[1] KIM S, PARK G, LEE S J, et al. Lithium-metal batteries: from fundamental research to industrialization[J]. Advanced Materials, 2023, 35(43): 2206625.
[2] MA S, JIANG M D, TAO P, et al. Temperature effect and thermal impact in lithium-ion batteries: A review[J]. Progress in Natural Science-Materials International, 2018, 28(6): 653-666.
[3] LIU B, ZHANG J-G, XU W. Advancing lithium metal batteries[J]. Joule, 2018, 2(5): 833-845.
[4] ACEBEDO B, MORANT-MINANA M C, GONZALO E, et al. Current status and future perspective on lithium metal anode production methods[J]. Advanced Energy Materials, 2023, 13(13): 2203744.
[5] GOODENOUGH J B, KIM Y. Challenges for rechargeable Li batteries[J]. Chemistry of Materials, 2010, 22(3): 587-603.
[6] SHEN X, LIU H, CHENG X B, et al. Beyond lithium ion batteries: Higher energy density battery systems based on lithium metal anodes[J]. Energy Storage Materials, 2018, 12: 161-175.
[7] XU W, WANG J L, DING F, et al. Lithium metal anodes for rechargeable batteries[J]. Energy & Environmental Science, 2014, 7(2): 513-537.
[8] JIE Y L, REN X D, CAO R G, et al. Advanced liquid electrolytes for rechargeable Li-metal batteries[J]. Advanced Functional Materials, 2020, 30(25): 1910777.
[9] ZHAI F, ZHOU Q, LV Z, et al. Customized design of electrolytes for high-safety and high-energy-density lithium batteries[J]. EnergyChem, 2022, 4(5): 100082.
[10] CHENG X B, ZHANG R, ZHAO C Z, ZHANG Q. Toward safe lithium metal anode in rechargeable batteries: A review[J]. Chemical Reviews, 2017, 117(15): 10403-10473.
[11] LI J W, KONG Z, LIU X X, et al. Strategies to anode protection in lithium metal battery: A review[J]. Infomat, 2021, 3(12): 1333-1363.
[12] LUO D, LI M, ZHENG Y, et al. Electrolyte design for lithium metal anode-based batteries toward extreme temperature application[J]. Advanced Science, 2021, 8(18): 2101051.
[13] WANG Q Y, LIU B, SHEN Y H, et al. Confronting the challenges in lithium anodes for lithium metal batteries[J]. Advanced Science, 2021, 8(17): 2101111.
[14] YASIN G, ARIF M, MEHTAB T, et al. Understanding and suppression strategies toward stable Li metal anode for safe lithium batteries[J]. Energy Storage Materials, 2020, 25: 644-678.
[15] HAN Y Y, LIU B, XIAO Z, et al. Interface issues of lithium metal anode for high-energy batteries: Challenges, strategies, and perspectives[J]. Infomat, 2021, 3(2): 155-174.
[16] PIAO Z H, GAO R H, LIU Y Q, et al. A review on regulating Li+ solvation structures in carbonate electrolytes for lithium metal batteries[J]. Advanced Materials, 2023, 35(15): 2206009.
[17] CAO X, JIA H, XU W, ZHANG J G. Review-localized high-voncentration electrolytes for lithium batteries[J]. Journal of the Electrochemical Society, 2021, 168(1): 010522.
[18] ZHANG H, ESHETU G G, JUDEZ X, et al. Electrolyte additives for lithium metal anodes and rechargeable lithium metal batteries: Progress and perspectives[J]. Angewandte Chemie-International Edition, 2018, 57(46): 15002-15027.
[19] HU M, PANG X L, ZHOU Z. Recent progress in high-voltage lithium ion batteries[J]. Journal of Power Sources, 2013, 237: 229-242.
[20] LOGAN E R, DAHN J R. Electrolyte design for fast-charging Li-ion batteries[J]. Trends in Chemistry, 2020, 2(4): 354-366.
