[1] WOESE C R, KANDLER O, WHEELIS M L. Towards a natural system of organisms: proposal for the domains Archaea, Bacteria, and Eucarya [J]. Proceedings of the National Academy of Sciences, 1990, 87(12): 4576-4579.
[2] MüLLER-NIGGEMANN C. Lipid biogeochemistry of paddy soils [D]; der Christian-Albrechts-Universität, 2016.
[3] SUMMONS R E, WELANDER P V, GOLD D A. Lipid biomarkers: molecular tools for illuminating the history of microbial life [J]. Nature Reviews Microbiology, 2022, 20(3): 174-185.
[4] BRIGGS D E, SUMMONS R E. Ancient biomolecules: their origins, fossilization, and role in revealing the history of life [J]. BioEssays, 2014, 36(5): 482-490.
[5] VAN DE VOSSENBERG J L, DRIESSEN A J, GRANT D, et al. Lipid membranes from halophilic and alkali-halophilic Archaea have a low H+ and Na+ permeability at high salt concentration [J]. Extremophiles, 1999, 3(4): 253-257.
[6] VAN DE VOSSENBERG J L, UBBINK‐KOK T, ELFERINK M G, et al. Ion permeability of the cytoplasmic membrane limits the maximum growth temperature of bacteria and archaea [J]. Molecular microbiology, 1995, 18(5): 925-932.
[7] VALENTINE D L. Adaptations to energy stress dictate the ecology and evolution of the Archaea [J]. Nature Reviews Microbiology, 2007, 5(4): 316-323.
[8] BABA T, MINAMIKAWA H, HATO M, et al. Hydration and molecular motions in synthetic phytanyl-chained glycolipid vesicle membranes [J]. Biophysical journal, 2001, 81(6): 3377-3386.
[9] KELLERMANN M Y, YOSHINAGA M Y, VALENTINE R C, et al. Important roles for membrane lipids in haloarchaeal bioenergetics [J]. Biochimica et Biophysica Acta (BBA)-Biomembranes, 2016, 1858(11): 2940-2956.
[10] DAWSON K S, FREEMAN K H, MACALADY J L. Molecular characterization of core lipids from halophilic archaea grown under different salinity conditions [J]. Organic Geochemistry, 2012, 48: 1-8.
[11] SILIAKUS M F, VAN DER OOST J, KENGEN S W M. Adaptations of archaeal and bacterial membranes to variations in temperature, pH and pressure [J]. Extremophiles, 2017, 21(4): 651-670.
[12] MEADOR T, GAGEN E, LOSCAR M, et al. Thermococcus kodakarensis modulates its polar membrane lipids and elemental composition according to growth stage and phosphate availability [J]. Frontiers in Microbiology, 2014, 5.
[13] ELLING F J, KöNNEKE M, LIPP J S, et al. Effects of growth phase on the membrane lipid composition of the thaumarchaeon Nitrosopumilus maritimus and their implications for archaeal lipid distributions in the marine environment [J]. Geochimica et Cosmochimica Acta, 2014, 141: 579-597.
[14] OREN A. Taxonomy of halophilic Archaea: current status and future challenges [J]. Extremophiles, 2014, 18(5): 825-834.
[15] BALE N J, SOROKIN D Y, HOPMANS E C, et al. New Insights Into the Polar Lipid Composition of Extremely Halo(alkali)philic Euryarchaea From Hypersaline Lakes [J]. Frontiers in Microbiology, 2019, 10.
[16] ZENG Z R, CHEN H H, YANG H, et al. Identification of a protein responsible for the synthesis of archaeal membrane-spanning GDGT lipids [J]. Nature Communications, 2022, 13(1): 1545.
[17] THOMPSON C C, AMARAL G R, CAMPEãO M, et al. Microbial taxonomy in the post-genomic era: Rebuilding from scratch? [J]. Archives of Microbiology, 2015, 197(3): 359-370.
[18] 张玉琴, 吕志堂, 崔恒林, 等. 我国原核微生物分类学七十年[J]. 微生物学报, 2023, 63(5): 1724-1740.
[19] MURRAY R G E, HOLT J G. The History of Bergey's Manual [M]. Bergey's Manual of Systematics of Archaea and Bacteria. 2015: 1-20.
[20] COLWELL R R. Polyphasic taxonomy of the genus vibrio: numerical taxonomy of Vibrio cholerae, Vibrio parahaemolyticus, and related Vibrio species [J]. J Bacteriol, 1970, 104(1): 410-433.
[21] GATTINGER A, SCHLOTER M, MUNCH J C. Phospholipid etherlipid and phospholipid fatty acid fingerprints in selected euryarchaeotal monocultures for taxonomic profiling [J]. FEMS microbiology letters, 2002, 213(1): 133-139.
[22] SHAPIRO B J, POLZ M F. Ordering microbial diversity into ecologically and genetically cohesive units [J]. Trends in Microbiology, 2014, 22(5): 235-247.
