI A, HENSHAW J D, et al. Recursive polarization of nuclear spins in diamond at arbitrary magnetic fields[J]. Applied Physics Letters, 2014, 105(24): 242402.
[200] NEUMANN P, BECK J, STEINER M, et al. Single-shot readout of a single nuclear spin[J]. Science, 2010, 329(5991): 542-544.
[201] DRÉAU A, SPINICELLI P, MAZE J, et al. Single-shot readout of multiple nuclear spin qubits in diamond under ambient conditions[J]. Physical Review Letters, 2013, 110(6): 060502.
[202] CHILDRESS L, GURUDEV DUTT M, TAYLOR J, et al. Coherent dynamics of coupled electron and nuclear spin qubits in diamond[J]. Science, 2006, 314(5797): 281-285.
[203] TERHAL B M. A family of indecomposable positive linear maps based on entangled quantum states[J]. Linear Algebra and its Applications, 2001, 323(1-3): 61-73.
[204] GÜHNE O, TÓTH G. Entanglement detection[J]. Physics Reports, 2009, 474(1-6): 1-75.
[205] SPERLING J, VOGEL W. Multipartite entanglement witnesses[J]. Physical Review Letters, 2013, 111(11): 110503.
[206] LU H, ZHAO Q, LI Z D, et al. Entanglement structure: entanglement partitioning in multipartite systems and its experimental detection using optimizable witnesses[J]. Physical Review X, 2018, 8(2): 021072.
[207] LIANG Y C, ROSSET D, BANCAL J D, et al. Family of bell-like inequalities as device-independent witnesses for entanglement depth[J]. Physical Review Letters, 2015, 114(19): 190401.
[208] SØRENSEN A S, MØLMER K. Entanglement and extreme spin squeezing[J]. Physical Review Letters, 2001, 86(20): 4431.
[209] ZHOU Y. Entanglement detection under coherent noise: Greenberger-Horne-Zeilinger-like states[J]. Physical Review A, 2020, 101(1): 012301.
[210] DÜR W, CIRAC J I. Classification of multiqubit mixed states: Separability and distillability properties[J]. Physical Review A, 2000, 61(4): 042314.
[211] LIN P S, HUNG J C, CHEN C H, et al. Exploring Bell inequalities for the device-independent certification of multipartite entanglement depth[J]. Physical Review A, 2019, 99(6): 062338.
[212] TORLAI G, MAZZOLA G, CARRASQUILLA J, et al. Neural-network quantum state tomography[J]. Nature Physics, 2018, 14(5): 447-450.
[213] XIN T, LU S, CAO N, et al. Local-measurement-based quantum state tomography via neural networks[J]. npj Quantum Information, 2019, 5(1): 1-8.
[214] CARRASQUILLA J, TORLAI G, MELKO R G, et al. Reconstructing quantum states with generative models[J]. Nature Machine Intelligence, 2019, 1(3): 155-161.
[215] DENG D L, LI X, SARMA S D. Quantum entanglement in neural network states[J]. Physical Review X, 2017, 7(2): 021021.
[216] XIN T, NIE X, KONG X, et al. Quantum pure state tomography via variational hybrid quantum-classical method[J]. Physical Review Applied, 2020, 13(2): 024013.
[217] MA Y C, YUNG M H. Transforming Bell’s inequalities into state classifiers with machine learning[J]. npj Quantum Information, 2018, 4(1): 1-10.
[218] CHEN C, REN C, LIN H, et al. Entanglement structure detection via machine learning[J]. Quantum Science and Technology, 2021, 6(3): 035017.
[219] REN C, CHEN C. Steerability detection of an arbitrary two-qubit state via machine learning[J]. Physical Review A, 2019, 100(2): 022314.
[220] CANABARRO A, BRITO S, CHAVES R. Machine learning nonlocal correlations[J]. Physical Review Letters, 2019, 122(20): 200401.
[221] DENG D L. Machine learning detection of bell nonlocality in quantum many-body systems[J]. Physical Review Letters, 2018, 120(24): 240402.
[222] ACIN A, BRUSS D, LEWENSTEIN M, et al. Classification of mixed three-qubit states[J]. Physical Review Letters, 2001, 87(4): 040401.
[223] BOURENNANE M, EIBL M, KURTSIEFER C, et al. Experimental detection of multipartite entanglement using witness operators[J]. Physical Review Letters, 2004, 92(8): 087902.
[224] TÓTH G, GÜHNE O. Detecting genuine multipartite entanglement with two local measurements[J]. Physical Review Letters, 2005, 94(6): 060501.
[225] GOODFELLOW I, BENGIO Y, HINTON G. Deep learning[M]. Cambridge: MIT Press, 2016.
[226] KINGMA D P, BA J. Adam: A method for stochastic optimization[A]. 2014: arXiv:1412.6980.
[227] JOHNSON J W, EVANOFF D P, SAVARD M E, et al. Cyclobutanone mimics of penicillins: effects of substitution on conformation and hemiketal stability[J]. The Journal of Organic Chemistry, 2008, 73(18): 6970-6982.
[228] LU D, LI K, LI J, et al. Enhancing quantum control by bootstrapping a quantum processor of 12 qubits[J]. npj Quantum Information, 2017, 3(1): 1-7.
[229] XIN T, CHE L, XI C, et al. Experimental quantum principal component analysis via parametrized quantum circuits[J]. Physical Review Letters, 2021, 126(11): 110502.