[21] VON ASPERN N, ROESCHENTHALER G V, WINTER M, CEKIC-LASKOVIC I. Fluorine and lithium: ideal partners for high-performance rechargeable battery electrolytes[J]. Angewandte Chemie-International Edition, 2019, 58(45): 15978-16000.
[22] WANG Q S, JIANG L H, YU Y, SUN J H. Progress of enhancing the safety of lithium ion battery from the electrolyte aspect[J]. Nano Energy, 2019, 55: 93-114.
[23] WINTER M, BARNETT B, XU K. Before Li ion batteries[J]. Chemical Reviews, 2018, 118(23): 11433-11456.
[24] LEWIS G N, KEYES F G. The potential of the lithium electrode[J]. Journal of the American Chemical Society, 1913, 35(4): 340-344.
[25] ZHANG Q, TAKEUCHI K J, TAKEUCHI E S, MARSCHILOK A C. Progress towards high-power Li/CFx batteries: electrode architectures using carbon nanotubes with CFx[J]. Physical Chemistry Chemical Physics, 2015, 17(35): 22504-22518.
[26] GOODENOUGH J B. How we made the Li-ion rechargeable battery[J]. Nature Electronics, 2018, 1(3): 204-204.
[27] WHITTINGHAM M S. Electrical energy storage and intercalation chemistry[J]. Science, 1976, 192(4244): 1126-1127.
[28] FANFAN LIU Z Z, SHUFEN YE, YU YAO, YAN YU. Challenges and Improvement strategies progress of lithium metal anode[J]. Acta Phys -Chim Sin, 2021, 37(1): 2006021.
[29] ZHANG X Q, ZHAO C Z, HUANG J Q, ZHANG Q. Recent advances in energy chemical engineering of next-generation lithium batteries[J]. Engineering, 2018, 4(6): 831-847.
[30] AURBACH D. Review of selected electrode–solution interactions which determine the performance of Li and Li ion batteries[J]. Journal of Power Sources, 2000, 89(2): 206-218.
[31] CHENG X-B, ZHANG R, ZHAO C-Z, ZHANG Q. Toward safe lithium metal anode in rechargeable batteries: A review[J]. Chemical Reviews, 2017, 117(15): 10403-10473.
[32] SACCI R L, BLACK J M, BALKE N, et al. Nanoscale imaging of fundamental Li battery chemistry: Solid-electrolyte interphase formation and preferential growth of lithium metal nanoclusters[J]. Nano Letters, 2015, 15(3): 2011-2018.
[33] WANG D, ZHANG W, ZHENG W, et al. Towards high-safe lithium metal anodes: Suppressing lithium dendrites via tuning surface energy[J]. Advanced Science, 2017, 4(1): 1600168.
[34] ZHANG L Q, ZHU C X, YU S C, et al. Status and challenges facing representative anode materials for rechargeable lithium batteries[J]. Journal of Energy Chemistry, 2022, 66: 260-294.
[35] YOSHIO M, WANG H, FUKUDA K, et al. Effect of carbon coating on electrochemical performance of treated natural graphite as lithium‐ion battery anode material[J]. Journal of the Electrochemical Society, 2000, 147(4): 1245.
[36] DING F, XU W, GRAFF G L, et al. Dendrite-free lithium deposition via self-healing electrostatic shield mechanism[J]. Journal of the American Chemical Society, 2013, 135(11): 4450-4456.
[37] LIU W, LIU P C, MITLIN D. Review of emerging concepts in SEI analysis and artificial SEI membranes for lithium, sodium, and potassium metal battery anodes[J]. Advanced Energy Materials, 2020, 10(43): 2002297.
[38] ZHAI P B, LIU L X, GU X K, et al. Interface engineering for lithium metal Anodes in liquid electrolyte[J]. Advanced Energy Materials, 2020, 10(34): 2001257.
[39] PELED E. The electrochemical behavior of alkali and alkaline earth metals in nonaqueous battery systems—the solid electrolyte interphase model[J]. Journal of the Electrochemical Society, 1979, 126(12): 2047-2051.
[40] AURBACH D. Review of selected electrode-solution interactions which determine the performance of Li and Li ion batteries[J]. Journal of Power Sources, 2000, 89(2): 206-218.
