[1] MANCHON A, KOO H C, NITTA J, et al. New Perspectives for Rashba Spin–Orbit Coupling [J/OL]. Nature Materials, 2015, 14(9): 871-882. DOI: 10.1038/nmat4360.
[2] FOLDY L L, WOUTHUYSEN S A. On the Dirac Theory of Spin 1/2 Particles and Its Non-Relativistic Limit[J/OL]. Physical Review, 1950, 78(1): 29-36. DOI: 10.1103/physrev.78.29.
[3] FOLDY L L. The Electromagnetic Properties of Dirac Particles[J/OL]. Physical Review, 1952, 87(5): 688-693. DOI: 10.1103/physrev.87.688.
[4] DRESSELHAUS G. Spin-Orbit Coupling Effects in Zinc Blende Structures[J/OL]. Physical Review, 1955, 100(2): 580-586. DOI: 10.1103/physrev.100.580.
[5] BYCHKOV Y A, RASHBA É I. Properties of a 2D Electron Gas with Lifted Spectral Degeneracy[J/OL]. Soviet Journal of Experimental and Theoretical Physics Letters, 1984, 39: 78.https://ui.adsabs.harvard.edu/abs/1984JETPL..39...78B.
[6] DRESSELHAUS G, KIP A F, KITTEL C. Cyclotron Resonance of Electrons and Holes in Silicon and Germanium Crystals[J/OL]. Physical Review, 1955, 98(2): 368-384. DOI: 10.1103/physrev.98.368.
[7] WILLARDSON R K. Semiconductors and Semimetals: v.4 Semiconductors and Semimetals[M]. Burlington: Elsevier, 1968.
[8] DRESSELHAUS M S. Group Theory[M]. Berlin/Heidelberg: Springer Berlin Heidelberg,2008.
[9] VAS’KO F T. Spin Splitting in the Spectrum of Two-Dimensional Electrons Due to the Surface Potential[J/OL]. Soviet Journal of Experimental and Theoretical Physics Letters, 1979, 30: 541. https://ui.adsabs.harvard.edu/abs/1979JETPL..30..541V.
[10] MAAß H, BENTMANN H, SEIBEL C, et al. Spin-Texture Inversion in the Giant Rashba Semiconductor BiTeI[J/OL]. Nature Communications, 2016, 7(1): 11621. DOI: 10.1038/ncomms11621.
[11] FENG Y, JIANG Q, FENG B, et al. Rashba-like Spin Splitting along Three Momentum Directions in Trigonal Layered PtBi2[J/OL]. Nature Communications, 2019, 10(1): 4765. DOI: 10.1038/s41467-019-12805-2.
[12] KEPENEKIAN M, EVEN J. Rashba and Dresselhaus Couplings in Halide Perovskites: Accomplishments and Opportunities for Spintronics and Spin–Orbitronics[J/OL]. The Journal of Physical Chemistry Letters, 2017, 8(14): 3362-3370. DOI: 10.1021/acs.jpclett.7b01015.
[13] NITTA J, AKAZAKI T, TAKAYANAGI H, et al. Gate Control of Spin-Orbit Interaction in an Inverted In0.53Ga0.47As/In0.52Al0.48As Heterostructure[J/OL]. Physical Review Letters, 1997, 78 (7): 1335-1338. DOI: 10.1103/physrevlett.78.1335.
[14] DATTA S, DAS B. Electronic Analog of the Electro-Optic Modulator[J/OL]. Applied Physics Letters, 1990, 56(7): 665-667. DOI: 10.1063/1.102730.131
[15] BERNEVIG B A, ORENSTEIN J, ZHANG S C. Exact SU(2) Symmetry and Persistent Spin Helix in a Spin-Orbit Coupled System[J/OL]. Physical Review Letters, 2006, 97(23): 236601. DOI: 10.1103/physrevlett.97.236601.
[16] SCHLIEMANN J. Colloquium: Persistent Spin Textures in Semiconductor Nanostructures[J/OL]. Reviews of Modern Physics, 2017, 89(1): 011001. DOI: 10.1103/revmodphys.89.011001.
