中文版 | English
题名

嗜盐古菌脂质生物标志物特征及其环境生态指示意义

其他题名
FUNDAMENTAL FEATURES OF HALOBACTERIAL LIPID BIOMARKERS AND ENVIRONMENTAL AND ECOLOGICAL IMPLICATIONS
姓名
姓名拼音
YAO Wenyong
学号
12132184
学位类型
硕士
学位专业
0710 生物学
学科门类/专业学位类别
07 理学
导师
张传伦
导师单位
海洋科学与工程系
论文答辩日期
2024-05-10
论文提交日期
2024-06-20
学位授予单位
南方科技大学
学位授予地点
深圳
摘要

古菌的细胞膜主要由甘油类异戊二烯醚类化合物组成。在环境中古菌脂质的组成特征能够反映群落和生境的变化,具有指示生态的能力。目前,古菌脂质研究中化合物的鉴定仍是瓶颈问题,并且组学尺度的古菌脂质研究仍处于起步阶段。本研究采用高分辨质谱结合数据库的脂质鉴定技术,以七株纯培养嗜盐古菌为研究对象,系统地探究了嗜盐古菌的脂质组构成以及各脂质类型及其对环境因子的响应特征;通过对青藏高原盐湖的脂质组分析,进一步发掘出嗜盐古菌脂质在自然环境中的生态指示意义。

相同培养条件的实验结果表明,不同嗜盐古菌产生的脂质类型和组成存在显著差异。例如,Haloferax属的菌株产生较多不饱和二醚,Natrialbales目的菌株产生大量带延长链的二醚。对脂质组进行聚类分析能够在目分类水平上区分各类嗜盐古菌,说明脂质组具有化学分类的潜力。

不同培养条件的实验结果表明,温度和盐度变化能够影响嗜盐古菌的部分脂质化合物的合成,且在不同菌株中脂质对环境因子变化的响应方式不同。例如,不饱和磷脂在Haloterrigena turkmenica中与盐度呈正相关关系,而在Haloferax larsenii中则呈负相关。然而,结果表明,环境因素对嗜盐古菌脂质组的影响有限,难以逾越菌株自身的差异。

对青藏高原盐湖沉积物的脂质组分析表明,低盐度样品中的古菌二醚可能存在多种非嗜盐古菌的生物源;高盐度样本中,嗜盐古菌来源的脂质具有更高的比例。这说明在不同盐度环境中,古菌的生态地位发生了转变。基于特征脂质在环境中的比例变化,我们构建了DERDiether ratio)、MK87RMK8:7 ratio)和MK8RMK8 ratio)指标。它们与环境盐度存在显著的正相关,具有指示环境盐度变化的潜力。

本研究通过对纯培养菌株与盐湖沉积物的脂质组分析,拓展了对嗜盐古菌脂质组的认识,揭示了古菌脂质在青藏高原盐湖中的分布特征。在此基础上,本研究构建了三个基于古菌脂质的盐度指标,探究了古菌脂质在盐湖中的环境和生态指示意义,为利用古菌脂质组研究高盐环境的微生物生态变迁提供理论基础。

其他摘要

The cell membranes of archaea are predominantly composed of isoprenoid glycerol ether lipids. The compositional changes in archaeal lipids from the environment can reflect community structure and habitat variations, thus revealing ecological dynamics. Currently, lipid identification remains a bottleneck in archaeal lipid research. Archaeal lipidomics has potential to help identify novel lipid biomarkers, but this technology is still in its infancy and so far a comprehensive database of archaeal lipids does not yet exist. In this study, seven Halobacteria strains were selected as the subjects of investigation. We employed high-resolution mass spectrometry in conjunction with a database-based lipid identification method to systematically analyze the lipidome composition and its responses to environmental factors. By examining the lipidome of salt lakes on the Qinghai-Tibet Plateau (QTP), we further elucidated the ecological significance of halobacterial lipids in their natural environment.

The results revealed significant differences in the lipids produced by different strains of Halobacteria under identical culture condition. Various groups of Halobacteria exhibited distinct lipid profiles. For instance, Haloferax displayed a higher proportion of unsaturated diethers, whereas Natrialbales produced abundant diethers with extended chains, which could serve as indicators of Halobacteria taxonomy. Cluster analysis of the lipidome enabled differentiation of Halobacteria at the Order level, underscoring the chemotaxonomic potential of the halobacterial lipidome.

Temperature and salinity fluctuations were found to influence the production of specific lipids in Halobacteria, with lipids responding differently to environmental stimuli across different strains. For instance, unsaturated phospholipids exhibited a positive correlation with salinity in the pure culture of Haloterrigena turkmenica but a negative correlation in that of Haloferax larsenii. However, the impact of environmental factors on the halobacterial lipidome was relatively limited. Both clustering and principal component analysis (PCA) indicated that environmental changes had minimal influence on the lipidome of Halobacteria compared to interspecies differences.

In the QTP salt lakes with lower salinity levels, archaeal diethers from non-halophilic archaea could contribute to the lipid pool, whereas lipids associated with Halobacteria exhibited significantly higher abundance in high-salinity samples. This suggests a shift in ecological dynamics among archaea under varying salinity conditions. Based on changes in diether and quinone MK content in the environment, we developed DER (Diether ratio), MK87R (MK8:7 ratio) and MK8R (MK8 ratio) proxies, which show positive correlations with environmental salinity, thus representing potential candidates for reconstructing environmental salinity levels.

Overall, this study expanded our understanding of the halobacterial lipidome, delineated the distribution of archaeal lipids in QTP salt lakes, established salinity indicators utilizing archaeal lipids, and underscored the environmental and ecological significance of archaeal lipids in saline ecosystems.

