中文版 | English
题名

硅藻壳改性水性复合润滑涂层的制备与性能研究

其他题名
PERPARATION AND PROPERTIES OF DIATOM FRUSTULES MODIFILED WATER-BASED COMPOSITE LUBRICATING COATINGS
姓名
姓名拼音
SHI Yunu
学号
12132065
学位类型
硕士
学位专业
0703 化学
学科门类/专业学位类别
07 理学
导师
孙大陟
导师单位
材料科学与工程系
论文答辩日期
2024-05-09
论文提交日期
2024-06-19
学位授予单位
南方科技大学
学位授予地点
深圳
摘要

树脂基复合润滑涂层的出现有效解决了严苛工况下零件表面的润滑难题。根据分散介质的种类,树脂基复合润滑涂层可分为有机溶剂型和水性。其中水性复合涂层以绿色环保等优势,正逐渐成为研究热点。然而现有的水性复合润滑涂层的力学及摩擦学性能,相较传统有机溶剂型涂层仍存在差距。因此继续开发高性能水性复合润滑涂层具有重要的科学意义。

为此,本论文以水性聚酰胺酰亚胺(WPAI)树脂为粘结剂,聚四氟乙烯(PTFE)为固体润滑剂,生物质基多孔材料硅藻壳(DFs)为功能性增强填料,在确定高性能组分的基础上,通过合理优化设计,开发出一种兼具优异力学及摩擦学性能的新型绿色水性复合润滑涂层。具体如下:

分析了DFsWPAI树脂的相容匹配性。DFs的亲水性使其均匀分散在WPAI树脂中;DFs的多孔结构起到物理铆定WPAI树脂的作用;DFsWPAI树脂的化学键合进一步增强了界面结合力。因此DFs-5@WPAI复合涂层表现出优异的热稳定性(T10=473 ℃)和机械强度(硬度=0.39 GPa)。

探究了PTFEWPAI树脂的最佳复合方式。对不同配比的WPAI/PTFE水性复合润滑涂层的结构、力学及摩擦学性能进行系统的探讨和对比。发现当WPAIPTFE的质量比为4555时,相应的复合涂层的摩擦系数和磨损率分别比纯WPAI涂层降低了41%25%。此时最大限度发挥了WPAI树脂的粘结作用和PTFE的自润滑作用。

在确定WPAIPTFE最佳配比的基础上,引入DFsWPAI/PTFE基复合涂层的力学及抗磨损性能进行深度优化。系统分析了DFs含量变化对复合涂层机械性能及摩擦学性能的影响,并详细探讨了相应的增强机理及失效机制。当DFs的添加量为5 wt%时,相应的复合涂层硬度为0.36 GPa,相比WPAI/PTFE复合涂层提高了49%;同时其磨损率为4.29×10-5 mm3∕(N⋅m),相较WPAI/PTFE复合涂层降低了29%

本论文不仅为高性能新型水性复合润滑涂层的设计提供了新的思路,还拓展了硅藻壳在摩擦学领域的应用。本项工作符合可持续发展的理念,有助于推动涂层领域向低碳环保的方向发展。

其他摘要

The resin-base composite lubricating coatings has effectively solved the problem of lubrication on the surface of parts under harsh working conditions. According to the types of dispersion medium, the resin-base composite lubricating coatings can be divided into organic solvent-based and water-based coatings. Among them, water-based coating is green, eco-friendly, and has many other advantages, which is becoming a research hotspot. However, the mechanical and tribological properties of current water-based composite coating are inferior to those of traditional organic solvent-based composite coating. Therefore, it is of great significance to continue to develop high-performance water-based composite lubricating coating.

Therefore, this work used water-based polyamide imide (WPAI) resin as the binder, polytetrafluoroethylene (PTFE) as the solid lubricant, biomass-based porous materials diatom frustules (DFs) as the functional reinforcement filler to develop a novel green water-based composite lubrication coating, which has excellent mechanical and tribological properties. After determining the basic components, this coating showed excellent performance via the optimal design. The main contents are as follows:

The compatibility of DFs and WPAI resin was analyzed. The hydrophilicity of DFs makes them evenly dispersed in the WPAI resin. The porous structure of DFs plays the role of physical riveting and fixing WPAI resin. In addition, the chemical bonding cooperation between DFs and WPAI resin further enhances the interfacial interaction. Therefore, DFs-5@WPAI composite coating exhibits excellent thermal stability (T10=473 ℃) and superior mechanical strength (hardness=0.39 GPa).