[41] PELED E, GOLODNITSKY D, ARDEL G. Advanced model for solid electrolyte interphase electrodes in liquid and polymer electrolytes[J]. Journal of the Electrochemical Society, 1997, 144(8): L208-L210.
[42] WU H, JIA H, WANG C, et al. Recent progress in understanding solid electrolyte interphase on lithium metal anodes[J]. Advanced Energy Materials, 2021, 11(5): 2003092.
[43] ZUBI G, DUFO-LóPEZ R, CARVALHO M, PASAOGLU G. The lithium-ion battery: State of the art and future perspectives[J]. Renewable and Sustainable Energy Reviews, 2018, 89: 292-308.
[44] XIANG J W, WEI Y, ZHONG Y, et al. Building practical high-voltage cathode materials for lithium-ion batteries[J]. Advanced Materials, 2022, 34(52): 2200912.
[45] LI M, LU J, CHEN Z W, AMINE K. 30 Years of lithium-ion batteries[J]. Advanced Materials, 2018, 30(33): 1800561.
[46] CHAKRABORTY A, KUNNIKURUVAN S, KUMAR S, et al. Layered cathode materials for lithium-lon batteries: Review of computational studies on LiNi1-x-yCoxMnyO2 and LiNi1-x-yCoxAlyO2[J]. Chemistry of Materials, 2020, 32(3): 915-952.
[47] WU F X, MAIER J, YU Y. Guidelines and trends for next-generation rechargeable lithium and lithium-ion batteries[J]. Chemical Society Reviews, 2020, 49(5): 1569-1614.
[48] JIANG M, DANILOV D L, EICHEL R A, NOTTEN P H L. A review of degradation mechanisms and recent achievements for Ni-rich cathode-based Li-ion batteries[J]. Advanced Energy Materials, 2021, 11(48): 2103005.
[49] KABIR M M, DEMIROCAK D E. Degradation mechanisms in Li-ion batteries: A state-of-the-art review[J]. International Journal of Energy Research, 2017, 41(14): 1963-1986.
[50] LI M, WANG C S, CHEN Z W, et al. New concepts in electrolytes[J]. Chemical Reviews, 2020, 120(14): 6783-6819.
[51] ZHANG J G, XU W, XIAO J, et al. Lithium metal anodes with nonaqueous electrolytes[J]. Chemical Reviews, 2020, 120(24): 13312-13348.
[52] ZHENG X Y, HUANG L Q, YE X L, et al. Critical effects of electrolyte recipes for Li and Na metal batteries[J]. Chem, 2021, 7(9): 2312-2346.
[53] WANG Q, WANG H C, WU J Y, et al. Advanced electrolyte design for stable lithium metal anode: From liquid to solid[J]. Nano Energy, 2021, 80: 105516.
[54] QIN K Q, HOLGUIN K, MOHAMMADIROUDBARI M, et al. Strategies in structure and electrolyte design for high-performance lithium metal batteries[J]. Advanced Functional Materials, 2021, 31(15): 2009694.
[55] FAN X L, WANG C S. High-voltage liquid electrolytes for Li batteries: Progress and perspectives[J]. Chemical Society Reviews, 2021, 50(18): 10486-10566.
[56] YOUNESI R, VEITH G M, JOHANSSON P, et al. Lithium salts for advanced lithium batteries: Li-metal, Li-O2, and Li-S[J]. Energy & Environmental Science, 2015, 8(7): 1905-1922.
[57] ELLIS L D, HILL I G, GERING K L, DAHN J R. Synergistic effect of LiPF6 and LiBF4 as electrolyte salts in lithium-ion cells[J]. Journal of the Electrochemical Society, 2017, 164(12): A2426-A2433.
[58] YU T, ZHANG H M, XU X L, et al. Research progresses of two kinds of novel electrolyte lithium salts: Lithium bis(oxalato) borate and lithium oxalyldifluroborate; Proceedings of the 3rd International Conference on Advances in Materials Manufacturing (ICAMMP 2012), Beihai, PEOPLES R CHINA, F Dec 22-23, 2012 [C]. 2013.