关键词
其他关键词
语种
中文
培养类别
独立培养
入学年份
2021
学位授予年份
2024-06
参考文献列表

[1] WOESE C R, KANDLER O, WHEELIS M L. Towards a natural system of organisms: proposal for the domains Archaea, Bacteria, and Eucarya [J]. Proceedings of the National Academy of Sciences, 1990, 87(12): 4576-4579.
[2] MüLLER-NIGGEMANN C. Lipid biogeochemistry of paddy soils [D]; der Christian-Albrechts-Universität, 2016.
[3] SUMMONS R E, WELANDER P V, GOLD D A. Lipid biomarkers: molecular tools for illuminating the history of microbial life [J]. Nature Reviews Microbiology, 2022, 20(3): 174-185.
[4] BRIGGS D E, SUMMONS R E. Ancient biomolecules: their origins, fossilization, and role in revealing the history of life [J]. BioEssays, 2014, 36(5): 482-490.
[5] VAN DE VOSSENBERG J L, DRIESSEN A J, GRANT D, et al. Lipid membranes from halophilic and alkali-halophilic Archaea have a low H+ and Na+ permeability at high salt concentration [J]. Extremophiles, 1999, 3(4): 253-257.
[6] VAN DE VOSSENBERG J L, UBBINK‐KOK T, ELFERINK M G, et al. Ion permeability of the cytoplasmic membrane limits the maximum growth temperature of bacteria and archaea [J]. Molecular microbiology, 1995, 18(5): 925-932.
[7] VALENTINE D L. Adaptations to energy stress dictate the ecology and evolution of the Archaea [J]. Nature Reviews Microbiology, 2007, 5(4): 316-323.
[8] BABA T, MINAMIKAWA H, HATO M, et al. Hydration and molecular motions in synthetic phytanyl-chained glycolipid vesicle membranes [J]. Biophysical journal, 2001, 81(6): 3377-3386.
[9] KELLERMANN M Y, YOSHINAGA M Y, VALENTINE R C, et al. Important roles for membrane lipids in haloarchaeal bioenergetics [J]. Biochimica et Biophysica Acta (BBA)-Biomembranes, 2016, 1858(11): 2940-2956.
[10] DAWSON K S, FREEMAN K H, MACALADY J L. Molecular characterization of core lipids from halophilic archaea grown under different salinity conditions [J]. Organic Geochemistry, 2012, 48: 1-8.
[11] SILIAKUS M F, VAN DER OOST J, KENGEN S W M. Adaptations of archaeal and bacterial membranes to variations in temperature, pH and pressure [J]. Extremophiles, 2017, 21(4): 651-670.
[12] MEADOR T, GAGEN E, LOSCAR M, et al. Thermococcus kodakarensis modulates its polar membrane lipids and elemental composition according to growth stage and phosphate availability [J]. Frontiers in Microbiology, 2014, 5.
[13] ELLING F J, KöNNEKE M, LIPP J S, et al. Effects of growth phase on the membrane lipid composition of the thaumarchaeon Nitrosopumilus maritimus and their implications for archaeal lipid distributions in the marine environment [J]. Geochimica et Cosmochimica Acta, 2014, 141: 579-597.
[14] OREN A. Taxonomy of halophilic Archaea: current status and future challenges [J]. Extremophiles, 2014, 18(5): 825-834.
[15] BALE N J, SOROKIN D Y, HOPMANS E C, et al. New Insights Into the Polar Lipid Composition of Extremely Halo(alkali)philic Euryarchaea From Hypersaline Lakes [J]. Frontiers in Microbiology, 2019, 10.
[16] ZENG Z R, CHEN H H, YANG H, et al. Identification of a protein responsible for the synthesis of archaeal membrane-spanning GDGT lipids [J]. Nature Communications, 2022, 13(1): 1545.
[17] THOMPSON C C, AMARAL G R, CAMPEãO M, et al. Microbial taxonomy in the post-genomic era: Rebuilding from scratch? [J]. Archives of Microbiology, 2015, 197(3): 359-370.
[18] 张玉琴, 吕志堂, 崔恒林, 等. 我国原核微生物分类学七十年[J]. 微生物学报, 2023, 63(5): 1724-1740.
[19] MURRAY R G E, HOLT J G. The History of Bergey's Manual [M]. Bergey's Manual of Systematics of Archaea and Bacteria. 2015: 1-20.
[20] COLWELL R R. Polyphasic taxonomy of the genus vibrio: numerical taxonomy of Vibrio cholerae, Vibrio parahaemolyticus, and related Vibrio species [J]. J Bacteriol, 1970, 104(1): 410-433.
[21] GATTINGER A, SCHLOTER M, MUNCH J C. Phospholipid etherlipid and phospholipid fatty acid fingerprints in selected euryarchaeotal monocultures for taxonomic profiling [J]. FEMS microbiology letters, 2002, 213(1): 133-139.
[22] SHAPIRO B J, POLZ M F. Ordering microbial diversity into ecologically and genetically cohesive units [J]. Trends in Microbiology, 2014, 22(5): 235-247.
[23] WOESE C R, FOX G E. Phylogenetic structure of the prokaryotic domain: the primary kingdoms [J]. Proceedings of the National Academy of Sciences, 1977, 74(11): 5088-5090.
[24] ZAREMBA-NIEDZWIEDZKA K, CACERES E F, SAW J H, et al. Asgard archaea illuminate the origin of eukaryotic cellular complexity [J]. Nature, 2017, 541(7637): 353-358.
[25] BAKER B J, DE ANDA V, SEITZ K W, et al. Diversity, ecology and evolution of Archaea [J]. Nature Microbiology, 2020, 5(7): 887-900.
[26] LEININGER S, URICH T, SCHLOTER M, et al. Archaea predominate among ammonia-oxidizing prokaryotes in soils [J]. Nature, 2006, 442(7104): 806-809.
