中文版 | English
题名

IS THE (133,33,8)-DIFFERENCE SET REALLY SPORADIC?

其他题名
(133,33,8)-差集是散在的吗?
姓名
姓名拼音
TANG Xiangyi
学号
12232847
学位类型
硕士
学位专业
0701 数学
学科门类/专业学位类别
07 理学
导师
QING XIANG
导师单位
数学系
论文答辩日期
2024-05-21
论文提交日期
2024-06-20
学位授予单位
南方科技大学
学位授予地点
深圳
摘要

Difference sets are important objects in the theory of combinatorial designs, which can be traced back to Singer's paper published in 1938. Systematic research began in the late 1940s with Hall's analysis of cyclic difference sets.

In Hall's 1956 paper, all cyclic difference sets with parameters (v, k, \lambda) with kin the range 3≤k≤50 were examined by using multipliers. Hall categorized the acquired cyclic difference sets, and identified merely two instances of them that fall out-side the parameters encompassed by the categories he outlined, one of them is the cyclic (133, 33, 8)-difference set, which is the subject of this thesis.

The thesis attempts to generalize the cyclic (133, 33, 8)-difference set using three methods (mainly in two directions, from the points of view of cyclotomic classes and sub-difference sets), but does not find any further nontrivial examples.

Since sub-difference sets of Singer difference sets and two-weight irreducible cyclic codes are equivalent objects, as Schmidt and White gave a conjecturally complete clas-sification of two-weight irreducible cyclic codes, one can obtain the conjectural classifi-cation of all nontrivial sub-difference sets of Singer difference sets, and one of which is the cyclic (133, 33, 8)-difference set. Given the numerical conditions, Schmidt and White verified the cases for u≤100, 000, where u is the index. The thesis improves the upper bound of the conjecture for u≤10, 000, 000, and rules out some small cases of difference sets with Singer parameters.

 

