[1] ROGLER M, SUERMANN M, WAGNER R, et al. Advanced Method for Voltage Breakdown Analysis of PEM Water Electrolysis Cells with Low Iridium Loadings[J]. Journal of The Electrochemical Society, 2023, 170(11): 114521.
[2] YUE M L, LAMBERT H, PAHON E, et al. Hydrogen energy systems: A critical review of technologies, applications, trends and challenges[J]. Renewable & Sustainable Energy Reviews, 2021, 146: 111180.
[3] GE L, ZHANG B, HUANG W, et al. A review of hydrogen generation, storage, and applications in power system[J]. Journal of Energy Storage, 2024, 75: 109307.
[4] HU G, CHEN C, LU H T, et al. A Review of Technical Advances, Barriers, and Solutions in the Power to Hydrogen (P2H) Roadmap[J]. Engineering, 2020, 6(12): 1364-1380.
[5] OSMAN A I, MEHTA N, ELGARAHY A M, et al. Hydrogen production, storage, utilisation and environmental impacts: a review[J]. Environmental Chemistry Letters, 2022, 20(1): 153-188.
[6] PIVOVAR B, RUSTAGI N, SATYAPAL S. Hydrogen at Scale (H2@Scale): Key to a Clean, Economic, and Sustainable Energy System[J]. The Electrochemical Society Interface, 2018, 27(1): 47.
[7] CARMO M, FRITZ D L, MERGEL J, et al. A comprehensive review on PEM water electrolysis[J]. International Journal of Hydrogen Energy, 2013, 38(12): 4901-4934.
[8] SHIVA KUMAR S, LIM H. An overview of water electrolysis technologies for green hydrogen production[J]. Energy Reports, 2022, 8: 13793-13813.
[9] EL-SHAFIE M. Hydrogen production by water electrolysis technologies: A review[J]. Results in Engineering, 2023, 20: 101426.
[10] HU S, GUO B, DING S, et al. A comprehensive review of alkaline water electrolysis mathematical modeling[J]. Applied Energy, 2022, 327: 120099.
[11] BRAUNS J, TUREK T. Alkaline Water Electrolysis Powered by Renewable Energy: A Review[J]. Processes, 2020, 8: 248.
[12] ZENG K, ZHANG D. Recent progress in alkaline water electrolysis for hydrogen production and applications[J]. Progress in Energy and Combustion Science, 2010, 36(3): 307-326.
[13] HAUCH A, KüNGAS R, BLENNOW P, et al. Recent advances in solid oxide cell technology for electrolysis[J]. Science, 2020, 370(6513): eaba6118.
[14] TIETZ F, SEBOLD D, BRISSE A, et al. Degradation phenomena in a solid oxide electrolysis cell after 9000 h of operation[J]. Journal of Power Sources, 2013, 223:129-135.
[15] KAMLUNGSUA K, SU P C, CHAN S H. Hydrogen Generation Using Solid Oxide Electrolysis Cells[J]. Fuel Cells, 2020, 20(6): 644-649.
[16] DU N, ROY C, PEACH R, et al. Anion-Exchange Membrane Water Electrolyzers[J]. Chemical Reviews, 2022, 122(13): 11830-11895.
[17] LI D, MOTZ A R, BAE C, et al. Durability of anion exchange membrane water electrolyzers[J]. Energy & Environmental Science, 2021, 14(6): 3393-3419.
[18] YAN X, GU C, LI F, et al. Power to gas: addressing renewable curtailment by converting to hydrogen[J]. Frontiers in Energy, 2018, 12: 560-568.
[19] VINCENT I, LEE E-C, KIM H-M. Comprehensive impedance investigation of low-cost anion exchange membrane electrolysis for large-scale hydrogen production[J]. Scientific Reports, 2021, 11(1): 293.
[20] AN L, WEI C, LU M, et al. Recent Development of Oxygen Evolution Electrocatalysts in Acidic Environment[J]. Advanced Materials, 2021, 33(20): 2006328.