[17] TAO L L, TSYMBAL E Y. Persistent Spin Texture Enforced by Symmetry[J/OL]. Nature Communications, 2018, 9(1): 2763. DOI: 10.1038/s41467-018-05137-0.
[18] KORALEK J D, WEBER C P, ORENSTEIN J, et al. Emergence of the Persistent Spin Helix in Semiconductor Quantum Wells[J/OL]. Nature, 2009, 458(7238): 610-613. DOI: 10.1038/nature07871.
[19] DERY H, DALAL P, CYWIńSKI L, et al. Spin-Based Logic in Semiconductors for Reconfigurable Large-scale Circuits[J/OL]. Nature, 2007, 447(7144): 573-576. DOI: 10.1038/nature05833.
[20] BEHIN-AEIN B, DATTA D, SALAHUDDIN S, et al. Proposal for an All-Spin Logic Device with Built-in Memory[J/OL]. Nature Nanotechnology, 2010, 5(4): 266-270. DOI: 10.1038/nnano.2010.31.
[21] MANIPATRUNI S, NIKONOV D E, LIN C C, et al. Scalable Energy-Efficient Magnetoelectric Spin-Orbit Logic[J/OL]. Nature, 2018, 565(7737): 35-42. DOI: 10.1038/s41586-018-0770-2.
[22] PHAM V T, GROEN I, MANIPATRUNI S, et al. Spin-Orbit Magnetic State Readout in Scaled Ferromagnetic/Heavy Metal Nanostructures[J/OL]. Nature Electronics, 2020, 3(6): 309-315. DOI: 10.1038/s41928-020-0395-y.
[23] DIENY B, PREJBEANU I L, GARELLO K, et al. Opportunities and Challenges for Spintronics in the Microelectronics Industry[J/OL]. Nature Electronics, 2020, 3(8): 446-459. DOI: 10.1038/s41928-020-0461-5.
[24] ŽUTIć I, FABIAN J, DAS SARMA S. Spintronics: Fundamentals and Applications[J/OL]. Reviews of Modern Physics, 2004, 76(2): 323-410. DOI: 10.1103/revmodphys.76.323.
[25] SCHLIEMANN J, EGUES J C, LOSS D. Nonballistic Spin-Field-Effect Transistor[J/OL]. Physical Review Letters, 2003, 90(14): 146801. DOI: 10.1103/physrevlett.90.146801.
[26] LIU X, LIU X J, SINOVA J. Spin Dynamics in the Strong Spin-Orbit Coupling Regime[J/OL]. Physical Review B, 2011, 84(3): 035318. DOI: 10.1103/physrevb.84.035318.
[27] ALOMAR M I. Spin and Charge Transport in Thermally and AC Driven Nanodevices[M]. Universidad de las Islas Baleares, 2017.
[28] COEY J M D. Magnetism and Magnetic Materials[M]. Repr. ed. Cambridge [u.a.]: Cambridge Univ. Press, 2013.
[29] JILES D. Introduction to Magnetism and Magnetic Materials[M/OL]. CRC Press, 2015. DOI: 10.1201/b18948.
[30] LANDAU L. The Theory of Phase Transitions[J/OL]. Nature, 1936, 138(3498): 840-841. DOI: 10.1038/138840a0.132
[31] MERMIN N D, WAGNER H. Absence of Ferromagnetism or Antiferromagnetism in One- or Two-Dimensional Isotropic Heisenberg Models[J/OL]. Physical Review Letters, 1966, 17(22): 1133-1136. DOI: 10.1103/physrevlett.17.1133.
[32] BEREZINSKIǏ V L. Destruction of Long-range Order in One-dimensional and Twodimensional Systems Possessing a Continuous Symmetry Group. II. Quantum Systems[J/OL]. Soviet Journal of Experimental and Theoretical Physics, 1972, 34: 610. https://ui.adsabs.harvard.edu/abs/1972JETP...34..610B.
[33] KOSTERLITZ J M, THOULESS D J. Ordering, Metastability and Phase Transitions in Two-Dimensional Systems[J/OL]. Journal of Physics C: Solid State Physics, 1973, 6(7): 1181-1203. DOI: 10.1088/0022-3719/6/7/010.