[23] WOESE C R, FOX G E. Phylogenetic structure of the prokaryotic domain: the primary kingdoms [J]. Proceedings of the National Academy of Sciences, 1977, 74(11): 5088-5090.
[24] ZAREMBA-NIEDZWIEDZKA K, CACERES E F, SAW J H, et al. Asgard archaea illuminate the origin of eukaryotic cellular complexity [J]. Nature, 2017, 541(7637): 353-358.
[25] BAKER B J, DE ANDA V, SEITZ K W, et al. Diversity, ecology and evolution of Archaea [J]. Nature Microbiology, 2020, 5(7): 887-900.
[26] LEININGER S, URICH T, SCHLOTER M, et al. Archaea predominate among ammonia-oxidizing prokaryotes in soils [J]. Nature, 2006, 442(7104): 806-809.
[27] ZHANG L M, HU H W, SHEN J P, et al. Ammonia-oxidizing archaea have more important role than ammonia-oxidizing bacteria in ammonia oxidation of strongly acidic soils [J]. The ISME Journal, 2012, 6(5): 1032-1045.
[28] BUAN N R. Methanogens: pushing the boundaries of biology [J]. Emerging Topics in Life Sciences, 2018, 2(4): 629-646.
[29] LIU Y, MAKAROVA K S, HUANG W C, et al. Expanded diversity of Asgard archaea and their relationships with eukaryotes [J]. Nature, 2021, 593(7860): 553-557.
[30] WANG Y Z, WEGENER G, HOU J L, et al. Expanding anaerobic alkane metabolism in the domain of Archaea [J]. Nature Microbiology, 2019, 4(4): 595-602.
[31] NELSON-SATHI S, DAGAN T, LANDAN G, et al. Acquisition of 1,000 eubacterial genes physiologically transformed a methanogen at the origin of Haloarchaea [J]. Proceedings of the National Academy of Sciences, 2012, 109(50): 20537-20542.
[32] OREN A. Halophilic microorganisms and their environments [M]. Springer Dordrecht: Springer science & business media, 2002.
[33] BOONE D R, GARRITY G M. Bergey's Manual of Systematic Bacteriology [Z]. Published by Springer–Verlag, New York. 2001
[34] CUI H L, HOU J, AMOOZEGAR M, et al. Proposed minimal standards for description of new taxa of the class Halobacteria [J]. International journal of systematic and evolutionary microbiology, 2024, 74.
[35] GUPTA R S, NAUSHAD S, FABROS R, et al. A phylogenomic reappraisal of family-level divisions within the class Halobacteria: proposal to divide the order Halobacteriales into the families Halobacteriaceae, Haloarculaceae fam. nov., and Halococcaceae fam. nov., and the order Haloferacales into the families, Haloferacaceae and Halorubraceae fam nov [J]. Antonie van Leeuwenhoek, 2016, 109(4): 565-587.
[36] KUMAR V, TIWARI S K. Halocin Diversity Among Halophilic Archaea and Their Applications [M]. Springer Singapore. 2019: 497-532.
[37] LOBASSO S, LOPALCO P, MASCOLO G, et al. Lipids of the ultra-thin square halophilic archaeon Haloquadratum walsbyi [J]. Archaea (Vancouver, BC), 2008, 2(3): 177-183.
[38] OREN A, VENTOSA A, KAMEKURA M. Halobacteria [M]. Bergey's Manual of Systematics of Archaea and Bacteria. 2017: 1-5.
[39] OREN A. Diversity of Halophiles [M]. Springer Japan. 2011: 309-325.
[40] 吕真真. 西藏改则盐湖嗜盐古菌多样性与脂质体研究 [D]; 江苏大学, 2018.
[41] FENG J, ZHOU P J, LIU S J. Halorubrum xinjiangense sp. nov., a novel halophile isolated from saline lakes in China [J]. International journal of systematic and evolutionary microbiology, 2004, 54(5): 1789-1791.
[42] 李璐, 郝春博, 王丽华, et al. 巴丹吉林沙漠盐湖微生物多样性 [D]; 中国地质大学 (北京), 2015.
[43] 崔恒林. 嗜盐古菌分类学研究进展[J]. 微生物学通报, 2016, 43(5): 1113-1122.
[44] BLANK C E. Not so old Archaea – the antiquity of biogeochemical processes in the archaeal domain of life [J]. Geobiology, 2009, 7(5): 495-514.
[45] MAKAROVA K S, YUTIN N, BELL S D, et al. Evolution of diverse cell division and vesicle formation systems in Archaea [J]. Nature Reviews Microbiology, 2010, 8(10): 731-741.
[46] WENK M R. The emerging field of lipidomics [J]. Nature Reviews Drug Discovery, 2005, 4(7): 594-610.
[47] MORII H, YAGI H, AKUTSU H, et al. A novel phosphoglycolipid archaetidyl(glucosyl)inositol with two sesterterpanyl chains from the aerobic hyperthermophilic archaeon Aeropyrum pernix K1 [J]. Biochimica et Biophysica Acta (BBA) - Molecular and Cell Biology of Lipids, 1999, 1436(3): 426-436.