[21] GUO X, WANG Y, ZHU W, et al. Design of Superior Electrocatalysts for Proton-Exchange Membrane-Water Electrolyzers: Importance of Catalyst Stability and Evolution[J]. ChemPlusChem, 2023: e202300514.
[22] CHEN Y, LIU C, XU J, et al. Key Components and Design Strategy for a Proton Exchange Membrane Water Electrolyzer[J]. Small Structures, 2023, 4(6): 2200130.
[23] PHAM C V, ESCALERA‐LóPEZ D, MAYRHOFER K, et al. Essentials of High Performance Water Electrolyzers - From Catalyst Layer Materials to Electrode Engineering[J]. Advanced Energy Materials, 2021, 11(44): 2101998.
[24] BüHLER M, HEGGE F, HOLZAPFEL P, et al. Optimization of anodic porous transport electrodes for proton exchange membrane water electrolyzers[J]. Journal of Materials Chemistry A, 2019, 7(47): 26984-26995.
[25] TIAN B, LI Y, LIU Y, et al. Ordered Membrane Electrode Assembly with Drastically Enhanced Proton and Mass Transport for Proton Exchange Membrane Water Electrolysis[J]. Nano Letters, 2023, 23(14): 6474-6481.
[26] BüHLER M, HOLZAPFEL P, MCLAUGHLIN D, et al. From Catalyst Coated Membranes to Porous Transport Electrode Based Configurations in PEM Water Electrolyzers[J]. Journal of The Electrochemical Society, 2019, 166(14): F1070-F1078.
[27] HOLZAPFEL P, BüHLER M, VAN PHAM C, et al. Directly coated membrane electrode assemblies for proton exchange membrane water electrolysis[J]. Electrochemistry Communications, 2020, 110: 106640.
[28] JANG Y, SEOL C, KIM S M, et al. Investigation of the correlation effects of catalyst loading and ionomer content in an anode electrode on the performance of polymer electrode membrane water electrolysis[J]. International Journal of Hydrogen Energy, 2022, 47(42): 18229-18239.
[29] XU W, LU Z, SUN X, et al. Superwetting Electrodes for Gas-Involving Electrocatalysis[J]. Accounts of Chemical Research, 2018, 51(7): 1590-1598.
[30] FAN J, CHEN M, ZHAO Z, et al. Bridging the gap between highly active oxygen reduction reaction catalysts and effective catalyst layers for proton exchange membrane fuel cells[J]. Nature Energy, 2021, 6(5): 475-486.
[31] BERNT M, GASTEIGER H A. Influence of Ionomer Content in IrO2/TiO2 Electrodes on PEM Water Electrolyzer Performance[J]. Journal of The Electrochemical Society, 2016, 163(11): F3179.
[32] KANG Z, YANG G, MO J, et al. Novel thin/tunable gas diffusion electrodes with ultra-low catalyst loading for hydrogen evolution reactions in proton exchange membrane electrolyzer cells[J]. Nano Energy, 2018, 47: 434-441.
[33] KANG Z, CHEN Y, WANG H, et al. Discovering and Demonstrating a Novel High-Performing 2D-Patterned Electrode for Proton-Exchange Membrane Water Electrolysis Devices[J]. ACS Applied Materials & Interfaces, 2022, 14(1): 2335-2342.
[34] SU H, YANG C, LIU M, et al. Tensile straining of iridium sites in manganese oxides for proton-exchange membrane water electrolysers[J]. Nature Communications, 2024, 15(1): 95.
[35] GUO H, FANG Z, LI H, et al. Rational Design of Rhodium–Iridium Alloy Nanoparticles as Highly Active Catalysts for Acidic Oxygen Evolution[J]. ACS Nano, 2019, 13(11): 13225-13234.
[36] WANG Y, ZHANG M, KANG Z, et al. Nano-metal diborides-supported anode catalyst with strongly coupled TaOx/IrO2 catalytic layer for low-iridium-loading proton exchange membrane electrolyzer[J]. Nature Communications, 2023, 14(1): 5119.