[59] LI S Y, MA P H, TENG X G, et al. A new type of lithium salt used as electrolyte salt of lithium ion battery - Lithium bis(oxalate)borate[J]. Progress in Chemistry, 2007, 19(5): 695-699.
[60] LIU B, ZHOU H M, YIN C J, et al. Enhanced electrochemical performance of LiNi0.5Mn1.5O4 cathode by application of LiPF2O2 for lithium difluoro(oxalate)borate electrolyte[J]. Electrochimica Acta, 2019, 321(1923): 134690.
[61] WANG C Y, LIU M Y, HUANG D H, et al. High-voltage LiNi0.4Co0.4Mn0.2O2/graphite pouch battery cycled at 4.5 V with a LiDFP-based electrolyte[J]. Ionics, 2021, 27(10): 4135-4142.
[62] YU Z Y, BAI M H, SONG W F, et al. Influence of lithium difluorophosphate additive on the high voltage LiNi0.8Co0.1Mn0.1O2/graphite battery[J]. Ceramics International, 2021, 47(1): 157-162.
[63] NILSSON V, KOTRONIA A, LACEY M, et al. Highly concentrated LiTFSI-EC electrolytes for lithium metal batteries[J]. ACS Applied Energy Materials, 2020, 3(1): 200-207.
[64] SEO D M, BOYLE P D, SOMMER R D, et al. Solvate structures and spectroscopic characterization of LiTFSI electrolytes[J]. Journal of Physical Chemistry B, 2014, 118(47): 13601-13608.
[65] WANG Z X, GAO W D, HUANG X J, et al. Ion transport in polyacrylonitrile-based electrolytes with high LiTFSI contents[J]. Electrochemical and Solid State Letters, 2001, 4(9): A148-A150.
[66] CAI Y L, ZHANG H, CAO Y T, et al. Synthesis, application and industrialization of LiFSI: A review and perspective[J]. Journal of Power Sources, 2022, 535: 231481.
[67] DEGUCHI M, TODOROV Y M, ABE K. Functional electrolyte: Design of anti-corrosion additives for Al collectors in LiFSI-based electrolyte[J]. Electrochimica Acta, 2023, 469(10): 143267.
[68] LUO C Y, LI Y J, SUN W W, et al. Revisiting the corrosion mechanism of LiFSI based electrolytes in lithium metal batteries[J]. Electrochimica Acta, 2022, 419: 140353.
[69] YANG G J, LI Y J, LIU S, et al. LiFSI to improve lithium deposition in carbonate electrolyte[J]. Energy Storage Materials, 2019, 23: 350-357.
[70] XING L D, ZHENG X W, SCHROEDER M, et al. Deciphering the ethylene carbonate-propylene carbonate mystery in Li-ion batteries[J]. Accounts of Chemical Research, 2018, 51(2): 282-289.
[71] JIN Y T, KNEUSELS N J H, MARBELLA L E, et al. Understanding fluoroethylene carbonate and vinylene carbonate based electrolytes for Si anodes in lithium ion batteries with NMR spectroscopy[J]. Journal of the American Chemical Society, 2018, 140(31): 9854-9867.
[72] MICHAN A L, PARIRNALAM B S, LESKES M, et al. Fluoroethylene carbonate and vinylene carbonate reduction: Understanding lithium-ion battery electrolyte additives and solid electrolyte interphase formation[J]. Chemistry of Materials, 2016, 28(22): 8149-8159.
[73] SON S B, GAO T, HARVEY S P, et al. An artificial interphase enables reversible magnesium chemistry in carbonate electrolytes[J]. Nature Chemistry, 2018, 10(5): 532-539.
[74] WANG H S, YU Z, KONG X, et al. Liquid electrolyte: The nexus of practical lithium metal batteries[J]. Joule, 2022, 6(3): 588-616.