[48] KOGA Y, AKAGAWA-MATSUSHITA M, OHGA M, et al. Taxonomic significance of the distribution of component parts of polar ether lipids in methanogens [J]. Systematic and Applied Microbiology, 1993, 16(3): 342-351.
[49] GATTINGER A, GüNTHNER A, SCHLOTER M, et al. Characterisation of Archaea in Soils by Polar Lipid Analysis [J]. Acta Biotechnologica, 2003, 23(1): 21-28.
[50] NICHOLS P D, SHAW P M, MANCUSO C A, et al. Analysis of archaeal phospholipid-derived di- and tetraether lipids by high temperature capillary gas chromatography [J]. Journal of Microbiological Methods, 1993, 18(1): 1-9.
[51] CHAPPE B, MICHAELIS W, ALBRECHT P. Molecular fossils of Archaebacteria as selective degradation products of kerogen [J]. Physics and Chemistry of the Earth, 1980, 12: 265-274.
[52] HOPMANS E C, SCHOUTEN S, PANCOST R D, et al. Analysis of intact tetraether lipids in archaeal cell material and sediments by high performance liquid chromatography/atmospheric pressure chemical ionization mass spectrometry [J]. Rapid Communications in Mass Spectrometry, 2000, 14(7): 585-589.
[53] SCHOUTEN S, HOPMANS E C, ROSELL-MELé A, et al. An interlaboratory study of TEX86 and BIT analysis of sediments, extracts, and standard mixtures [J]. Geochemistry, Geophysics, Geosystems, 2013, 14(12): 5263-5285.
[54] CHEN Y F, ZHANG C L, JIA C L, et al. Tracking the signals of living archaea: A multiple reaction monitoring (MRM) method for detection of trace amounts of intact polar lipids from the natural environment [J]. Organic Geochemistry, 2016, 97: 1-4.
[55] GROSS R W. The evolution of lipidomics through space and time [J]. Biochimica et Biophysica Acta (BBA) - Molecular and Cell Biology of Lipids, 2017, 1862(8): 731-739.
[56] CONROY M J, ANDREWS R M, ANDREWS S, et al. LIPID MAPS: update to databases and tools for the lipidomics community [J]. Nucleic Acids Research, 2023, 52(D1): D1677-D1682.
[57] HORAI H, ARITA M, KANAYA S, et al. MassBank: a public repository for sharing mass spectral data for life sciences [J]. Journal of Mass Spectrometry, 2010, 45(7): 703-714.
[58] NOTHIAS L-F, PETRAS D, SCHMID R, et al. Feature-based molecular networking in the GNPS analysis environment [J]. Nature Methods, 2020, 17(9): 905-908.
[59] DING S, BALE N J, HOPMANS E C, et al. Lipidomics of environmental microbial communities. II: Characterization using molecular networking and information theory [J]. Frontiers in Microbiology, 2021, 12: 659315.
[60] YOSHINAGA M Y, KELLERMANN M Y, ROSSEL P E, et al. Systematic fragmentation patterns of archaeal intact polar lipids by high-performance liquid chromatography/electrospray ionization ion-trap mass spectrometry [J]. Rapid Communications in Mass Spectrometry, 2011, 25(23): 3563-3574.
[61] ZHU C, YOSHINAGA M Y, PETERS C A, et al. Identification and significance of unsaturated archaeal tetraether lipids in marine sediments [J]. Rapid Communications in Mass Spectrometry, 2014, 28(10): 1144-1152.
[62] EXTERKATE M, DE KOK N A, ANDRINGA R L, et al. A promiscuous archaeal cardiolipin synthase enables construction of diverse natural and unnatural phospholipids [J]. Journal of Biological Chemistry, 2021, 296.
[63] LUéVANO-MARTíNEZ L A. The chimeric origin of the cardiolipin biosynthetic pathway in the Eukarya domain [J]. Biochimica et Biophysica Acta (BBA)-Bioenergetics, 2015, 1847(6-7): 599-606.
[64] CORCELLI A, LATTANZIO V M T, OREN A. The Archaeal Cardiolipins of the Extreme Halophiles [M]//VENTOSA A. Halophilic Microorganisms. Berlin, Heidelberg; Springer Berlin Heidelberg. 2004: 205-214.
[65] SPROTT G D, LAROCQUE S, CADOTTE N, et al. Novel polar lipids of halophilic eubacterium Planococcus H8 and archaeon Haloferax volcanii [J]. Biochimica et Biophysica Acta (BBA) - Molecular and Cell Biology of Lipids, 2003, 1633(3): 179-188.
[66] LOBASSO S, PéREZ-DAVó A, VITALE R, et al. Deciphering archaeal glycolipids of an extremely halophilic archaeon of the genus Halobellus by MALDI-TOF/MS [J]. Chemistry and Physics of Lipids, 2015, 186: 1-8.