[37] MöCKL M, ERNST M F, KORNHERR M, et al. Durability Testing of Low-Iridium PEM Water Electrolysis Membrane Electrode Assemblies[J]. Journal of The Electrochemical Society, 2022, 169(6): 064505.
[38] HAN B, RISCH M, BELDEN S, et al. Screening Oxide Support Materials for OER Catalysts in Acid[J]. Journal of The Electrochemical Society, 2018, 165(10): F813-F820.
[39] SHI Q, ZHU C, DU D, et al. Robust noble metal-based electrocatalysts for oxygen evolution reaction[J]. Chemical Society Reviews, 2019, 48(12): 3181-3192.
[40] ZHANG K, LIANG X, WANG L, et al. Status and perspectives of key materials for PEM electrolyzer[J]. Nano Research Energy, 2022, 1: 9120032.
[41] PUTHIYAPURA V K, MAMLOUK M, PASUPATHI S, et al. Physical and electrochemical evaluation of ATO supported IrO2 catalyst for proton exchange membrane water electrolyser[J]. Journal of Power Sources, 2014, 269: 451-460.
[42] LEWINSKI K A, VAN DER VLIET D, LUOPA S M. NSTF Advances for PEM Electrolysis - the Effect of Alloying on Activity of NSTF Electrolyzer Catalysts and Performance of NSTF Based PEM Electrolyzers[J]. ECS Transactions, 2015, 69(17):893.
[43] PHAM C V, BüHLER M, KNöPPEL J, et al. IrO2 coated TiO2 core-shell microparticles advance performance of low loading proton exchange membrane water electrolyzers[J]. Applied Catalysis B: Environmental, 2020, 269: 118762.
[44] BöHM D, BEETZ M, GEBAUER C, et al. Highly conductive titania supported iridium oxide nanoparticles with low overall iridium density as OER catalyst for large-scale PEM electrolysis[J]. Applied Materials Today, 2021, 24: 101134.
[45] ROZAIN C, MAYOUSSE E, GUILLET N, et al. Influence of iridium oxide loadings on the performance of PEM water electrolysis cells: Part II – Advanced oxygen electrodes[J]. Applied Catalysis B: Environmental, 2016, 182: 123-131.
[46] MAZúR P, POLONSKý J, PAIDAR M, et al. Non-conductive TiO2 as the anode catalyst support for PEM water electrolysis[J]. International Journal of Hydrogen Energy, 2012, 37(17): 12081-12088.
[47] ROZAIN C, MAYOUSSE E, GUILLET N, et al. Influence of iridium oxide loadings on the performance of PEM water electrolysis cells: Part I–Pure IrO2 -based anodes[J]. Applied Catalysis B: Environmental, 2016, 182: 153-160.
[48] BERNT M, SCHRAMM C, SCHRöTER J, et al. Effect of the IrOx Conductivity on the Anode Electrode/Porous Transport Layer Interfacial Resistance in PEM Water Electrolyzers[J]. Journal of The Electrochemical Society, 2021, 168(8): 084513.
[49] XU W, SCOTT K. The effects of ionomer content on PEM water electrolyser membrane electrode assembly performance[J]. International Journal of Hydrogen Energy, 2010, 35(21): 12029-12037.
[50] KUSOGLU A, WEBER A Z. New Insights into Perfluorinated Sulfonic-Acid Ionomers[J]. Chemical Reviews, 2017, 117(3): 987-1104.
[51] HEGGE F, MORONI R, TRINKE P, et al. Three-dimensional microstructure analysis of a polymer electrolyte membrane water electrolyzer anode[J]. Journal of Power Sources, 2018, 393: 62-66.
[52] REN H, TENG Y, MENG X, et al. Ionomer network of catalyst layers for proton exchange membrane fuel cell[J]. Journal of Power Sources, 2021, 506: 230186.