The optimal composite method of PTFE and WPAI resin was investigated. The structure, mechanics, and tribological properties of WPAI/PTFE water-based composite lubricating coatings with different proportions were systematically discussed and compared. It is found that when the mass ratio of WPAI to PTFE is 45: 55, the friction coefficient and wear rate of the composite coating are 41% and 25% reduced than that of the pure WPAI coating, respectively. This proportion maximized the cohesive action of WPAI resin and the self-lubricating action of PTFE.

Based on determining the optimal ratio of WPAI and PTFE, DFs were introduced to further optimize the mechanics and wear resistance of WPAI/PTFE composite coating. The effect of DFs content on the mechanical and tribological properties of the composite coating was analyzed, and the corresponding enhancement and failure mechanisms were discussed in detail. When the DFs content is 5 wt%, the hardness of the composite coating is 0.36 GPa, which is 49% higher than that of the WPAI/PTFE coating. At the same time, the wear rate is 4.29×10-5 mm3∕(N⋅m), which is 29% reduced.

In summary, this work not only provides a new idea for the design and preparation of high-performance water-based composite lubricating coating, but also expands the application of diatom frustules in the field of tribology. This work is in line with the concept of sustainable development and promotes the development of the coating field in the direction of low-carbon and environmental protection.

关键词
其他关键词
语种
中文
培养类别
独立培养
入学年份
2021
学位授予年份
2024-06
参考文献列表

[1] LUO J, LIU M, MA L. Origin of friction and the new frictionless technology—Superlubricity: Advancements and future outlook [J]. Nano Energy, 2021, 86: 106092.
[2] LIU H, YANG B, WANG C, et al. The mechanisms and applications of friction energydissipation [J]. Friction, 2023, 11(6): 839-64.
[3] GONG H, YU C, ZHANG L, et al. Intelligent lubricating materials: A review [J].Composites Part B: Engineering, 2020, 202: 108450.
[4] MA Y, ZHANG Y, WAN H, et al. Synthesis and interfacial interaction of Ag2Squantum dots for enhancing the tribological behaviors of PTFE-based lubricatingcoatings [J]. Progress in Organic Coatings, 2022, 173: 107177.
[5] LINCE J R. Effective application of solid lubricants in spacecraft mechanisms [J].Lubricants, 2020, 8(7): 74.
[6] WANG S, HAN X, JIANG S, et al. A review of solid lubrication based on polyurethanecomposites [J]. Polymer Composites, 2023, 44(8): 4420-32.
[7] REN Y, ZHANG L, XIE G, et al. A review on tribology of polymer composite coatings[J]. Friction, 2021, 9: 429-70.
[8] JIMéNEZ-LóPEZ A M, HINCAPIé-LLANOS G A. Identification of factors affectingthe reduction of VOC emissions in the paint industry: Systematic literature review-SLR [J]. Progress in Organic Coatings, 2022, 170: 106945
[9] CHANG X, CHEN X, ZHANG Q, et al. Alumina nanoparticles-reinforced graphenecontainingwaterborne polyurethane coating for enhancing corrosion and wearresistance [J]. Corrosion Communications, 2021, 4: 1-11.
[10] HE X, WU J, LI S, et al. In situ growth of aminated silica on MXene nanosheets: Anovel 0D/2D hybrid structure for multifunctional waterborne epoxy compositecoatings [J]. Progress in Organic Coatings, 2022, 171: 107042.
[11] DAS A, MAHANWAR P. A brief discussion on advances in polyurethane applications[J]. Advanced Industrial and Engineering Polymer Research, 2020, 3(3): 93-101.