[27] ZHANG L M, HU H W, SHEN J P, et al. Ammonia-oxidizing archaea have more important role than ammonia-oxidizing bacteria in ammonia oxidation of strongly acidic soils [J]. The ISME Journal, 2012, 6(5): 1032-1045.
[28] BUAN N R. Methanogens: pushing the boundaries of biology [J]. Emerging Topics in Life Sciences, 2018, 2(4): 629-646.
[29] LIU Y, MAKAROVA K S, HUANG W C, et al. Expanded diversity of Asgard archaea and their relationships with eukaryotes [J]. Nature, 2021, 593(7860): 553-557.
[30] WANG Y Z, WEGENER G, HOU J L, et al. Expanding anaerobic alkane metabolism in the domain of Archaea [J]. Nature Microbiology, 2019, 4(4): 595-602.
[31] NELSON-SATHI S, DAGAN T, LANDAN G, et al. Acquisition of 1,000 eubacterial genes physiologically transformed a methanogen at the origin of Haloarchaea [J]. Proceedings of the National Academy of Sciences, 2012, 109(50): 20537-20542.
[32] OREN A. Halophilic microorganisms and their environments [M]. Springer Dordrecht: Springer science & business media, 2002.
[33] BOONE D R, GARRITY G M. Bergey's Manual of Systematic Bacteriology [Z]. Published by Springer–Verlag, New York. 2001
[34] CUI H L, HOU J, AMOOZEGAR M, et al. Proposed minimal standards for description of new taxa of the class Halobacteria [J]. International journal of systematic and evolutionary microbiology, 2024, 74.
[35] GUPTA R S, NAUSHAD S, FABROS R, et al. A phylogenomic reappraisal of family-level divisions within the class Halobacteria: proposal to divide the order Halobacteriales into the families Halobacteriaceae, Haloarculaceae fam. nov., and Halococcaceae fam. nov., and the order Haloferacales into the families, Haloferacaceae and Halorubraceae fam nov [J]. Antonie van Leeuwenhoek, 2016, 109(4): 565-587.
[36] KUMAR V, TIWARI S K. Halocin Diversity Among Halophilic Archaea and Their Applications [M]. Springer Singapore. 2019: 497-532.
[37] LOBASSO S, LOPALCO P, MASCOLO G, et al. Lipids of the ultra-thin square halophilic archaeon Haloquadratum walsbyi [J]. Archaea (Vancouver, BC), 2008, 2(3): 177-183.
[38] OREN A, VENTOSA A, KAMEKURA M. Halobacteria [M]. Bergey's Manual of Systematics of Archaea and Bacteria. 2017: 1-5.
[39] OREN A. Diversity of Halophiles [M]. Springer Japan. 2011: 309-325.
[40] 吕真真. 西藏改则盐湖嗜盐古菌多样性与脂质体研究 [D]; 江苏大学, 2018.
[41] FENG J, ZHOU P J, LIU S J. Halorubrum xinjiangense sp. nov., a novel halophile isolated from saline lakes in China [J]. International journal of systematic and evolutionary microbiology, 2004, 54(5): 1789-1791.
[42] 李璐, 郝春博, 王丽华, et al. 巴丹吉林沙漠盐湖微生物多样性 [D]; 中国地质大学 (北京), 2015.
[43] 崔恒林. 嗜盐古菌分类学研究进展[J]. 微生物学通报, 2016, 43(5): 1113-1122.
[44] BLANK C E. Not so old Archaea – the antiquity of biogeochemical processes in the archaeal domain of life [J]. Geobiology, 2009, 7(5): 495-514.
[45] MAKAROVA K S, YUTIN N, BELL S D, et al. Evolution of diverse cell division and vesicle formation systems in Archaea [J]. Nature Reviews Microbiology, 2010, 8(10): 731-741.
[46] WENK M R. The emerging field of lipidomics [J]. Nature Reviews Drug Discovery, 2005, 4(7): 594-610.
[47] MORII H, YAGI H, AKUTSU H, et al. A novel phosphoglycolipid archaetidyl(glucosyl)inositol with two sesterterpanyl chains from the aerobic hyperthermophilic archaeon Aeropyrum pernix K1 [J]. Biochimica et Biophysica Acta (BBA) - Molecular and Cell Biology of Lipids, 1999, 1436(3): 426-436.
[48] KOGA Y, AKAGAWA-MATSUSHITA M, OHGA M, et al. Taxonomic significance of the distribution of component parts of polar ether lipids in methanogens [J]. Systematic and Applied Microbiology, 1993, 16(3): 342-351.
[49] GATTINGER A, GüNTHNER A, SCHLOTER M, et al. Characterisation of Archaea in Soils by Polar Lipid Analysis [J]. Acta Biotechnologica, 2003, 23(1): 21-28.
[50] NICHOLS P D, SHAW P M, MANCUSO C A, et al. Analysis of archaeal phospholipid-derived di- and tetraether lipids by high temperature capillary gas chromatography [J]. Journal of Microbiological Methods, 1993, 18(1): 1-9.
[51] CHAPPE B, MICHAELIS W, ALBRECHT P. Molecular fossils of Archaebacteria as selective degradation products of kerogen [J]. Physics and Chemistry of the Earth, 1980, 12: 265-274.
[52] HOPMANS E C, SCHOUTEN S, PANCOST R D, et al. Analysis of intact tetraether lipids in archaeal cell material and sediments by high performance liquid chromatography/atmospheric pressure chemical ionization mass spectrometry [J]. Rapid Communications in Mass Spectrometry, 2000, 14(7): 585-589.
[53] SCHOUTEN S, HOPMANS E C, ROSELL-MELé A, et al. An interlaboratory study of TEX86 and BIT analysis of sediments, extracts, and standard mixtures [J]. Geochemistry, Geophysics, Geosystems, 2013, 14(12): 5263-5285.