[67] LOPALCO P, LOBASSO S, BARONIO M, et al. Impact of lipidomics on the microbial world of hypersaline environments [M]. Halophiles and hypersaline environments. Springer. 2011: 123-135.
[68] YOSHINAGA M Y, WöRMER L, ELVERT M, et al. Novel cardiolipins from uncultured methane-metabolizing archaea [J]. Archaea (Vancouver, BC), 2012, 2012: 832097-832097.
[69] LOBASSO S, LOPALCO P, ANGELINI R, et al. Coupled TLC and MALDI-TOF/MS Analyses of the Lipid Extract of the Hyperthermophilic Archaeon Pyrococcus furiosus [J]. Archaea (Vancouver, BC), 2012, 2012: 957852.
[70] ŘEZANKA T, KYSELOVá L, MURPHY D J. Archaeal lipids [J]. Progress in Lipid Research, 2023: 101237.
[71] ELLING F J, BECKER K W, KöNNEKE M, et al. Respiratory quinones in A rchaea: phylogenetic distribution and application as biomarkers in the marine environment [J]. Environmental microbiology, 2016, 18(2): 692-707.
[72] TENCHOV B, VESCIO E M, SPROTT G D, et al. Salt Tolerance of Archaeal Extremely Halophilic Lipid Membranes* [J]. Journal of Biological Chemistry, 2006, 281(15): 10016-10023.
[73] SOROKIN D Y, ELCHENINOV A G, TOSHCHAKOV S V, et al. Natrarchaeobius chitinivorans gen. nov., sp. nov., and Natrarchaeobius halalkaliphilus sp. nov., alkaliphilic, chitin-utilizing haloarchaea from hypersaline alkaline lakes [J]. Systematic and Applied Microbiology, 2019, 42(3): 309-318.
[74] CHONG P L-G. Archaebacterial bipolar tetraether lipids: Physico-chemical and membrane properties [J]. Chemistry and Physics of Lipids, 2010, 163(3): 253-265.
[75] GABRIEL J L, LEE GAU CHONG P. Molecular modeling of archaebacterial bipolar tetraether lipid membranes [J]. Chemistry and Physics of Lipids, 2000, 105(2): 193-200.
[76] DE ROSA M, GAMBACORTA A, NICOLAUS B, et al. An Asymmetric Archaebacterial Diether Lipid from Alkaliphilic Halophiles [J]. Microbiology, 1982, 128(2): 343-348.
[77] SCHOUTEN S, HOPMANS E C, SCHEFUß E, et al. Distributional variations in marine crenarchaeotal membrane lipids: a new tool for reconstructing ancient sea water temperatures? [J]. Earth and Planetary Science Letters, 2002, 204(1-2): 265-274.
[78] TURICH C, FREEMAN K H. Archaeal lipids record paleosalinity in hypersaline systems [J]. Organic Geochemistry, 2011, 42(9): 1147-1157.
[79] ZHANG Y G, PAGANI M, WANG Z R. Ring Index: A new strategy to evaluate the integrity of TEX86 paleothermometry [J]. Paleoceanography, 2016, 31(2): 220-232.
[80] WANG H Y, LIU W G, ZHANG C L, et al. Assessing the ratio of archaeol to caldarchaeol as a salinity proxy in highland lakes on the northeastern Qinghai–Tibetan Plateau [J]. Organic Geochemistry, 2013, 54: 69-77.
[81] KATES M. Archaebacterial lipids: structure, biosynthesis and function; proceedings of the Biochemical Society Symposium, F, 1992 [C].
[82] KOGA Y, MORII H, AKAGAWA-MATSUSHITA M, et al. Correlation of Polar Lipid Composition with 16S rRNA Phylogeny in Methanogens. Further Analysis of Lipid Component Parts [J]. Biosci Biotechnol Biochem, 1998, 62(2): 230-236.
[83] KOGA Y, NAKANO M. A dendrogram of archaea based on lipid component parts composition and its relationship to rRNA phylogeny [J]. Systematic and Applied Microbiology, 2008, 31(3): 169-182.
[84] HEIN E-M, HAYEN H. Comparative Lipidomic Profiling of S. cerevisiae and Four Other Hemiascomycetous Yeasts [J]. Metabolites, 2012, 2(1): 254-267.
[85] ELLING F J, KöNNEKE M, NICOL G W, et al. Chemotaxonomic characterisation of the thaumarchaeal lipidome [J]. Environmental microbiology, 2017, 19(7): 2681-2700.
[86] ZHANG Y G, ZHANG C L, LIU X L, et al. Methane Index: A tetraether archaeal lipid biomarker indicator for detecting the instability of marine gas hydrates [J]. Earth and Planetary Science Letters, 2011, 307(3): 525-534.
[87] ZHANG T T, HE W, LIANG Q Y, et al. Lipidomic diversity and proxy implications of archaea from cold seep sediments of the South China Sea [J]. Frontiers in Microbiology, 2023, 14.