[230] NIE X, WEI B B, CHEN X, et al. Experimental observation of equilibrium and dynamical quantum phase transitions via out-of-time-ordered correlators[J]. Physical Review Letters, 2020, 124(25): 250601.
[231] QIU C, NIE X, LU D. Quantum simulations with nuclear magnetic resonance system[J]. Chinese Physics B, 2021, 30(4): 048201.
[232] KNILL E, LAFLAMME R, MARTINEZ R, et al. An algorithmic benchmark for quantum information processing[J]. Nature, 2000, 404(6776): 368-370.
[233] CORY D G, FAHMY A F, HAVEL T F. Ensemble quantum computing by NMR spectroscopy[J]. Proceedings of the National Academy of Sciences, 1997, 94(5): 1634-1639.
[234] GERSHENFELD N A, CHUANG I L. Bulk spin-resonance quantum computation[J]. Science, 1997, 275(5298): 350-356.
[235] LU D, LI H, TROTTIER D A, et al. Experimental estimation of average fidelity of a Clifford gate on a 7-qubit quantum processor[J]. Physical Review Letters, 2015, 114(14): 140505.
[236] VAN NIEUWENBURG E P, LIU Y H, HUBER S D. Learning phase transitions by confusion[J]. Nature Physics, 2017, 13(5): 435-439.
[237] HU W, SINGH R R P, SCALETTAR R T. Discovering phases, phase transitions, and crossovers through unsupervised machine learning: A critical examination[J]. Physical Review E, 2017, 95(6): 062122.
[238] WANG L. Discovering phase transitions with unsupervised learning[J]. Physical Review B, 2016, 94(19): 195105.
[239] HUEMBELI P, DAUPHIN A, WITTEK P. Identifying quantum phase transitions with adversarial neural networks[J]. Physical Review B, 2018, 97(13): 134109.
[240] GREPLOVA E, VALENTI A, BOSCHUNG G, et al. Unsupervised identification of topological phase transitions using predictive models[J]. New Journal of Physics, 2020, 22(4): 045003.
[241] HARNEY C, PIRANDOLA S, FERRARO A, et al. Entanglement classification via neural network quantum states[J]. New Journal of Physics, 2020, 22(4): 045001.
[242] ROMERO J, OLSON J P, ASPURU-GUZIK A. Quantum autoencoders for efficient compression of quantum data[J]. Quantum Science and Technology, 2017, 2(4): 045001.
[243] BAUER B, WECKER D, MILLIS A J, et al. Hybrid quantum-classical approach to correlated materials[J]. Physical Review X, 2016, 6: 031045.
[244] BRAVYI S, SMITH G, SMOLIN J A. Trading classical and quantum computational resources[J]. Physical Review X, 2016, 6: 021043.
[245] MCCLEAN J R, ROMERO J, BABBUSH R, et al. The theory of variational hybrid quantum-classical algorithms[J]. New Journal of Physics, 2016, 18: 023023.
[246] YANG X, CHEN X, LI J, et al. Hybrid quantum-classical approach to enhanced quantum metrology[J]. Scientific Reports, 2021, 11: 672.
[247] LI J, YANG X, PENG X, et al. Hybrid quantum-classical approach to quantum optimal control[J]. Physical Review Letters, 2017, 118: 150503.
[248] LECUN Y, BENGIO Y, HINTON G. Deep learning[J]. Nature, 2015, 521: 436-444.
[249] HINTON G E, SALAKHUTDINOV R R. Reducing the dimensionality of data with neural networks[J]. Science, 2006, 313: 504-507.
[250] ROMERO J, OLSON J P, ASPURU-GUZIK A. Quantum autoencoders for efficient compression of quantum data[J]. Quantum Science and Technology, 2017, 2: 045001.
[251] PEPPER A, TISCHLER N, PRYDE G J. Experimental realization of a quantum autoencoder: the compression of qutrits via machine learning[J]. Physical Review Letters, 2019, 122: 060501.
[252] LU D, LI K, LI J, et al. Enhancing quantum control by bootstrapping a quantum processor of 12 qubits[J]. npj Quantum Information, 2017, 3: 45.
[253] FENG G, CHO F H, KATIYAR H, et al. Gradient-based closed-loop quantum optimal control in a solid-state two-qubit system[J]. Physical Review A, 2018, 98: 052341.
[254] BENEDETTI M, LLOYD E, SACK S, et al. Parameterized quantum circuits as machine learning models[J]. Quantum Science and Technology, 2019, 4(4): 043001.
[255] CHOI S, YAO N Y, LUKIN M D. Quantum metrology based on strongly correlated matter[A]. 2017: arXiv:1801.00042.
[256] FEDOTOV I, BLAKLEY S, SEREBRYANNIKOV E, et al. Fiber-based thermometry using optically detected magnetic resonance[J]. Applied Physics Letters, 2014, 105(26): 261109.
[257] CHEN E H, CLEVENSON H A, JOHNSON K A, et al. High-sensitivity spin-based electrometry with an ensemble of nitrogen-vacancy centers in diamond[J]. Physical Review A, 2017, 95(5): 053417.
[258] MICHL J, STEINER J, DENISENKO A, et al. Robust and accurate electric field sensing with solid state spin ensembles[J]. Nano Letters, 2019, 19(8): 4904-4910.
[259] KIM D, IBRAHIM M I, FOY C, et al. A CMOS-integrated quantum sensor based on nitrogen–vacancy centres[J]. Nature Electronics, 2019, 2(7): 284-289.
修改评论