[54] CHEN Y F, ZHANG C L, JIA C L, et al. Tracking the signals of living archaea: A multiple reaction monitoring (MRM) method for detection of trace amounts of intact polar lipids from the natural environment [J]. Organic Geochemistry, 2016, 97: 1-4.
[55] GROSS R W. The evolution of lipidomics through space and time [J]. Biochimica et Biophysica Acta (BBA) - Molecular and Cell Biology of Lipids, 2017, 1862(8): 731-739.
[56] CONROY M J, ANDREWS R M, ANDREWS S, et al. LIPID MAPS: update to databases and tools for the lipidomics community [J]. Nucleic Acids Research, 2023, 52(D1): D1677-D1682.
[57] HORAI H, ARITA M, KANAYA S, et al. MassBank: a public repository for sharing mass spectral data for life sciences [J]. Journal of Mass Spectrometry, 2010, 45(7): 703-714.
[58] NOTHIAS L-F, PETRAS D, SCHMID R, et al. Feature-based molecular networking in the GNPS analysis environment [J]. Nature Methods, 2020, 17(9): 905-908.
[59] DING S, BALE N J, HOPMANS E C, et al. Lipidomics of environmental microbial communities. II: Characterization using molecular networking and information theory [J]. Frontiers in Microbiology, 2021, 12: 659315.
[60] YOSHINAGA M Y, KELLERMANN M Y, ROSSEL P E, et al. Systematic fragmentation patterns of archaeal intact polar lipids by high-performance liquid chromatography/electrospray ionization ion-trap mass spectrometry [J]. Rapid Communications in Mass Spectrometry, 2011, 25(23): 3563-3574.
[61] ZHU C, YOSHINAGA M Y, PETERS C A, et al. Identification and significance of unsaturated archaeal tetraether lipids in marine sediments [J]. Rapid Communications in Mass Spectrometry, 2014, 28(10): 1144-1152.
[62] EXTERKATE M, DE KOK N A, ANDRINGA R L, et al. A promiscuous archaeal cardiolipin synthase enables construction of diverse natural and unnatural phospholipids [J]. Journal of Biological Chemistry, 2021, 296.
[63] LUéVANO-MARTíNEZ L A. The chimeric origin of the cardiolipin biosynthetic pathway in the Eukarya domain [J]. Biochimica et Biophysica Acta (BBA)-Bioenergetics, 2015, 1847(6-7): 599-606.
[64] CORCELLI A, LATTANZIO V M T, OREN A. The Archaeal Cardiolipins of the Extreme Halophiles [M]//VENTOSA A. Halophilic Microorganisms. Berlin, Heidelberg; Springer Berlin Heidelberg. 2004: 205-214.
[65] SPROTT G D, LAROCQUE S, CADOTTE N, et al. Novel polar lipids of halophilic eubacterium Planococcus H8 and archaeon Haloferax volcanii [J]. Biochimica et Biophysica Acta (BBA) - Molecular and Cell Biology of Lipids, 2003, 1633(3): 179-188.
[66] LOBASSO S, PéREZ-DAVó A, VITALE R, et al. Deciphering archaeal glycolipids of an extremely halophilic archaeon of the genus Halobellus by MALDI-TOF/MS [J]. Chemistry and Physics of Lipids, 2015, 186: 1-8.
[67] LOPALCO P, LOBASSO S, BARONIO M, et al. Impact of lipidomics on the microbial world of hypersaline environments [M]. Halophiles and hypersaline environments. Springer. 2011: 123-135.
[68] YOSHINAGA M Y, WöRMER L, ELVERT M, et al. Novel cardiolipins from uncultured methane-metabolizing archaea [J]. Archaea (Vancouver, BC), 2012, 2012: 832097-832097.
[69] LOBASSO S, LOPALCO P, ANGELINI R, et al. Coupled TLC and MALDI-TOF/MS Analyses of the Lipid Extract of the Hyperthermophilic Archaeon Pyrococcus furiosus [J]. Archaea (Vancouver, BC), 2012, 2012: 957852.
[70] ŘEZANKA T, KYSELOVá L, MURPHY D J. Archaeal lipids [J]. Progress in Lipid Research, 2023: 101237.
[71] ELLING F J, BECKER K W, KöNNEKE M, et al. Respiratory quinones in A rchaea: phylogenetic distribution and application as biomarkers in the marine environment [J]. Environmental microbiology, 2016, 18(2): 692-707.
[72] TENCHOV B, VESCIO E M, SPROTT G D, et al. Salt Tolerance of Archaeal Extremely Halophilic Lipid Membranes* [J]. Journal of Biological Chemistry, 2006, 281(15): 10016-10023.
[73] SOROKIN D Y, ELCHENINOV A G, TOSHCHAKOV S V, et al. Natrarchaeobius chitinivorans gen. nov., sp. nov., and Natrarchaeobius halalkaliphilus sp. nov., alkaliphilic, chitin-utilizing haloarchaea from hypersaline alkaline lakes [J]. Systematic and Applied Microbiology, 2019, 42(3): 309-318.
[74] CHONG P L-G. Archaebacterial bipolar tetraether lipids: Physico-chemical and membrane properties [J]. Chemistry and Physics of Lipids, 2010, 163(3): 253-265.
[75] GABRIEL J L, LEE GAU CHONG P. Molecular modeling of archaebacterial bipolar tetraether lipid membranes [J]. Chemistry and Physics of Lipids, 2000, 105(2): 193-200.
[76] DE ROSA M, GAMBACORTA A, NICOLAUS B, et al. An Asymmetric Archaebacterial Diether Lipid from Alkaliphilic Halophiles [J]. Microbiology, 1982, 128(2): 343-348.