[88] CHENG Z Y, YU F L, RUAN X Y, et al. GDGTs as indicators for organic-matter sources in a small subtropical river-estuary system [J]. Organic Geochemistry, 2021, 153: 104180.
[89] VANDIER F, TOURTE M, DOUMBE-KINGUE C, et al. Reappraisal of archaeal C20-C25 diether lipid (extended archaeol) origin and use as a biomarker of hypersalinity [J]. Organic Geochemistry, 2021, 159: 104276.
[90] SPROTT G D, DICAIRE C J, GURNANI K, et al. Liposome adjuvants prepared from the total polar lipids of Haloferax volcanii, Planococcus spp. and Bacillus firmus differ in ability to elicit and sustain immune responses [J]. Vaccine, 2004, 22(17): 2154-2162.
[91] KAMEKURA M, KATES M. Structural diversity of membrane lipids in members of Halobacteriaceae [J]. Bioscience, biotechnology, and biochemistry, 1999, 63(6): 969-972.
[92] GIORDANO A, VELLA F M, ROMANO I, et al. Structural elucidation of a novel phosphoglycolipid isolated from six species of Halomonas [J]. Journal of Lipid Research, 2007, 48(8): 1825-1831.
[93] SPROTT G D. Structures of archaebacterial membrane lipids [J]. Journal of bioenergetics and biomembranes, 1992, 24(6): 555-566.
[94] XU J Q, XU W M, LI Y, et al. Halorussus salinus sp. nov., isolated from a marine solar saltern [J]. Archives of Microbiology, 2016, 198(10): 957-961.
[95] YAO W Y, ZHANG W, HE W, et al. Lipidomic chemotaxonomy aligned with phylogeny of Halobacteria [J]. Frontiers in Microbiology, 2023, 14.
[96] DE ROSA M, GAMBACORTA A. The lipids of archaebacteria [J]. Progress in Lipid Research, 1988, 27(3): 153-175.
[97] CORCELLI A. The cardiolipin analogues of Archaea [J]. Biochimica et Biophysica Acta (BBA) - Biomembranes, 2009, 1788(10): 2101-2106.
[98] LOPALCO P, LOBASSO S, BABUDRI F, et al. Osmotic shock stimulates de novo synthesis of two cardiolipins in an extreme halophilic archaeon [J]. Journal of Lipid Research, 2004, 45(1): 194-201.
[99] NOWICKA B, KRUK J. Occurrence, biosynthesis and function of isoprenoid quinones [J]. Biochimica et Biophysica Acta (BBA) - Bioenergetics, 2010, 1797(9): 1587-1605.
[100] SCHÄFER G N, ENGELHARD M, MÜLLER V. Bioenergetics of the Archaea [J]. Microbiology and Molecular Biology Reviews, 1999, 63(3): 570-620.
[101] GIANI M, GARBAYO I, VíLCHEZ C, et al. Haloarchaeal Carotenoids: Healthy Novel Compounds from Extreme Environments [J]. Marine Drugs, 2019, 17(9): 524.
[102] CORCELLI A, COLELLA M, MASCOLO G, et al. A novel glycolipid and phospholipid in the purple membrane [J]. Biochemistry, 2000, 39(12): 3318-3326.
[103] MOLDOVEANU N, KATES M, MONTERO C G, et al. Polar lipids of non-alkaliphilic Halococci [J]. Biochimica et Biophysica Acta (BBA) - Lipids and Lipid Metabolism, 1990, 1046(2): 127-135.
[104] IHARA K, WATANABE S, TAMURA T. Haloarcula argentinensis sp. nov. and Haloarcula mukohataei sp. nov., Two New Extremely Halophilic Archaea Collected in Argentina [J]. International journal of systematic bacteriology, 1997, 47: 73-77.
[105] XU Y, ZHOU P J, TIAN X Y. Characterization of two novel haloalkaliphilic archaea Natronorubrum bangense gen. nov., sp. nov. and Natronorubrum tibetense gen. nov., sp. nov [J]. International journal of systematic and evolutionary microbiology, 1999, 49(1): 261-266.
[106] RODRIGUEZ-VALERA F, JUEZ G, KUSHNER D J. Halobacterium mediterranei spec, nov., a New Carbohydrate-Utilizing Extreme Halophile [J]. Systematic and Applied Microbiology, 1983, 4(3): 369-381.
[107] MULLAKHANBHAI M F, LARSEN H. Halobacterium volcanii spec. nov., a Dead Sea halobacterium with a moderate salt requirement [J]. Archives of Microbiology, 1975, 104(1): 207-214.
[108] MINEGISHI H, KAMEKURA M. Haloterrigena [M]. Bergey's Manual of Systematics of Archaea and Bacteria. 2009: 1-11.
[109] ZVYAGINTSEVA I, TARASOV A. Extreme halophilic bacteria from saline soils [J]. Microbiology (USA), 1988.