[34] KUO C T, NEUMANN M, BALAMURUGAN K, et al. Exfoliation and Raman Spectroscopic Fingerprint of Few-Layer NiPS3 Van der Waals Crystals[J/OL]. Scientific Reports, 2016, 6(1). DOI: 10.1038/srep20904.
[35] DU K Z, WANG X Z, LIU Y, et al. Weak Van der Waals Stacking, Wide-Range Band Gap, and Raman Study on Ultrathin Layers of Metal Phosphorus Trichalcogenides[J/OL]. ACS Nano, 2015, 10(2): 1738-1743. DOI: 10.1021/acsnano.5b05927.
[36] LEE J U, LEE S, RYOO J H, et al. Ising-Type Magnetic Ordering in Atomically Thin FePS3[J/OL]. Nano Letters, 2016, 16(12): 7433-7438. DOI: 10.1021/acs.nanolett.6b03052.
[37] WANG X, DU K, FREDRIK LIU Y Y, et al. Raman Spectroscopy of Atomically Thin Two-Dimensional Magnetic Iron Phosphorus Trisulfide (FePS3) Crystals[J/OL]. 2D Materials, 2016, 3(3): 031009. DOI: 10.1088/2053-1583/3/3/031009.
[38] LIN M W, ZHUANG H L, YAN J, et al. Ultrathin Nanosheets of CrSiTe3: A Semiconducting Two-Dimensional Ferromagnetic Material[J/OL]. Journal of Materials Chemistry C, 2016, 4(2): 315-322. DOI: 10.1039/c5tc03463a.
[39] GONG C, LI L, LI Z, et al. Discovery of Intrinsic Ferromagnetism in Two-Dimensional Van der Waals Crystals[J/OL]. Nature, 2017, 546(7657): 265-269. DOI: 10.1038/nature22060.
[40] HUANG B, CLARK G, NAVARRO-MORATALLA E, et al. Layer-Dependent Ferromagnetism in a Van der Waals Crystal down to the Monolayer Limit[J/OL]. Nature, 2017, 546(7657): 270-273. DOI: 10.1038/nature22391.
[41] BONILLA M, KOLEKAR S, MA Y, et al. Strong Room-Temperature Ferromagnetism in VSe2 Monolayers on Van der Waals Substrates[J/OL]. Nature Nanotechnology, 2018, 13(4): 289-293. DOI: 10.1038/s41565-018-0063-9.
[42] O’HARA D J, ZHU T, TROUT A H, et al. Room Temperature Intrinsic Ferromagnetism in Epitaxial Manganese Selenide Films in the Monolayer Limit[J/OL]. Nano Letters, 2018, 18(5): 3125-3131. DOI: 10.1021/acs.nanolett.8b00683.
[43] BURCH K S, MANDRUS D, PARK J G. Magnetism in Two-Dimensional Van der Waals Materials[J/OL]. Nature, 2018, 563(7729): 47-52. DOI: 10.1038/s41586-018-0631-z.
[44] GIBERTINI M, KOPERSKI M, MORPURGO A F, et al. Magnetic 2D Materials and Heterostructures[J/OL]. Nature Nanotechnology, 2019, 14(5): 408-419. DOI: 10.1038/s41565-019-0438-6.133
[45] KLITZING K V, DORDA G, PEPPER M. New Method for High-Accuracy Determination of the Fine-Structure Constant Based on Quantized Hall Resistance[J/OL]. Physical Review Letters, 1980, 45(6): 494-497. DOI: 10.1103/physrevlett.45.494.
[46] TSUI D C, STORMER H L, GOSSARD A C. Two-Dimensional Magnetotransport in the Extreme Quantum Limit[J/OL]. Physical Review Letters, 1982, 48(22): 1559-1562. DOI: 10.1103/physrevlett.48.1559.
[47] BERRY M V. Quantal Phase Factors Accompanying Adiabatic Changes[J/OL]. Proceedings of the Royal Society of London Series A, 1984, 392(1802): 45-57. https://ui.adsabs.harvard.edu/abs/1984RSPSA.392...45B. DOI: 10.1098/rspa.1984.0023.