[53] WU X, SCOTT K, PUTHIYAPURA V. Polymer electrolyte membrane water electrolyser with Aquivion® short side chain perfluorosulfonic acid ionomer binder in catalyst layers[J]. International Journal of Hydrogen Energy, 2012, 37(18): 13243-13248.
[54] SIRACUSANO S, BAGLIO V, VAN DIJK N, et al. Enhanced performance and durability of low catalyst loading PEM water electrolyser based on a short-side chain perfluorosulfonic ionomer[J]. Applied Energy, 2017, 192: 477-489.
[55] DONG S, ZHANG C, YUE Z, et al. Overall Design of Anode with Gradient Ordered Structure with Low Iridium Loading for Proton Exchange Membrane Water Electrolysis[J]. Nano Letters, 2022, 22(23): 9434-9440.
[56] JIANG G, YU H, LI Y, et al. Low-Loading and Highly Stable Membrane Electrode Based on an Ir@WOx NR Ordered Array for PEM Water Electrolysis[J]. ACS Applied Materials & Interfaces, 2021, 13: 15073-15082.
[57] HRBEK T, KúŠ P, YAKOVLEV Y, et al. Sputter-etching treatment of proton-exchange membranes: Completely dry thin-film approach to low-loading catalyst-coated membranes for water electrolysis[J]. International Journal of Hydrogen Energy, 2020, 45(41): 20776-20786.
[58] SUN K, ZHANG S, LI P, et al. Review on application of PEDOTs and PEDOT:PSS in energy conversion and storage devices[J]. Journal of Materials Science: Materials in Electronics, 2015, 26(7): 4438-4462.
[59] RIVNAY J, INAL S, COLLINS B A, et al. Structural control of mixed ionic and electronic transport in conducting polymers[J]. Nature Communications, 2016, 7(1): 11287.
[60] FAN X, NIE W, TSAI H, et al. PEDOT:PSS for Flexible and Stretchable Electronics: Modifications, Strategies, and Applications[J]. Advanced Science, 2019, 6(19): 1900813.
[61] TINTULA K K, PITCHUMANI S, SRIDHAR P, et al. A solid-polymer-electrolyte direct methanol fuel cell (DMFC) with Pt-Ru nanoparticles supported onto poly(3,4-ethylenedioxythiophene) and polystyrene sulphonic acid polymer composite as anode[J]. Journal of Chemical Sciences, 2010, 122(3): 381-389.
[62] TINTULA K K, PITCHUMANI S, SRIDHAR P, et al. PEDOT-PSSA as an alternative support for Pt electrodes in PEFCs[J]. Bulletin of Materials Science, 2010, 33(2): 157-163.
[63] HOSSAIN J, LIU Q, MIURA T, et al. Nafion-Modified PEDOT:PSS as a Transparent Hole-Transporting Layer for High-Performance Crystalline-Si/Organic Heterojunction Solar Cells with Improved Light Soaking Stability[J]. ACS Applied Materials & Interfaces, 2016, 8(46): 31926-31934.
[64] JIANG Y, DONG X, SUN L, et al. An alcohol-dispersed conducting polymer complex for fully printable organic solar cells with improved stability[J]. Nature Energy, 2022, 7(4): 352-359.
[65] CRUZ ORTIZ E, HEGGE F, BREITWIESER M, et al. Improving the performance of proton exchange membrane water electrolyzers with low Ir-loaded anodes by adding PEDOT:PSS as electrically conductive binder[J]. RSC Advances, 2020, 10(62): 37923-37927.
[66] TAIE Z, PENG X, KULKARNI D, et al. Pathway to Complete Energy Sector Decarbonization with Available Iridium Resources using Ultralow Loaded Water Electrolyzers[J]. ACS Applied Materials & Interfaces, 2020, 12(47): 52701-52712.
[67] KHANDAVALLI S, PARK J H, KARIUKI N N, et al. Investigation of the Microstructure and Rheology of Iridium Oxide Catalyst Inks for Low-TemperaturePolymer Electrolyte Membrane Water Electrolyzers[J]. ACS Applied Materials & Interfaces, 2019, 11(48): 45068-45079.