[110] HEZAYEN F F, REHM B H, TINDALL B J, et al. Transfer of Natrialba asiatica B1T to Natrialba taiwanensis sp. nov. and description of Natrialba aegyptiaca sp. nov., a novel extremely halophilic, aerobic, non-pigmented member of the Archaea from Egypt that produces extracellular poly(glutamic acid) [J]. International journal of systematic and evolutionary microbiology, 2001, 51(3): 1133-1142.
[111] TAPINGKAE W, TANASUPAWAT S, ITOH T, et al. Natrinema gari sp. nov., a halophilic archaeon isolated from fish sauce in Thailand [J]. International journal of systematic and evolutionary microbiology, 2008, 58: 2378-2383.
[112] FINDLAY R H. Determination of microbial community structure using phospholipid fatty acid profiles [J]. Molecular microbial ecology manual, 2004, 4: 983-1004.
[113] STURT H F, SUMMONS R E, SMITH K, et al. Intact polar membrane lipids in prokaryotes and sediments deciphered by high-performance liquid chromatography/electrospray ionization multistage mass spectrometry—new biomarkers for biogeochemistry and microbial ecology [J]. Rapid Communications in Mass Spectrometry, 2004, 18(6): 617-628.
[114] BLIGH E G, DYER W J. A rapid method of total lipid extraction and purification [J]. Canadian journal of biochemistry and physiology, 1959, 37(8): 911-917.
[115] WöRMER L, LIPP J S, SCHRöDER J M, et al. Application of two new LC–ESI–MS methods for improved detection of intact polar lipids (IPLs) in environmental samples [J]. Organic Geochemistry, 2013, 59: 10-21.
[116] ZHU C, LIPP J S, WöRMER L, et al. Comprehensive glycerol ether lipid fingerprints through a novel reversed phase liquid chromatography–mass spectrometry protocol [J]. Organic Geochemistry, 2013, 65: 53-62.
[117] CHEN Y F, ZHENG F F, YANG H, et al. The production of diverse brGDGTs by an Acidobacterium providing a physiological basis for paleoclimate proxies [J]. Geochimica et Cosmochimica Acta, 2022.
[118] TSUGAWA H, IKEDA K, TAKAHASHI M, et al. A lipidome atlas in MS-DIAL 4 [J]. Nature Biotechnology, 2020, 38(10): 1159-1163.
[119] KIND T, LIU K-H, LEE D Y, et al. LipidBlast in silico tandem mass spectrometry database for lipid identification [J]. Nature Methods, 2013, 10(8): 755-758.
[120] KOLDE R, KOLDE M R. Package ‘pheatmap’ [J]. R package, 2015, 1(7): 790.
[121] PANG Z Q, ZHOU G Y, EWALD J, et al. Using MetaboAnalyst 5.0 for LC–HRMS spectra processing, multi-omics integration and covariate adjustment of global metabolomics data [J]. Nature Protocols, 2022, 17(8): 1735-1761.
[122] SHANNON P, MARKIEL A, OZIER O, et al. Cytoscape: A Software Environment for Integrated Models of Biomolecular Interaction Networks [J]. Genome Research, 2003, 13(11): 2498-2504.
[123] WICKHAM H, FRANCOIS R, HENRY L, et al. dplyr [J]. A Grammar of Data Manipulation 2020 [Last accessed on 2020 Aug 12] Available from, 2014: Rproject.
[124] HAN W-S, LEE J, PHAM M-D, et al. iGraph: a framework for comparisons of disk-based graph indexing techniques [J]. Proceedings of the VLDB Endowment, 2010, 3(1-2): 449-459.
[125] DIXON P. VEGAN, a package of R functions for community ecology [J]. Journal of vegetation science, 2003, 14(6): 927-930.
[126] PARKS D H, TYSON G W, HUGENHOLTZ P, et al. STAMP: statistical analysis of taxonomic and functional profiles [J]. Bioinformatics, 2014, 30(21): 3123-3124.
[127] OYAMA K, SHIMADA K, ISHIBASHI J-I, et al. Silver-catalyzed bioleaching of enargite concentrate using moderately thermophilic microorganisms [J]. Hydrometallurgy, 2018, 177: 197-204.
[128] SWINDELL S R, PLASTERER T N. SEQMAN: Contig assembly [J]. Sequence data analysis guidebook, 1997: 75-89.
[129] TAMURA K, STECHER G, KUMAR S. MEGA11: Molecular Evolutionary Genetics Analysis Version 11 [J]. Molecular Biology and Evolution, 2021, 38(7): 3022-3027.
[130] EDGAR R C. MUSCLE: multiple sequence alignment with high accuracy and high throughput [J]. Nucleic Acids Research, 2004, 32(5): 1792-1797.
[131] SAITOU N, NEI M. The neighbor-joining method: a new method for reconstructing phylogenetic trees [J]. Molecular Biology and Evolution, 1987, 4(4): 406-425.
[132] EDDY S R. Accelerated profile HMM searches [J]. PLOS Computational Biology, 2011, 7(10): e1002195.
[133] N S S, M K, E G N. LIPIDS OF HALOBACTERIUM CUTIRUBRUM [J]. Canadian journal of biochemistry and physiology, 1962, 40(1): 69-81.