[77] SCHOUTEN S, HOPMANS E C, SCHEFUß E, et al. Distributional variations in marine crenarchaeotal membrane lipids: a new tool for reconstructing ancient sea water temperatures? [J]. Earth and Planetary Science Letters, 2002, 204(1-2): 265-274.
[78] TURICH C, FREEMAN K H. Archaeal lipids record paleosalinity in hypersaline systems [J]. Organic Geochemistry, 2011, 42(9): 1147-1157.
[79] ZHANG Y G, PAGANI M, WANG Z R. Ring Index: A new strategy to evaluate the integrity of TEX86 paleothermometry [J]. Paleoceanography, 2016, 31(2): 220-232.
[80] WANG H Y, LIU W G, ZHANG C L, et al. Assessing the ratio of archaeol to caldarchaeol as a salinity proxy in highland lakes on the northeastern Qinghai–Tibetan Plateau [J]. Organic Geochemistry, 2013, 54: 69-77.
[81] KATES M. Archaebacterial lipids: structure, biosynthesis and function; proceedings of the Biochemical Society Symposium, F, 1992 [C].
[82] KOGA Y, MORII H, AKAGAWA-MATSUSHITA M, et al. Correlation of Polar Lipid Composition with 16S rRNA Phylogeny in Methanogens. Further Analysis of Lipid Component Parts [J]. Biosci Biotechnol Biochem, 1998, 62(2): 230-236.
[83] KOGA Y, NAKANO M. A dendrogram of archaea based on lipid component parts composition and its relationship to rRNA phylogeny [J]. Systematic and Applied Microbiology, 2008, 31(3): 169-182.
[84] HEIN E-M, HAYEN H. Comparative Lipidomic Profiling of S. cerevisiae and Four Other Hemiascomycetous Yeasts [J]. Metabolites, 2012, 2(1): 254-267.
[85] ELLING F J, KöNNEKE M, NICOL G W, et al. Chemotaxonomic characterisation of the thaumarchaeal lipidome [J]. Environmental microbiology, 2017, 19(7): 2681-2700.
[86] ZHANG Y G, ZHANG C L, LIU X L, et al. Methane Index: A tetraether archaeal lipid biomarker indicator for detecting the instability of marine gas hydrates [J]. Earth and Planetary Science Letters, 2011, 307(3): 525-534.
[87] ZHANG T T, HE W, LIANG Q Y, et al. Lipidomic diversity and proxy implications of archaea from cold seep sediments of the South China Sea [J]. Frontiers in Microbiology, 2023, 14.
[88] CHENG Z Y, YU F L, RUAN X Y, et al. GDGTs as indicators for organic-matter sources in a small subtropical river-estuary system [J]. Organic Geochemistry, 2021, 153: 104180.
[89] VANDIER F, TOURTE M, DOUMBE-KINGUE C, et al. Reappraisal of archaeal C20-C25 diether lipid (extended archaeol) origin and use as a biomarker of hypersalinity [J]. Organic Geochemistry, 2021, 159: 104276.
[90] SPROTT G D, DICAIRE C J, GURNANI K, et al. Liposome adjuvants prepared from the total polar lipids of Haloferax volcanii, Planococcus spp. and Bacillus firmus differ in ability to elicit and sustain immune responses [J]. Vaccine, 2004, 22(17): 2154-2162.
[91] KAMEKURA M, KATES M. Structural diversity of membrane lipids in members of Halobacteriaceae [J]. Bioscience, biotechnology, and biochemistry, 1999, 63(6): 969-972.
[92] GIORDANO A, VELLA F M, ROMANO I, et al. Structural elucidation of a novel phosphoglycolipid isolated from six species of Halomonas [J]. Journal of Lipid Research, 2007, 48(8): 1825-1831.
[93] SPROTT G D. Structures of archaebacterial membrane lipids [J]. Journal of bioenergetics and biomembranes, 1992, 24(6): 555-566.
[94] XU J Q, XU W M, LI Y, et al. Halorussus salinus sp. nov., isolated from a marine solar saltern [J]. Archives of Microbiology, 2016, 198(10): 957-961.
[95] YAO W Y, ZHANG W, HE W, et al. Lipidomic chemotaxonomy aligned with phylogeny of Halobacteria [J]. Frontiers in Microbiology, 2023, 14.
[96] DE ROSA M, GAMBACORTA A. The lipids of archaebacteria [J]. Progress in Lipid Research, 1988, 27(3): 153-175.
[97] CORCELLI A. The cardiolipin analogues of Archaea [J]. Biochimica et Biophysica Acta (BBA) - Biomembranes, 2009, 1788(10): 2101-2106.
[98] LOPALCO P, LOBASSO S, BABUDRI F, et al. Osmotic shock stimulates de novo synthesis of two cardiolipins in an extreme halophilic archaeon [J]. Journal of Lipid Research, 2004, 45(1): 194-201.
[99] NOWICKA B, KRUK J. Occurrence, biosynthesis and function of isoprenoid quinones [J]. Biochimica et Biophysica Acta (BBA) - Bioenergetics, 2010, 1797(9): 1587-1605.
[100] SCHÄFER G N, ENGELHARD M, MÜLLER V. Bioenergetics of the Archaea [J]. Microbiology and Molecular Biology Reviews, 1999, 63(3): 570-620.
[101] GIANI M, GARBAYO I, VíLCHEZ C, et al. Haloarchaeal Carotenoids: Healthy Novel Compounds from Extreme Environments [J]. Marine Drugs, 2019, 17(9): 524.
[102] CORCELLI A, COLELLA M, MASCOLO G, et al. A novel glycolipid and phospholipid in the purple membrane [J]. Biochemistry, 2000, 39(12): 3318-3326.
[103] MOLDOVEANU N, KATES M, MONTERO C G, et al. Polar lipids of non-alkaliphilic Halococci [J]. Biochimica et Biophysica Acta (BBA) - Lipids and Lipid Metabolism, 1990, 1046(2): 127-135.