[68] BARANY S. Polymer adsorption and electrokinetic potential of dispersed particles in weak and strong electric fields[J]. Advances in Colloid and Interface Science, 2015, 222: 58-69.
[69] ABBOTT D F, LEBEDEV D, WALTAR K, et al. Iridium Oxide for the Oxygen Evolution Reaction: Correlation between Particle Size, Morphology, and the Surface Hydroxo Layer from Operando XAS[J]. Chemistry of Materials, 2016, 28(18): 6591-6604.
[70] SHUKLA S, BHATTACHARJEE S, WEBER A Z, et al. Experimental and Theoretical Analysis of Ink Dispersion Stability for Polymer Electrolyte Fuel Cell Applications[J]. Journal of The Electrochemical Society, 2017, 164(6): F600-F609.
[71] VISWANATH B, PATRA S, MUNICHANDRAIAH N, et al. Nanoporous Pt with High Surface Area by Reaction-Limited Aggregation of Nanoparticles[J]. Langmuir, 2009, 25(5): 3115-3121.
[72] ALIA S M, STARIHA S, BORUP R L. Electrolyzer Durability at Low Catalyst Loading and with Dynamic Operation[J]. Journal of The Electrochemical Society, 2019, 166(15): F1164.
[73] MAJASAN J O, IACOVIELLO F, CHO J I S, et al. Correlative study of microstructure and performance for porous transport layers in polymer electrolyte membrane water electrolysers by X-ray computed tomography and electrochemical characterization[J]. International Journal of Hydrogen Energy, 2019, 44(36): 19519-19532.
[74] DEDIGAMA I, ANGELI P, AYERS K, et al. In situ diagnostic techniques for characterisation of polymer electrolyte membrane water electrolysers - Flow visualisation and electrochemical impedance spectroscopy[J]. International Journal of Hydrogen Energy, 2014, 39(9): 4468-4482.
[75] LI G, PICKUP P G. Ion transport in poly(3,4-ethylenedioxythiophene)–poly(styrene-4-sulfonate) composites[J]. Physical Chemistry Chemical Physics, 2000, 2(6): 1255-1260.
[76] YOSHITAKE M, TAMURA M, YOSHIDA N, et al. Studies of Perfluorinated Ion Exchange Membranes for Polymer Electrolyte Fuel Cells[J]. Denki Kagaku oyobi Kogyo Butsuri Kagaku, 1996, 64(6): 727-736.
[77] SUERMANN M, SCHMIDT T J, BüCHI F N. Cell Performance Determining Parameters in High Pressure Water Electrolysis[J]. Electrochimica Acta, 2016, 211: 989-997.
[78] CHOI S, SHIN S-H, LEE D-H, et al. Enhancing the durability of hydrocarbon-membrane-based polymer electrolyte water electrolysis using a radical scavenger-embedded interlocking interfacial layer[J]. Journal of Materials Chemistry A, 2022, 10(2): 789-798.
[79] LV H, WANG S, LI J, et al. Self-assembled RuO2@IrOx core-shell nanocomposite as high efficient anode catalyst for PEM water electrolyzer[J]. Applied Surface Science, 2020, 514: 145943.
[80] ZACCARINE S F, SHVIRO M, WEKER J N, et al. Multi-Scale Multi-Technique Characterization Approach for Analysis of PEM Electrolyzer Catalyst Layer Degradation[J]. Journal of The Electrochemical Society, 2022, 169(6): 064502.
[81] FENG Q, YUAN X Z, LIU G, et al. A review of proton exchange membrane water electrolysis on degradation mechanisms and mitigation strategies[J]. Journal of Power Sources, 2017, 366: 33-55.
[82] YU H, BONVILLE L, JANKOVIC J, et al. Microscopic insights on the degradation of a PEM water electrolyzer with ultra-low catalyst loading[J]. Applied Catalysis B: Environmental, 2020, 260: 118194.