关键词
语种
英语
培养类别
独立培养
入学年份
2022
学位授予年份
2024-07
参考文献列表

[1] SINGER J. A THEOREM IN FINITE PROTECTIVE GEOMETRY AND SOME APPLICA-TIONS TO NUMBER THEORY[Z].
[2] HALL M. A Survey of Difference Sets[J]. Proceedings of the American Mathematical Society, 1956, 7(6): 975-986.
[3] SCHMIDT B, WHITE C. All Two-Weight Ireducible Cyclic Codes?[J]. Finite Ficlds and Their Applications, 2002, 8(1): 1-17.
[4] DINITZ J H, STINSON D R. Contemporary design theory : a cllction of surveys[C/OL]// 1992. htpt:/pisemnanticscholar .org/CorpusID:118355962.
[5] STORER T. Cyclotomies and Difference Sets modulo a Product of Two Distinct Odd Primes. [J]. Michigan Mathematical Jourmal, 1967, 14(1).
[6] BRUCK R H, RYSER H J. The Nonexistence of Certain Finite Projctive Planes[J/OL]. Canadian Journal of Mathematics, 1949, 1: 88 - 93. htps:/api. semanticscholar.org/CorpusID: 123440808.
[7] CHOWLA s, RYSER H J. Combinatorial Problems[J/OL]. Canadian Journal of Mathematics, 1950, 2: 93.99. htpt:/api.semanticscholar.or/CorpuslD:247194753.3
[8] RYSER H. The Existence of Symmetric Block Designs[/OL]. J. Comb. Theory, Ser. A, 1982, 32: 103-105. htp:/api. semanticscholar .org/CorpusID:3281 1940.
[9] TURYN R J. Character sums and dfrence sets.[J/OL]. Pacific Jourmal of Mathematics, 1965, 15: 319-346. htps:/apisemanticscholar.org/CorpusID:59478374.
[10] YAMAMOTO K. Decomposition fields of dfference sets[J/OL]. Pacific Journal of Mathematics, 1963, 13: 337-352. ht:/apisemanticscholar.org/CorpusID:120980698.
[11] HALL J. Cyclic projective planes[J/OL]. Duke Mathematical Journal, 1947, 14: 1079-1090. https://apisemanticscholar. org/CorpusID: I 19846649.
[12] BRUCK R H. DIFFERENCE SETS IN A FINITE GROUP[J/OL]. Transactions of the American Mathenatical Society, 1955, 78: 464-481. htpsp//api. semanticscholar .org/CorpusID: 120486510.
[13] MCFARLAND R B, MANN H B. On Multipliers of Difference Sets[J/OL]. Canadian Journal of Mathematics, 1969, 17: 541- 542. htpt:/pi semanticscholar.org/CorpusID:116891713.
[14] MCFARLAND R L, RICE B F Translates and multipliers of abelian diference sets[C/OL]// 1978. htps:/pisemanticscholar .org/CorpusID:120867665.
[15] MENON K V. Difference sets in Abelian groups[C/OL/1960. htps:/apisemanticscholar.orog/CorpusID:121354590.
[16] BAUMERT L D. Lecture Notes in Mathematics, 182: Cyclic difference sets[M].1st ed. 1971.ed. Berlin, Germany: Springer, 1971.
[17] LEHMER E. On Residue Difference Sets[/OL]. Canadian Jourmal of Mathematics, 1953, 5: 425 - 432. htpt:/api.scmantiscolar.on/CorusID:234799999
[18] BETH T, JUNGNICKEL D, LENZ H. Design Theory[M]. 2nd ed. Cambridge University Press, 1999.
[19] STANTON R G, SPROTTD A. A Family of Difference Sets[]. Canadian Journal of Mathematics, 1958, 10: 73-77.
[20] WHITEMAN A L. A Family of Difference Sets[J]. llinois Journal of Mathematics, 1962, 6 (1): 107-121.
[21] STORER T. Cyclotomy and difference sets[C/OL/1967. hts:/api.semanticholar.org/CorpusID:122519238.
[22] CAO Z. On Whiteman's and Storer's diference sets[J/OL]. Jourmal of Statistical Planning and Inference, 2001, 94: 147-154. htps:/apisemanticscholar.org/CorpusID:120449754.
[23] HALL M. Combinatorial Theory: HallCombinatorial[M]. Hoboken, N, USA: John Wiley & Sons, Inc., 1988.
[24] CALDERBANK R, KANTOR W M. The Geometry of Two-Weight Codes[J]. Bulletin of the London Mathematical Society, 1986, 18(2): 97-122.
[25] MOMIHARA K, XIANG Q. Strongly Regular Cayley Graphs from Partitions of Subdifference Sets of the Singer Difference Sets[]. Finite Fields and their Applications, 2018, 50: 222-250.
[26] BROUWER A E, HAEMERS W H. Spectra of Graphs[C/OL//2011. https://pisemanticscholaror/CorpusID:15634047.
[27] YAMAMOTO K. On congruences arising from relative Gauss sums[J]. Number Theory and Combinatorics, 1984: 423-446.
[28] MACWILLIAMS F, MANN H. On the p-rank of the design matrix of a difference set[J/OL]. Information and Contol, 1968, 12(5): 474- 488. https://www sciencedirect.com/science/article/pi/S0019995868905342. DOI: htp://oi.org/10.1016/S0019- 9958(68)90534-2.