[104] IHARA K, WATANABE S, TAMURA T. Haloarcula argentinensis sp. nov. and Haloarcula mukohataei sp. nov., Two New Extremely Halophilic Archaea Collected in Argentina [J]. International journal of systematic bacteriology, 1997, 47: 73-77.
[105] XU Y, ZHOU P J, TIAN X Y. Characterization of two novel haloalkaliphilic archaea Natronorubrum bangense gen. nov., sp. nov. and Natronorubrum tibetense gen. nov., sp. nov [J]. International journal of systematic and evolutionary microbiology, 1999, 49(1): 261-266.
[106] RODRIGUEZ-VALERA F, JUEZ G, KUSHNER D J. Halobacterium mediterranei spec, nov., a New Carbohydrate-Utilizing Extreme Halophile [J]. Systematic and Applied Microbiology, 1983, 4(3): 369-381.
[107] MULLAKHANBHAI M F, LARSEN H. Halobacterium volcanii spec. nov., a Dead Sea halobacterium with a moderate salt requirement [J]. Archives of Microbiology, 1975, 104(1): 207-214.
[108] MINEGISHI H, KAMEKURA M. Haloterrigena [M]. Bergey's Manual of Systematics of Archaea and Bacteria. 2009: 1-11.
[109] ZVYAGINTSEVA I, TARASOV A. Extreme halophilic bacteria from saline soils [J]. Microbiology (USA), 1988.
[110] HEZAYEN F F, REHM B H, TINDALL B J, et al. Transfer of Natrialba asiatica B1T to Natrialba taiwanensis sp. nov. and description of Natrialba aegyptiaca sp. nov., a novel extremely halophilic, aerobic, non-pigmented member of the Archaea from Egypt that produces extracellular poly(glutamic acid) [J]. International journal of systematic and evolutionary microbiology, 2001, 51(3): 1133-1142.
[111] TAPINGKAE W, TANASUPAWAT S, ITOH T, et al. Natrinema gari sp. nov., a halophilic archaeon isolated from fish sauce in Thailand [J]. International journal of systematic and evolutionary microbiology, 2008, 58: 2378-2383.
[112] FINDLAY R H. Determination of microbial community structure using phospholipid fatty acid profiles [J]. Molecular microbial ecology manual, 2004, 4: 983-1004.
[113] STURT H F, SUMMONS R E, SMITH K, et al. Intact polar membrane lipids in prokaryotes and sediments deciphered by high-performance liquid chromatography/electrospray ionization multistage mass spectrometry—new biomarkers for biogeochemistry and microbial ecology [J]. Rapid Communications in Mass Spectrometry, 2004, 18(6): 617-628.
[114] BLIGH E G, DYER W J. A rapid method of total lipid extraction and purification [J]. Canadian journal of biochemistry and physiology, 1959, 37(8): 911-917.
[115] WöRMER L, LIPP J S, SCHRöDER J M, et al. Application of two new LC–ESI–MS methods for improved detection of intact polar lipids (IPLs) in environmental samples [J]. Organic Geochemistry, 2013, 59: 10-21.
[116] ZHU C, LIPP J S, WöRMER L, et al. Comprehensive glycerol ether lipid fingerprints through a novel reversed phase liquid chromatography–mass spectrometry protocol [J]. Organic Geochemistry, 2013, 65: 53-62.
[117] CHEN Y F, ZHENG F F, YANG H, et al. The production of diverse brGDGTs by an Acidobacterium providing a physiological basis for paleoclimate proxies [J]. Geochimica et Cosmochimica Acta, 2022.
[118] TSUGAWA H, IKEDA K, TAKAHASHI M, et al. A lipidome atlas in MS-DIAL 4 [J]. Nature Biotechnology, 2020, 38(10): 1159-1163.
[119] KIND T, LIU K-H, LEE D Y, et al. LipidBlast in silico tandem mass spectrometry database for lipid identification [J]. Nature Methods, 2013, 10(8): 755-758.
[120] KOLDE R, KOLDE M R. Package ‘pheatmap’ [J]. R package, 2015, 1(7): 790.
[121] PANG Z Q, ZHOU G Y, EWALD J, et al. Using MetaboAnalyst 5.0 for LC–HRMS spectra processing, multi-omics integration and covariate adjustment of global metabolomics data [J]. Nature Protocols, 2022, 17(8): 1735-1761.
[122] SHANNON P, MARKIEL A, OZIER O, et al. Cytoscape: A Software Environment for Integrated Models of Biomolecular Interaction Networks [J]. Genome Research, 2003, 13(11): 2498-2504.
[123] WICKHAM H, FRANCOIS R, HENRY L, et al. dplyr [J]. A Grammar of Data Manipulation 2020 [Last accessed on 2020 Aug 12] Available from, 2014: Rproject.
[124] HAN W-S, LEE J, PHAM M-D, et al. iGraph: a framework for comparisons of disk-based graph indexing techniques [J]. Proceedings of the VLDB Endowment, 2010, 3(1-2): 449-459.
[125] DIXON P. VEGAN, a package of R functions for community ecology [J]. Journal of vegetation science, 2003, 14(6): 927-930.
[126] PARKS D H, TYSON G W, HUGENHOLTZ P, et al. STAMP: statistical analysis of taxonomic and functional profiles [J]. Bioinformatics, 2014, 30(21): 3123-3124.
[127] OYAMA K, SHIMADA K, ISHIBASHI J-I, et al. Silver-catalyzed bioleaching of enargite concentrate using moderately thermophilic microorganisms [J]. Hydrometallurgy, 2018, 177: 197-204.