[83] KUHNERT E, HACKER V, BODNER M. A Review of Accelerated Stress Tests for Enhancing MEA Durability in PEM Water Electrolysis Cells[J]. International Journal of Energy Research, 2023, 2023: 3183108.
[84] BAJAJ A, LIU F, KULIK H J. Uncovering Alternate Pathways to Nafion Membrane Degradation in Fuel Cells with First-Principles Modeling[J]. The Journal of Physical Chemistry C, 2020, 124(28): 15094-15106.
[85] CHEN C, LEVITIN G, HESS D W, et al. XPS investigation of Nafion® membrane degradation[J]. Journal of Power Sources, 2007, 169(2): 288-295.
[86] OKONKWO P C, BEN BELGACEM I, EMORI W, et al. Nafion degradation mechanisms in proton exchange membrane fuel cell (PEMFC) system: A review[J]. International Journal of Hydrogen Energy, 2021, 46(55): 27956-27973.
[87] YUAN X-Z, ZHANG S, BAN S, et al. Degradation of a PEM fuel cell stack with Nafion® membranes of different thicknesses. Part II: Ex situ diagnosis[J]. Journal of Power Sources, 2012, 205: 324-334.
[88] CHAABANE L, DAMMAK L, GRANDE D, et al. Swelling and permeability of Nafion®117 in water–methanol solutions: An experimental and modelling investigation[J]. Journal of Membrane Science, 2011, 377(1): 54-64.
[89] BUNKIN N F, KOZLOV V A, SHKIRIN A V, et al. Dynamics of Nafion membrane swelling in H2O/D2O mixtures as studied using FTIR technique[J]. The Journal of Chemical Physics, 2018, 148(12): 124901.
[90] RAKOUSKY C, REIMER U, WIPPERMANN K, et al. An analysis of degradation phenomena in polymer electrolyte membrane water electrolysis[J]. Journal of Power Sources, 2016, 326: 120-128.
[91] CARLI S, DI LAURO M, BIANCHI M, et al. Water-Based PEDOT: Nafion Dispersion for Organic Bioelectronics[J]. ACS Applied Materials & Interfaces, 2020, 12: 29807-29817.
[92] CHEN C, FULLER T F. The effect of humidity on the degradation of Nafion®membrane[J]. Polymer Degradation and Stability, 2009, 94(9): 1436-1447.
[93] FREAKLEY S J, RUIZ‐ESQUIUS J, MORGAN D J. The X-ray photoelectron spectra of Ir, IrO2 and IrCl3 revisited[J]. Surface and Interface Analysis, 2017, 49(8): 794-799.
[94] FRIEDMAN A K, SHI W, LOSOVYJ Y, et al. Mapping Microscale Chemical Heterogeneity in Nafion Membranes with X-ray Photoelectron Spectroscopy[J]. Journal of The Electrochemical Society, 2018, 165(11): H733-H741.
[95] WHITE W, SANBORN C D, REITER R S, et al. Observation of Photovoltaic Action from Photoacid-Modified Nafion Due to Light-Driven Ion Transport[J]. Journal of the American Chemical Society, 2017, 139(34): 11726-11733.
[96] SHI Y, ZHOU Y, CHE Z, et al. Degradation phenomena and degradation mechanisms for highly conductive PEDOT:PSS films[J]. Materials Letters, 2022, 308: 131106.
[97] BARSCH U, BECK F. Anodic overoxidation of polythiophenes in wet acetonitrile electrolytes[J]. Electrochimica Acta, 1996, 41(11): 1761-1771.
[98] JöNSSON S K M, BIRGERSON J, CRISPIN X, et al. The effects of solvents on the morphology and sheet resistance in poly(3,4-ethylenedioxythiophene)-polystyrenesulfonic acid (PEDOT-PSS) films[J]. Synthetic Metals, 2003, 139(1): 1-10.
[99] HU L, LI M, YANG K, et al. PEDOT:PSS monolayers to enhance the hole extraction and stability of perovskite solar cells[J]. Journal of Materials Chemistry A, 2018, 6(34): 16583-16589.
修改评论