[12] CAI J, MURUGADOSS V, JIANG J, et al. Waterborne polyurethane and itsnanocomposites: a mini-review for anti-corrosion coating, flame retardancy, andbiomedical applications [J]. Advanced Composites and Hybrid Materials, 2022, 5(2):641-50
[13] AGNOL L D, DIAS F T G, ORNAGHI JR H L, et al. UV-curable waterbornepolyurethane coatings: A state-of-the-art and recent advances review [J]. Progress inOrganic Coatings, 2021, 154: 106156.
[14] PRADHAN S, MOHANTY S. Waterborne Polyurethanes: Chemistries andApplications [M]. Polyurethanes: Preparation, Properties, and Applications Volume 2:Advanced Applications. ACS Publications. 2023: 15-30.
[15] WEI Z, LIU Z, FU X, et al. Effect of crystalline structure on water resistance ofwaterborne polyurethane [J]. European Polymer Journal, 2021, 157: 110647.
[16] LI J, HONG C, LIU M, et al. Construction of eco-friendly multifunctional cashew nutshell oil-based waterborne polyurethane network with UV resistance, corrosionresistance, mechanical strength, and transparency [J]. Progress in Organic Coatings,2024, 186: 108051.
[17] JIN F-L, LI X, PARK S-J. Synthesis and application of epoxy resins: A review [J].Journal of Industrial and Engineering Chemistry, 2015, 29: 1-11.
[18] AI D, MO R, WANG H, et al. Preparation of waterborne epoxy dispersion and itsapplication in 2K waterborne epoxy coatings [J]. Progress in Organic Coatings, 2019,136: 105258.
[19] TAHAMI S V, RANJBAR Z, BASTANI S. Preparation and stability behavior of thecolloidal epoxy-1, 1-iminodi-2-propanol adducts [J]. Progress in Organic Coatings,2011, 71(3): 234-41.
[20] QIU B, ZOU Q, SUN T, et al. Environmentally friendly water-soluble epoxy emulsionsnano sphere improved the interfacial performance of high modulus carbon fiberreinforced epoxy composites based on robust van der Waals force [J]. Composites PartB: Engineering, 2022, 243: 110141.
[21] WEGMANN A. Chemical resistance of waterborne epoxy/amine coatings [J]. Progressin Organic Coatings, 1997, 32(1-4): 231-9.
[22] YAN H, CAI M, LI W, et al. Amino-functionalized Ti3C2Tx with anti-corrosive/wearfunction for waterborne epoxy coating [J]. Journal of Materials Science & Technology,2020, 54: 144-59.
[23] DUAN G, LIU S, JIANG S, et al. High-performance polyamide-imide films andelectrospun aligned nanofibers from an amide-containing diamine [J]. Journal ofMaterials Science, 2019, 54(8): 6719-27.
[24] ZABEGAEVA O N, KOSOLAPOV A F, SEMJONOV S L, et al. Polyamide-imides asnovel high performance primary protective coatings of silica optical fibers: Influenceof the structure and molecular weight [J]. Reactive and Functional Polymers, 2024,194: 105775.
[25] DODDA J M, BĚLSKý P. Progress in designing poly (amide imide) s (PAI) in termsof chemical structure, preparation methods and processability [J]. European PolymerJournal, 2016, 84: 514-37.
[26] CAO L, WEN Y, FANG X, et al. Synthesis of highly thermoplastic polyamide-imideswith high transparency and low coefficient of thermal expansion [J]. Polymer, 2023:126093.
[27] 严昌虹. 由水溶性聚酰胺酸制备聚酰亚胺 [J]. 绝缘材料通讯, 1981, 1.
[28] KIM S, LEE Y, PARK J, et al. Green and Facile Synthesis of Hybrid Composites withUltralow Dielectric Properties from Water-Soluble Polyimide and Dual-Porous SilicaNanoparticles [J]. ACS Applied Materials & Interfaces, 2022, 15(3): 4408-18.
[29] LI B, JIANG X, WU Y, et al. Green waterborne PAI-graphite bonded solid-lubricatingcoatings: Promising lubricating materials with robust mechanical and tribologicalproperties [J]. Progress in Organic Coatings, 2019, 132: 211-20.
[30] BRYANT P, GUTSHALL P, TAYLOR L. A study of mechanisms of graphite frictionand wear [J]. Wear, 1964, 7(1): 118-26.