[75] ALVARADO J, SCHROEDER M A, POLLARD T P, et al. Bisalt ether electrolytes: A pathway towards lithium metal batteries with Ni-rich cathodes[J]. Energy & Environmental Science, 2019, 12(2): 780-794.
[76] LI K K, ZHANG J, LIN D M, et al. Evolution of the electrochemical interface in sodium ion batteries with ether electrolytes[J]. Nature Communications, 2019, 10(1): 725.
[77] REN X D, ZOU L F, JIAO S H, et al. High-concentration ether electrolytes for stable high-voltage lithium metal batteries[J]. ACS Energy Letters, 2019, 4(4): 896-902.
[78] JIAO T, LIU G, ZOU Y, et al. A novel trimethylsilyl 2-(fluorosulfonyl)difluoroacetate additive for stabilizing the Ni-rich LiNi0.9Co0.05Mn0.05O2/electrolyte interface[J]. Journal of Power Sources, 2021, 515: 230618.
[79] HAREGEWOIN A M, WOTANGO A S, HWANG B J. Electrolyte additives for lithium ion battery electrodes: Progress and perspectives[J]. Energy & Environmental Science, 2016, 9(6): 1955-1988.
[80] LIN L, YANG K, CHEN H, PAN F. In-situ atomic force microscope observing the effect of vinylene carbonate on the formation of solid-electrolyte interphase layer during the initial cycle[J]. Functional Materials Letters, 2017, 10(05): 1750052.
[81] HEINE J, HILBIG P, QI X, et al. Fluoroethylene carbonate as electrolyte additive in tetraethylene glycol dimethyl ether based electrolytes for application in lithium ion and lithium metal batteries[J]. Journal of the Electrochemical Society, 2015, 162(6): A1094.
[82] AURBACH D, MARKEVICH E, SALITRA G. High energy density rechargeable batteries based on Li metal anodes. The role of unique surface chemistry developed in solutions containing fluorinated organic co-solvents[J]. Journal of the American Chemical Society, 2021, 143(50): 21161-21176.
[83] LI J, YANG J, JI Z, et al. Prospective application, mechanism, and deficiency of lithium bis(oxalate)borate as the electrolyte additive for lithium-batteries[J]. Advanced Energy Materials, 2023, 13(35): 2301422.
[84] CHEN Z, KIM G-T, BRESSER D, et al. MnPO4-Coated Li(Ni0.4Co0.2Mn0.4)O2 for lithium(-ion) batteries with outstanding cycling stability and enhanced lithiation kinetics[J]. Advanced Energy Materials, 2018, 8(27): 1801573.
[85] DONG Q, GUO F, CHENG Z, et al. Insights into the dual role of lithium difluoro(oxalato)borate additive in improving the electrochemical performance of NMC811||graphite cells[J]. ACS Applied Energy Materials, 2020, 3(1): 695-704.
[86] WANG A, WANG L, LIANG H, et al. Lithium difluorophosphate as a widely applicable additive to boost lithium-ion batteries: A perspective[J]. Advanced Functional Materials, 2023, 33(8): 2211958.
[87] LI T, ZHANG X-Q, SHI P, ZHANG Q. Fluorinated solid-electrolyte interphase in high-voltage lithium metal batteries[J]. Joule, 2019, 3(11): 2647-2661.
[88] WANG Y, LI Z, HOU Y, et al. Emerging electrolytes with fluorinated solvents for rechargeable lithium-based batteries[J]. Chemical Society Reviews, 2023, 52(8): 2713-2763.
[89] CAO X, GAO P, REN X, et al. Effects of fluorinated solvents on electrolyte solvation structures and electrode/electrolyte interphases for lithium metal batteries[J]. Proceedings of the National Academy of Sciences, 2021, 118(9): e2020357118.
[90] YU Z, RUDNICKI P E, ZHANG Z, et al. Rational solvent molecule tuning for high-performance lithium metal battery electrolytes[J]. Nature Energy, 2022, 7(1): 94-106.
[91] YU Z, WANG H, KONG X, et al. Molecular design for electrolyte solvents enabling energy-dense and long-cycling lithium metal batteries[J]. Nature Energy, 2020, 5(7): 526-533.