[29] GOETHALS J M, DELSARTE P. On a class of majority-logic decodable cyclic codes[J/OL]. IEEE Trans. Inf. Theory, 1968, 14: 182-188. htps:/apisemanticschola org/CopusID:465861
[30] SMITH K. On the p-rank of the incidence matrix of points and hyperplanes in a finite projective geometry[J/OL]. Journal of Combinatorial Theory, 1969, 7(2): 122- 129. htp://www.sciencedirect.com/science/article/pii/S002 1980069800463. DOI: htps://doi org/10.1016/S0021-9800(69)80046- -3.
[31] EVANS R, HOLLMANN H, KRATTENTHALER C, et al. Gausss Sums, Jacobi Sums, and p-ranks of Cyclic Difference Sets[A]. 1998. arXiv: math/9807029.
[32] MCFARLAND R L. Sub-Difference Sets of Hadamard Difference Sets[]. Journal of Combinatorial Theory, Series A, 1990, 54(1): 112-122.
[33] MCELIECE R J. Ireducible Cyclic Codes and Gauss Sums[C]/HALL M, VAN LINT J H. Combinatorics. Dordrecht: Springer Netherlands, 1975: 185-202.
[34] GORDON B, MILLS W H, WELCH L R. Some New Difference Sets[/OL]. Canadian Journal of Mathematics, 1962, 14: 614- 625. http://apisermanticscholar.org/CorpusID:120892899.
[35] ARASU K T, HOLLMANN H D L, PLAYER K J, et al. ON THE p-RANKS OF GMW DIFFERENCE SETS[C/OL//2015. htpt:/pi.semanticscholar.org/CorpusID:123575905.
[36] GOLOMB s W. The Use of Combinatorial Structures in Communication Signal Decsign [M/OL]//Applications of Combinatorial Mathematics: Based on the proceedings of a conference on the Applications of Combinatorial Mathematics, organized by the Institute of Mathematics and its Applications and held at the University of Oxford in December 1994. Oxford University Press, 1997. htps:p//i.or/10./109/0/0/978019851 922.003.0005.
[37] SEGRE B. Ovals in a finite projective plane[J]. Canadian Journal of Mathematics, 1955, 7: 414-416.
[38] HIRSCHFELDJ W P. Projective geometries over finite fields[M]. Oxford University Press, 1998.
[39] GLYNN D. Two new sequences of ovals in finite Desarguesian planes of even order[J/OL]. Lecture Notes in Mathematics -Springer-verlag, 1983: 217-229. DOL: 10.1007/BFb0071521.
[40] MASCHIETTI A. Diference Sets and Hyperovals[J/OL]. Designs, Codes and Cryptography, 1998, 14: 89-98. htp://api.semanticscholar.org/CorpusID:9392408.
[41] DILLON J, DOBBERTIN H. New Cyclic Difference Sets with Singer Parameters[]. Finite Fields and Their Applications, 2004, 10(3): 342-389.
[42] NO J s, CHUNG H, YUN M. Binary Pseudorandom Sequences of Period 2m-1 with Ideal Autocorrelation Generated by the Polynomial zd + (z+1)d[J/OL]. IEEE Trans. Inf. Theory, 1998, 44: 1278-1282. htps://api.scmanticscholar.org/CorpusID:32641934.
[43] COLBOURN C J, DINITZ J H. Handbook of Combinatorial Designs[C/OL]/2006. https://api.semanticscholar.org/CorpusID:58219831.
[44] GAAL P, GOLOMB S W. Exhaustive determination of (1023, 511, 255)-cyclic difference sets[J/OL]. Math. Comput, 2001, 70: 357-366. htps:/apisematiccholar.or/CorpusID:10960299.
[45] ARASU K T, PLAYER K J. A New Family of Cyclic Difference Scts with Singer Parameters in Characteristic Three[J/OL]. Designs, Codes and Cryptography, 2003, 28: 75-91. https://apisemntischolar. org/CorpusID:21169693.
[46] HELLESETH T, KUMAR V, MARTINSEN H. A new family of termary sequences with idealtwo-level autocorrelation function[C/OL//2000 IEEE International Symposium on Information Theory (Cat. No.00CH37060). 2000: 328-. DOI: 10.1 109/IT.200.866626.

所在学位评定分委会
数学
国内图书分类号
O157.2
来源库
人工提交
成果类型学位论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/765731
专题南方科技大学
理学院_数学系
推荐引用方式
GB/T 7714
Tang XY. IS THE (133,33,8)-DIFFERENCE SET REALLY SPORADIC?[D]. 深圳. 南方科技大学,2024.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可 操作
12232847-唐湘怡-数学系.pdf(978KB)----限制开放--请求全文
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[唐湘怡]的文章
百度学术
百度学术中相似的文章
[唐湘怡]的文章
必应学术
必应学术中相似的文章
[唐湘怡]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。