[31] BAPTISTA R, MENDãO A, RODRIGUES F, et al. Effect of high graphite fillercontents on the mechanical and tribological failure behavior of epoxy matrixcomposites [J]. Theoretical and Applied Fracture Mechanics, 2016, 85: 113-24.
[32] KUMAR N, SAINI V, BIJWE J. Tribological investigations of nano and micro-sizedgraphite particles as an additive in lithium-based grease [J]. Tribology Letters, 2020,68: 1-13.
[33] SAVAGE R H. Graphite lubrication [J]. Journal of applied physics, 1948, 19(1): 1-10.
[34] RIETSCH J-C, BRENDER P, DENTZER J, et al. Evidence of water chemisorptionduring graphite friction under moist conditions [J]. Carbon, 2013, 55: 90-7.
[35] LI B, JIANG X, SUN H, et al. Novel green waterborne polyurethanepolytetrafluoroethyleneBSLCs: chemically optimized crosslinking extent forenhancing the mechanical and tribological properties [J]. Progress in Organic Coatings,2021, 161: 106457.
[36] FURLAN K P, DE MELLO J D B, KLEIN A N. Self-lubricating composites containingMoS2: A review [J]. Tribology International, 2018, 120: 280-98.
[37] ZHANG J, JIANG D, WANG D, et al. MoS2 lubricating film meets supramoleculargel: a novel composite lubricating system for space applications [J]. ACS AppliedMaterials & Interfaces, 2021, 13(48): 58036-47.
[38] MUKHTAR S H, GULZAR A, SALEEM S, et al. Advances in Development of SolidLubricating MoS2 Coatings for Space Applications: A Review of Modeling andExperimental Approaches [J]. Tribology International, 2024, 192: 109194.
[39] JOSEPH A, GAUTHAM V, AKSHAY K, et al. 2D MoS2-hBN hybrid coatings forenhanced corrosion resistance of solid lubricant coatings [J]. Surface and CoatingsTechnology, 2022, 443: 128612.
[40] BISWAS S, VIJAYAN K. Friction and wear of PTFE—a review [J]. Wear, 1992,158(1-2): 193-211.
[41] 潘炳力. 先进高分子材料摩擦学[M]. 北京: 国防工业出版社, 2016.
[42] CUI W, XU M, TAO L, et al. In-situ observation of transfer film formation andevolution for the fabric composite lubricated spherical plain bearing at cryogenic andwide temperature range [J]. Applied Surface Science, 2023, 612: 155946.
[43] YUAN X-D, YANG X-J. A study on friction and wear properties of PTFE coatingsunder vacuum conditions [J]. Wear, 2010, 269(3-4): 291-7.
[44] YAN S C, XUE Y H. Surface wettability, tensile mechanical performance, andtribological behavior of polyimide/polytetrafluoroethylene blends enhanced withhydroxylated multiwalled carbon nanotubes at high relative humidity [J]. PolymerComposites, 2021, 42(9): 4517-32.
[45] KUMAR R, BANGA H K, SINGH H, et al. An outline on modern day applications ofsolid lubricants [J]. Materials Today: Proceedings, 2020, 28: 1962-7.
[46] WANG B, QIU F, BARBER G C, et al. Role of nano-sized materials as lubricantadditives in friction and wear reduction: A review [J]. Wear, 2022, 490: 204206.
[47] GU Y, MA L, YAN M, et al. Strategies for improving friction behavior based oncarbon nanotube additive materials [J]. Tribology International, 2022: 107875.
[48] XIA R, LOU D, YOUNES H, et al. Synergistic effect of hexagonal boron nitride andcarbon nanofibers on tribological behavior of nanolubricant [J]. TribologyInternational, 2023, 177: 107957.
[49] CHEN Y, YANG K, LIN H, et al. Important contributions of multidimensionalnanoadditives on the tribofilms: From formation mechanism to tribological behaviors[J]. Composites Part B: Engineering, 2022, 234: 109732.
[50] THIRUNAVUKKARASU N, GUNASEKARAN H B, PENG S, et al. Study on theinterface toughening of particle/fibre reinforced epoxy composites with molecularlydesigned core–shell particles and various interface 3D models [J]. Materials & Design,2023, 225: 111510.