[134] KATE M. Membrane lipids of archaea [M]. New comprehensive biochemistry. Elsevier. 1993: 261-295.
[135] TOURTE M. Adaptation, structural diversity and phylogenetic relevance of a novel functionalized domain-containing membrane architecture in Archaea [D]; Université de Lyon, 2020.
[136] YOSHINAGA M Y, GAGEN E J, WöRMER L, et al. Methanothermobacter thermautotrophicus modulates its membrane lipids in response to hydrogen and nutrient availability [J]. Frontiers in Microbiology, 2015, 6: 5.
[137] VENTOSA A, GUTIéRREZ M C, KAMEKURA M, et al. Proposal to transfer Halococcus turkmenicus, Halobacterium trapanicum JCM 9743 and strain GSL-11 to Haloterrigena turkmenica gen. nov., comb. nov [J]. International journal of systematic and evolutionary microbiology, 1999, 49(1): 131-136.
[138] MINEGISHI H, KAMEKURA M. Natrinema [M]. Bergey's Manual of Systematics of Archaea and Bacteria. 2019: 1-11.
[139] FENSELAU C. Mass Spectrometry for Characterization of Microorganisms [M]. Mass Spectrometry for the Characterization of Microorganisms. American Chemical Society. 1993: 1-7.
[140] HAO D C, GU X J, XIAO P G. 1 - Chemotaxonomy: a phylogeny-based approach [M]//HAO D C, GU X-J, XIAO P G. Medicinal Plants. Woodhead Publishing. 2015: 1-48.
[141] WANG Y, XU J B, CUI D Y, et al. Classification and Identification of Archaea Using Single-Cell Raman Ejection and Artificial Intelligence: Implications for Investigating Uncultivated Microorganisms [J]. Analytical Chemistry, 2021, 93(51): 17012-17019.
[142] VILLANUEVA L, COOLEN M J L. Contributions of Genomics to Lipid Biomarker Research: From Paleoclimatology to Evolution [J]. Elements, 2022, 18(2): 87-92.
[143] EDWARDS B R. Lipid Biogeochemistry and Modern Lipidomic Techniques [J]. Annual Review of Marine Science, 2023, 15(1): 485-508.
[144] VENTOSA A, DE LA HABA R R, SáNCHEZ-PORRO C. Haloferax [M]. Bergey's Manual of Systematics of Archaea and Bacteria. 2009: 1-16.
[145] D’SOUZA S E, ALTEKAR W, D’SOUZA S F. Adaptive response of Haloferax mediterranei to low concentrations of NaCl (< 20%) in the growth medium [J]. Archives of Microbiology, 1997, 168(1): 68-71.
[146] KROPP C, LIPP J, SCHMIDT A L, et al. Identification of acetylated diether lipids in halophilic Archaea [J]. MicrobiologyOpen, 2022, 11(3): e1299.
[147] KOGA Y, MORII H. Biosynthesis of ether-type polar lipids in archaea and evolutionary considerations [J]. Microbiology and Molecular Biology Reviews, 2007, 71(1): 97-120.
[148] RAO A, DRIESSEN A J M. Unraveling the multiplicity of geranylgeranyl reductases in Archaea: potential roles in saturation of terpenoids [J]. Extremophiles, 2024, 28(1): 14.
[149] GUAN X, OKAZAKI Y, LITHIO A, et al. Discovery and characterization of the 3-hydroxyacyl-ACP dehydratase component of the plant mitochondrial fatty acid synthase system [J]. Plant physiology, 2017, 173(4): 2010-2028.
[150] FUJITA Y, MATSUOKA H, HIROOKA K. Regulation of fatty acid metabolism in bacteria [J]. Molecular microbiology, 2007, 66(4): 829-839.
[151] GIBSON J A E, MILLER M R, DAVIES N W, et al. Unsaturated diether lipids in the psychrotrophic archaeon Halorubrum lacusprofundi [J]. Systematic and Applied Microbiology, 2005, 28(1): 19-26.
[152] MIN B, KIM K, LI V, et al. Changes in Cell Membrane Fatty Acid Composition of Streptococcus thermophilus in Response to Gradually Increasing Heat Temperature [J]. J Microbiol Biotechnol, 2020, 30(5): 739-748.
[153] ZHENG G W, TIAN B O, ZHANG F J, et al. Plant adaptation to frequent alterations between high and low temperatures: remodelling of membrane lipids and maintenance of unsaturation levels [J]. Plant, Cell & Environment, 2011, 34(9): 1431-1442.
[154] MENéNDEZ-SERRA M, ONTIVEROS V J, TRIADó-MARGARIT X, et al. Dynamics and ecological distributions of the Archaea microbiome from inland saline lakes (Monegros Desert, Spain) [J]. FEMS Microbiology Ecology, 2020, 96(3): fiaa019.