[92] YU Z, YU W, CHEN Y, et al. Tuning fluorination of linear carbonate for lithium-ion batteries[J]. Journal of the Electrochemical Society, 2022, 169(4): 555.
[93] ZHANG Z, HU L, WU H, et al. Fluorinated electrolytes for 5 V lithium-ion battery chemistry[J]. Energy & Environmental Science, 2013, 6(6): 1806-1810.
[94] ZHAO Y, ZHOU T, ASHIROV T, et al. Fluorinated ether electrolyte with controlled solvation structure for high voltage lithium metal batteries[J]. Nature Communications, 2022, 13(1): 2575.
[95] MO Y, LIU G, YIN Y, et al. Fluorinated solvent molecule tuning enables fast-charging and low-temperature lithium-ion batteries[J]. Advanced Energy Materials, 2023, 13(32): 2301285.
[96] YU Z, BALSARA N P, BORODIN O, et al. Beyond local solvation structure: Nanometric aggregates in battery electrolytes and their effect on electrolyte properties[J]. ACS Energy Letters, 2022, 7(1): 461-470.
[97] YAMADA Y, FURUKAWA K, SODEYAMA K, et al. Unusual stability of acetonitrile-based superconcentrated electrolytes for fast-vharging lithium-ion batteries[J]. Journal of the American Chemical Society, 2014, 136(13): 5039-5046.
[98] FAN X, CHEN L, JI X, et al. Highly fluorinated interphases enable high-voltage Li-metal batteries[J]. Chem, 2018, 4(1): 174-185.
[99] QIAN J, HENDERSON W A, XU W, et al. High rate and stable cycling of lithium metal anode[J]. Nature Communications, 2015, 6(1): 6362.
[100]REN X, ZOU L, CAO X, et al. Enabling high-voltage lithium-metal batteries under practical conditions[J]. Joule, 2019, 3(7): 1662-1676.
[101]CHEN J, ZHANG H, FANG M, et al. Design of localized high-concentration electrolytes via donor number[J]. ACS Energy Letters, 2023, 8(4): 1723-1734.
[102]LI B, SHAO Y, HE J, et al. Cyclability improvement of high voltage lithium cobalt oxide/graphite battery by use of lithium difluoro(oxalate)borate electrolyte additive[J]. Electrochimica Acta, 2022, 426: 140783.
[103]YANG X, HUANG Y, LI J, et al. Understanding of working mechanism of lithium difluoro(oxalato) borate in Li||NCM85 battery with enhanced cyclic stability[J]. Energy Materials, 2023, 3(4): 300029.
[104]SHI P, ZHANG L, XIANG H, et al. Lithium difluorophosphate as a dendrite-suppressing additive for lithium metal batteries[J]. ACS Applied Materials & Interfaces, 2018, 10(26): 22201-22209.
[105]PARK G, LEE K, YOO D-J, CHOI J W. Strategy for stable interface in lithium metal batteries: Free solvent derived vs anion derived[J]. ACS Energy Letters, 2022, 7(12): 4274-4281.
[106]FRIDMAN K, SHARABI R, ELAZARI R, et al. A new advanced lithium ion battery: Combination of high performance amorphous columnar silicon thin film anode, 5V LiNi0.5Mn1.5O4 spinel cathode and fluoroethylene carbonate-based electrolyte solution[J]. Electrochemistry Communications, 2013, 33: 31-34.
[107]HOROWITZ Y, STEINRüCK H-G, HAN H-L, et al. Fluoroethylene carbonate induces ordered electrolyte interface on silicon and sapphire surfaces as revealed by sum frequency generation vibrational spectroscopy and X-ray reflectivity[J]. Nano Letters, 2018, 18(3): 2105-2111.
[108]LIU L, WANG S, ZHANG Z, et al. Fluoroethylene carbonate as an electrolyte additive for improving interfacial stability of high-voltage LiNi0.6Co0.2Mn0.2O2 cathode[J]. Ionics, 2019, 25(3): 1035-1043.
修改评论