[51] LI J, CHEN B, DONG Z, et al. Improved tribological performance of epoxy selflubricatingcomposite coating by BNNSs/Ag [J]. Progress in Organic Coatings, 2022,171: 107020.
[52] YU C, JU P, WAN H, et al. Enhanced atomic oxygen resistance and tribologicalproperties of PAI/PTFE composites reinforced by POSS [J]. Progress in OrganicCoatings, 2020, 139: 105427.
[53] MATVEEVA V G, BRONSTEIN L M. From renewable biomass to nanomaterials:does biomass origin matter? [J]. Progress in Materials Science, 2022: 100999.
[54] ELFALEH I, ABBASSI F, HABIBI M, et al. A comprehensive review of natural fibersand their composites: an eco-friendly alternative to conventional materials [J]. Resultsin Engineering, 2023: 101271.
[55] TIWARI S K, BYSTRZEJEWSKI M, DE ADHIKARI A, et al. Methods for theconversion of biomass waste into value-added carbon nanomaterials: Recent progressand applications [J]. Progress in Energy and Combustion Science, 2022, 92: 101023.
[56] HUANG J, WU B, LYU S, et al. Improving the thermal energy storage capability ofdiatom-based biomass/polyethylene glycol composites phase change materials byartificial culture methods [J]. Solar Energy Materials and Solar Cells, 2021, 219:110797.
[57] LI X, LIN H, JIANG H, et al. Preparation and properties of a new bio-based epoxyresin/diatomite composite [J]. Polymer Degradation and Stability, 2021, 187: 109541.
[58] LI D, SUN H, LI T, et al. Enhanced thermal conductivity of a superhydrophobicthermal energy storage coating based on artificially cultured diatom frustules [J].Applied Energy, 2023, 347: 121462.
[59] LEE J, LEE H A, SHIN M, et al. Diatom frustule silica exhibits superhydrophilicityand superhemophilicity [J]. ACS Nano, 2020, 14(4): 4755-66.
[60] WU B, LYU S, HAN H, et al. Biomass-based shape-stabilized phase change materialsfrom artificially cultured ship-shaped diatom frustules with high enthalpy for thermalenergy storage [J]. Composites Part B: Engineering, 2021, 205: 108500.
[61] LI T, SUN H, HAN H, et al. Ultrafast bulk degradation of polylactic acid by artificiallycultured diatom frustules [J]. Composites Science and Technology, 2022, 223: 109410.
[62] ZHANG Y, YANG K, LIU R, et al. Superior tough, highly wear durable and selflubricatingepoxy composite co-enhanced by soft and hard nanomaterials [J]. ChemicalEngineering Journal, 2023, 460: 141773.
[63] XU W, WANG W, HAO L, et al. Synthesis and properties of novel triazine-basedfluorinated chain extender modified waterborne polyurethane hydrophobic films [J].Progress in Organic Coatings, 2021, 157: 106282.
[64] CIHANOĞLU A, ALTINKAYA S A. A facile approach for preparation of positivelycharged nanofiltration membranes by in-situ crosslinking between polyamide-imideand polyethylenimine [J]. Separation and Purification Technology, 2018, 207: 353-62.
[65] MANNA A K, DE P, TRIPATHY D, et al. Bonding between precipitated silica andepoxidized natural rubber in the presence of silane coupling agent [J]. Journal ofApplied Polymer Science, 1999, 74(2): 389-98.
[66] HAMID Z A A, HONG FOOK L. Synthesis and functionalization of silicone hydridecopolymer with allyl methacrylate via hydrosilylation method [J]. Advanced MaterialsResearch, 2016, 1133: 216-20.
[67] ALFONSETTI R, LOZZI L, PASSACANTANDO M, et al. XPS studies on SiOx thinfilms [J]. Applied Surface Science, 1993, 70: 222-5.
[68] WAGNER C, PASSOJA D, HILLERY H, et al. Auger and photoelectron line energyrelationships in aluminum–oxygen and silicon–oxygen compounds [J]. Journal ofVacuum Science and Technology, 1982, 21(4): 933-44.