[128] SWINDELL S R, PLASTERER T N. SEQMAN: Contig assembly [J]. Sequence data analysis guidebook, 1997: 75-89.
[129] TAMURA K, STECHER G, KUMAR S. MEGA11: Molecular Evolutionary Genetics Analysis Version 11 [J]. Molecular Biology and Evolution, 2021, 38(7): 3022-3027.
[130] EDGAR R C. MUSCLE: multiple sequence alignment with high accuracy and high throughput [J]. Nucleic Acids Research, 2004, 32(5): 1792-1797.
[131] SAITOU N, NEI M. The neighbor-joining method: a new method for reconstructing phylogenetic trees [J]. Molecular Biology and Evolution, 1987, 4(4): 406-425.
[132] EDDY S R. Accelerated profile HMM searches [J]. PLOS Computational Biology, 2011, 7(10): e1002195.
[133] N S S, M K, E G N. LIPIDS OF HALOBACTERIUM CUTIRUBRUM [J]. Canadian journal of biochemistry and physiology, 1962, 40(1): 69-81.
[134] KATE M. Membrane lipids of archaea [M]. New comprehensive biochemistry. Elsevier. 1993: 261-295.
[135] TOURTE M. Adaptation, structural diversity and phylogenetic relevance of a novel functionalized domain-containing membrane architecture in Archaea [D]; Université de Lyon, 2020.
[136] YOSHINAGA M Y, GAGEN E J, WöRMER L, et al. Methanothermobacter thermautotrophicus modulates its membrane lipids in response to hydrogen and nutrient availability [J]. Frontiers in Microbiology, 2015, 6: 5.
[137] VENTOSA A, GUTIéRREZ M C, KAMEKURA M, et al. Proposal to transfer Halococcus turkmenicus, Halobacterium trapanicum JCM 9743 and strain GSL-11 to Haloterrigena turkmenica gen. nov., comb. nov [J]. International journal of systematic and evolutionary microbiology, 1999, 49(1): 131-136.
[138] MINEGISHI H, KAMEKURA M. Natrinema [M]. Bergey's Manual of Systematics of Archaea and Bacteria. 2019: 1-11.
[139] FENSELAU C. Mass Spectrometry for Characterization of Microorganisms [M]. Mass Spectrometry for the Characterization of Microorganisms. American Chemical Society. 1993: 1-7.
[140] HAO D C, GU X J, XIAO P G. 1 - Chemotaxonomy: a phylogeny-based approach [M]//HAO D C, GU X-J, XIAO P G. Medicinal Plants. Woodhead Publishing. 2015: 1-48.
[141] WANG Y, XU J B, CUI D Y, et al. Classification and Identification of Archaea Using Single-Cell Raman Ejection and Artificial Intelligence: Implications for Investigating Uncultivated Microorganisms [J]. Analytical Chemistry, 2021, 93(51): 17012-17019.
[142] VILLANUEVA L, COOLEN M J L. Contributions of Genomics to Lipid Biomarker Research: From Paleoclimatology to Evolution [J]. Elements, 2022, 18(2): 87-92.
[143] EDWARDS B R. Lipid Biogeochemistry and Modern Lipidomic Techniques [J]. Annual Review of Marine Science, 2023, 15(1): 485-508.
[144] VENTOSA A, DE LA HABA R R, SáNCHEZ-PORRO C. Haloferax [M]. Bergey's Manual of Systematics of Archaea and Bacteria. 2009: 1-16.
[145] D’SOUZA S E, ALTEKAR W, D’SOUZA S F. Adaptive response of Haloferax mediterranei to low concentrations of NaCl (< 20%) in the growth medium [J]. Archives of Microbiology, 1997, 168(1): 68-71.
[146] KROPP C, LIPP J, SCHMIDT A L, et al. Identification of acetylated diether lipids in halophilic Archaea [J]. MicrobiologyOpen, 2022, 11(3): e1299.
[147] KOGA Y, MORII H. Biosynthesis of ether-type polar lipids in archaea and evolutionary considerations [J]. Microbiology and Molecular Biology Reviews, 2007, 71(1): 97-120.
[148] RAO A, DRIESSEN A J M. Unraveling the multiplicity of geranylgeranyl reductases in Archaea: potential roles in saturation of terpenoids [J]. Extremophiles, 2024, 28(1): 14.
[149] GUAN X, OKAZAKI Y, LITHIO A, et al. Discovery and characterization of the 3-hydroxyacyl-ACP dehydratase component of the plant mitochondrial fatty acid synthase system [J]. Plant physiology, 2017, 173(4): 2010-2028.
[150] FUJITA Y, MATSUOKA H, HIROOKA K. Regulation of fatty acid metabolism in bacteria [J]. Molecular microbiology, 2007, 66(4): 829-839.
[151] GIBSON J A E, MILLER M R, DAVIES N W, et al. Unsaturated diether lipids in the psychrotrophic archaeon Halorubrum lacusprofundi [J]. Systematic and Applied Microbiology, 2005, 28(1): 19-26.
[152] MIN B, KIM K, LI V, et al. Changes in Cell Membrane Fatty Acid Composition of Streptococcus thermophilus in Response to Gradually Increasing Heat Temperature [J]. J Microbiol Biotechnol, 2020, 30(5): 739-748.
[153] ZHENG G W, TIAN B O, ZHANG F J, et al. Plant adaptation to frequent alterations between high and low temperatures: remodelling of membrane lipids and maintenance of unsaturation levels [J]. Plant, Cell & Environment, 2011, 34(9): 1431-1442.
[154] MENéNDEZ-SERRA M, ONTIVEROS V J, TRIADó-MARGARIT X, et al. Dynamics and ecological distributions of the Archaea microbiome from inland saline lakes (Monegros Desert, Spain) [J]. FEMS Microbiology Ecology, 2020, 96(3): fiaa019.