[155] PAL S, BISWAS R, MISRA A, et al. Poorly known microbial taxa dominate the microbiome of hypersaline Sambhar Lake salterns in India [J]. Extremophiles, 2020, 24(6): 875-885.
[156] AUGUET J-C, BARBERAN A, CASAMAYOR E O. Global ecological patterns in uncultured Archaea [J]. The ISME Journal, 2010, 4(2): 182-190.
[157] PING Z Z, YING L, LI M L, et al. Prokaryotic Community Structure Driven by Salinity and Ionic Concentrations in Plateau Lakes of the Tibetan Plateau [J]. Applied and Environmental Microbiology, 2016, 82(6): 1846-1858.
[158] MEADOR T B, ZHU C, ELLING F J, et al. Identification of isoprenoid glycosidic glycerol dibiphytanol diethers and indications for their biosynthetic origin [J]. Organic Geochemistry, 2014, 69: 70-75.
[159] BECKER K W, ELLING F J, YOSHINAGA M Y, et al. Unusual Butane- and Pentanetriol-Based Tetraether Lipids in Methanomassiliicoccus luminyensis, a Representative of the Seventh Order of Methanogens [J]. Applied and Environmental Microbiology, 2016, 82(15): 4505-4516.
[160] KAWAMUKAI M. Biosynthesis and applications of prenylquinones [J]. Bioscience, biotechnology, and biochemistry, 2018, 82(6): 963-977.
[161] HE Y X, WANG H Y, MENG B W, et al. Appraisal of alkenone- and archaeal ether-based salinity indicators in mid-latitude Asian lakes [J]. Earth and Planetary Science Letters, 2020, 538: 116236.
[162] LI J J, PANCOST R D, NAAFS B D A, et al. Multiple environmental and ecological controls on archaeal ether lipid distributions in saline ponds [J]. Chemical Geology, 2019, 529: 119293.
[163] LIPP J S, HINRICHS K-U. Structural diversity and fate of intact polar lipids in marine sediments [J]. Geochimica et Cosmochimica Acta, 2009, 73(22): 6816-6833.
[164] HAN R, ZHANG X, LIU J, et al. Microbial community structure and diversity within hypersaline Keke Salt Lake environments [J]. Canadian Journal of Microbiology, 2017, 63(11): 895-908.
[165] SIMACHEW A, LANZéN A, GESSESSE A, et al. Prokaryotic Community Diversity Along an Increasing Salt Gradient in a Soda Ash Concentration Pond [J]. Microbial Ecology, 2016, 71(2): 326-338.
[166] WANG Y Q, BAO G Y. Diversity of prokaryotic microorganisms in alkaline saline soil of the Qarhan Salt Lake area in the Qinghai–Tibet Plateau [J]. Scientific Reports, 2022, 12(1): 3365.
[167] XIE K H, DENG Y, ZHANG S C, et al. Prokaryotic Community Distribution along an Ecological Gradient of Salinity in Surface and Subsurface Saline Soils [J]. Scientific Reports, 2017, 7(1).
[168] SAKAI H D, NUR N, KATO S, et al. Insight into the symbiotic lifestyle of DPANN archaea revealed by cultivation and genome analyses [J]. Proceedings of the National Academy of Sciences, 2022, 119(3): e2115449119.
[169] KRAUSE S, GFRERER S, VON KüGELGEN A, et al. The importance of biofilm formation for cultivation of a Micrarchaeon and its interactions with its Thermoplasmatales host [J]. Nature Communications, 2022, 13(1): 1735.
[170] JAHN U, SUMMONS R E, STURT H F, et al. Composition of the lipids of Nanoarchaeum equitans and their origin from its host Ignicoccus sp. strain KIN4/I [J]. Archives of Microbiology, 2004, 182: 404-413.
[171] MEADOR T B, BOWLES M, LAZAR C S, et al. The archaeal lipidome in estuarine sediment dominated by members of the Miscellaneous Crenarchaeotal Group [J]. Environmental microbiology, 2015, 17(7): 2441-2458.
[172] XIAO W J, XU Y P, LIN J, et al. Global scale production of brGDGTs by benthic marine bacteria: Implication for developing ocean bottom environmental proxies [J]. Global and Planetary Change, 2022, 211: 103783.
[173] BLEWETT J, ELLING F J, NAAFS B D A, et al. Metabolic and ecological controls on the stable carbon isotopic composition of archaeal (isoGDGT and BDGT) and bacterial (brGDGT) lipids in wetlands and lignites [J]. Geochimica et Cosmochimica Acta, 2022, 320: 1-25.
[174] SCHOUTEN S, HOPMANS E C, SINNINGHE DAMSTé J S. The organic geochemistry of glycerol dialkyl glycerol tetraether lipids: A review [J]. Organic Geochemistry, 2013, 54: 19-61.
[175] VILLANUEVA L, DAMSTé J S S, SCHOUTEN S. A re-evaluation of the archaeal membrane lipid biosynthetic pathway [J]. Nature Reviews Microbiology, 2014, 12(6): 438-448.
修改评论