[69] BEAMSON G, BRIGGS D. High resolution monochromated X-ray photoelectronspectroscopy of organic polymers: A comparison between solid state data for organicpolymers and gas phase data for small molecules [J]. Molecular Physics, 1992, 76(4):919-36.
[70] WANG Y, ZHANG Z, LIU M, et al. Effects of rod-like attapulgite and lamellar kaolinreinforcement on the tribological behavior of PBO textile-resin composite liner [J].Tribology International, 2022, 174: 107689.
[71] DíEZ-PASCUAL A M, GóMEZ-FATOU M A, ANIA F, et al. Nanoindentation inpolymer nanocomposites [J]. Progress in Materials Science, 2015, 67: 1-94.
[72] OLIVER W C, PHARR G M. An improved technique for determining hardness andelastic modulus using load and displacement sensing indentation experiments [J].Journal of Materials Research, 1992, 7(6): 1564-83.
[73] KUMAR N, SAINI V, BIJWE J. Performance properties of lithium greases with PTFEparticles as additive: controlling parameter-size or shape? [J]. Tribology International,2020, 148: 106302.
[74] LI B, JIANG X, WAN H, et al. Fabrication and tribological behaviors of a novelenvironmental friendly water-based PAI-PTFE-LaF3 bonded solid lubricatingcomposite coating [J]. Tribology International, 2018, 121: 400-9.
[75] TU C, CAO J, HUANG H, et al. The investigation of microstructure and tribologicalproperties of PTFE/PI-PAI composite coating added with VN [J]. Surface andCoatings Technology, 2022, 432: 128092.
[76] CHOUDHURY D, NIYONSHUTI I I, CHEN J, et al. Tribological performance ofpolydopamine+ Ag nanoparticles/PTFE thin films [J]. Tribology International, 2020,144: 106097.
[77] REN Y, GAO K, YING S, et al. Significant enhancement of tribological properties ofmicrocapsule/epoxy composites in the presence of high loads by incorporating PTFE[J]. Wear, 2023, 514: 204563.
[78] ZHANG S, LIU P, GUO M, et al. Dual functions of inverse vulcanized copolymers asboth vulcanizator and interfacial modifier for improving the mechanical properties ofsilica reinforced rubber composites [J]. Composites Science and Technology, 2023:110075.
[79] CHEN Z, ZHANG M, GUO Z, et al. Synergistic effect of novel hyperbranchedpolysiloxane and Ti3C2Tx MXene/MoS2 hybrid filler towards desirable mechanical andtribological performance of bismaleimide composites [J]. Composites Part B:Engineering, 2023, 248: 110374.
[80] LIN Z, ZHANG K, YE J, et al. The effects of filler type on the friction and wearperformance of PEEK and PTFE composites under hybrid wear conditions [J]. Wear,2022, 490: 204178.
[81] ZHAO B, BAI T. Improving the tribological performance of epoxy coatings by thesynergistic effect between dehydrated ethylenediamine modified graphene andpolytetrafluoroethylene [J]. Carbon, 2019, 144: 481-91.
[82] LI J, ZHOU S, LIANG M, et al. Fabrication of polyphenylene sulfide composites withintegrated mechanical and tribological properties by synchronically addingirradiation-treated PTFE powders and short carbon fibers [J]. Tribology International,2023, 186: 108559.

所在学位评定分委会
化学
国内图书分类号
TB332
来源库
人工提交
成果类型学位论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/765723
专题南方科技大学
工学院_材料科学与工程系
推荐引用方式
GB/T 7714
施雨努. 硅藻壳改性水性复合润滑涂层的制备与性能研究[D]. 深圳. 南方科技大学,2024.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可 操作
12132065-施雨努-材料科学与工程(4732KB)----限制开放--请求全文
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[施雨努]的文章
百度学术
百度学术中相似的文章
[施雨努]的文章
必应学术
必应学术中相似的文章
[施雨努]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。