[155] PAL S, BISWAS R, MISRA A, et al. Poorly known microbial taxa dominate the microbiome of hypersaline Sambhar Lake salterns in India [J]. Extremophiles, 2020, 24(6): 875-885.
[156] AUGUET J-C, BARBERAN A, CASAMAYOR E O. Global ecological patterns in uncultured Archaea [J]. The ISME Journal, 2010, 4(2): 182-190.
[157] PING Z Z, YING L, LI M L, et al. Prokaryotic Community Structure Driven by Salinity and Ionic Concentrations in Plateau Lakes of the Tibetan Plateau [J]. Applied and Environmental Microbiology, 2016, 82(6): 1846-1858.
[158] MEADOR T B, ZHU C, ELLING F J, et al. Identification of isoprenoid glycosidic glycerol dibiphytanol diethers and indications for their biosynthetic origin [J]. Organic Geochemistry, 2014, 69: 70-75.
[159] BECKER K W, ELLING F J, YOSHINAGA M Y, et al. Unusual Butane- and Pentanetriol-Based Tetraether Lipids in Methanomassiliicoccus luminyensis, a Representative of the Seventh Order of Methanogens [J]. Applied and Environmental Microbiology, 2016, 82(15): 4505-4516.
[160] KAWAMUKAI M. Biosynthesis and applications of prenylquinones [J]. Bioscience, biotechnology, and biochemistry, 2018, 82(6): 963-977.
[161] HE Y X, WANG H Y, MENG B W, et al. Appraisal of alkenone- and archaeal ether-based salinity indicators in mid-latitude Asian lakes [J]. Earth and Planetary Science Letters, 2020, 538: 116236.
[162] LI J J, PANCOST R D, NAAFS B D A, et al. Multiple environmental and ecological controls on archaeal ether lipid distributions in saline ponds [J]. Chemical Geology, 2019, 529: 119293.
[163] LIPP J S, HINRICHS K-U. Structural diversity and fate of intact polar lipids in marine sediments [J]. Geochimica et Cosmochimica Acta, 2009, 73(22): 6816-6833.
[164] HAN R, ZHANG X, LIU J, et al. Microbial community structure and diversity within hypersaline Keke Salt Lake environments [J]. Canadian Journal of Microbiology, 2017, 63(11): 895-908.
[165] SIMACHEW A, LANZéN A, GESSESSE A, et al. Prokaryotic Community Diversity Along an Increasing Salt Gradient in a Soda Ash Concentration Pond [J]. Microbial Ecology, 2016, 71(2): 326-338.
[166] WANG Y Q, BAO G Y. Diversity of prokaryotic microorganisms in alkaline saline soil of the Qarhan Salt Lake area in the Qinghai–Tibet Plateau [J]. Scientific Reports, 2022, 12(1): 3365.
[167] XIE K H, DENG Y, ZHANG S C, et al. Prokaryotic Community Distribution along an Ecological Gradient of Salinity in Surface and Subsurface Saline Soils [J]. Scientific Reports, 2017, 7(1).
[168] SAKAI H D, NUR N, KATO S, et al. Insight into the symbiotic lifestyle of DPANN archaea revealed by cultivation and genome analyses [J]. Proceedings of the National Academy of Sciences, 2022, 119(3): e2115449119.
[169] KRAUSE S, GFRERER S, VON KüGELGEN A, et al. The importance of biofilm formation for cultivation of a Micrarchaeon and its interactions with its Thermoplasmatales host [J]. Nature Communications, 2022, 13(1): 1735.
[170] JAHN U, SUMMONS R E, STURT H F, et al. Composition of the lipids of Nanoarchaeum equitans and their origin from its host Ignicoccus sp. strain KIN4/I [J]. Archives of Microbiology, 2004, 182: 404-413.
[171] MEADOR T B, BOWLES M, LAZAR C S, et al. The archaeal lipidome in estuarine sediment dominated by members of the Miscellaneous Crenarchaeotal Group [J]. Environmental microbiology, 2015, 17(7): 2441-2458.
[172] XIAO W J, XU Y P, LIN J, et al. Global scale production of brGDGTs by benthic marine bacteria: Implication for developing ocean bottom environmental proxies [J]. Global and Planetary Change, 2022, 211: 103783.
[173] BLEWETT J, ELLING F J, NAAFS B D A, et al. Metabolic and ecological controls on the stable carbon isotopic composition of archaeal (isoGDGT and BDGT) and bacterial (brGDGT) lipids in wetlands and lignites [J]. Geochimica et Cosmochimica Acta, 2022, 320: 1-25.
[174] SCHOUTEN S, HOPMANS E C, SINNINGHE DAMSTé J S. The organic geochemistry of glycerol dialkyl glycerol tetraether lipids: A review [J]. Organic Geochemistry, 2013, 54: 19-61.
[175] VILLANUEVA L, DAMSTé J S S, SCHOUTEN S. A re-evaluation of the archaeal membrane lipid biosynthetic pathway [J]. Nature Reviews Microbiology, 2014, 12(6): 438-448.

所在学位评定分委会
生物学
国内图书分类号
Q938
来源库
人工提交
成果类型学位论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/765727
专题南方科技大学
工学院_海洋科学与工程系
推荐引用方式
GB/T 7714
姚文勇. 嗜盐古菌脂质生物标志物特征及其环境生态指示意义[D]. 深圳. 南方科技大学,2024.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可 操作
12132184-姚文勇-海洋科学与工程(6414KB)----限制开放--请求全文
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[姚文勇]的文章
百度学术
百度学术中相似的文章
[姚文勇]的文章
必应学术
必应学术中相似的文章
[姚文勇]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。