[48] THOULESS D J, KOHMOTO M, NIGHTINGALE M P, et al. Quantized Hall Conductance in a Two-Dimensional Periodic Potential[J/OL]. Physical Review Letters, 1982, 49(6): 405-408. DOI: 10.1103/physrevlett.49.405.
[49] HALDANE F D M. Model for a Quantum Hall Effect without Landau Levels: Condensed-Matter Realization of the “Parity Anomaly”[J/OL]. Physical Review Letters, 1988, 61(18): 2015-2018. DOI: 10.1103/physrevlett.61.2015.
[50] HASAN M Z, KANE C L. Colloquium: Topological Insulators[J/OL]. Reviews of Modern Physics, 2010, 82(4): 3045-3067. DOI: 10.1103/revmodphys.82.3045.
[51] MOORE J E. The Birth of Topological Insulators[J/OL]. Nature, 2010, 464(7286): 194-198. DOI: 10.1038/nature08916.
[52] QI X L, ZHANG S C. Topological Insulators and Superconductors[J/OL]. Reviews of Modern Physics, 2011, 83(4): 1057-1110. DOI: 10.1103/revmodphys.83.1057.
[53] HASAN M Z, MOORE J E. Three-Dimensional Topological Insulators[J/OL]. Annual Review of Condensed Matter Physics, 2011, 2(1): 55-78. DOI: 10.1146/annurev-conmatphys-062910-140432.
[54] ANDO Y. Topological Insulator Materials[J/OL]. Journal of the Physical Society of Japan, 2013, 82(10): 102001. DOI: 10.7566/jpsj.82.102001.
[55] KANE C L, MELE E J. 𝑍2 Topological Order and the Quantum Spin Hall Effect[J/OL]. Physical Review Letters, 2005, 95(14): 146802. DOI: 10.1103/physrevlett.95.146802.
[56] KANE C L, MELE E J. Quantum Spin Hall Effect in Graphene[J/OL]. Physical Review Letters, 2005, 95(22): 226801. DOI: 10.1103/physrevlett.95.226801.
[57] BERNEVIG B A, HUGHES T L, ZHANG S C. Quantum Spin Hall Effect and Topological Phase Transition in HgTe Quantum Wells[J/OL]. Science, 2006, 314(5806): 1757-1761. DOI: 10.1126/science.1133734.
[58] KÖNIG M, WIEDMANN S, BRÜNE C, et al. Quantum Spin Hall Insulator State in HgTe Quantum Wells[J/OL]. Science, 2007, 318(5851): 766-770. DOI: 10.1126/science.1148047.
[59] LIU C, HUGHES T L, QI X L, et al. Quantum Spin Hall Effect in Inverted Type-II Semiconductors[J/OL]. Physical Review Letters, 2008, 100(23): 236601. DOI: 10.1103/physrevlett.100.236601.
[60] DU L, KNEZ I, SULLIVAN G, et al. Robust Helical Edge Transport in Gated InAs/GaSb Bilayers[J/OL]. Physical Review Letters, 2015, 114(9): 096802. DOI: 10.1103/physrevlett.114.096802.134
[61] QIAN X, LIU J, FU L, et al. Quantum Spin Hall Effect in Two-Dimensional Transition Metal Dichalcogenides[J/OL]. Science, 2014, 346(6215): 1344-1347. DOI: 10.1126/science.1256815.
[62] WU S, FATEMI V, GIBSON Q D, et al. Observation of the Quantum Spin Hall Effect up to 100 Kelvin in a Monolayer Crystal[J/OL]. Science, 2018, 359(6371): 76-79. DOI: 10.1126/science.aan6003.
[63] WEISS N O, ZHOU H, LIAO L, et al. Graphene: An Emerging Electronic Material[J/OL]. Advanced Materials, 2012, 24(43): 5782-5825. DOI: 10.1002/adma.201201482.
[64] FU L, KANE C L, MELE E J. Topological Insulators in Three Dimensions[J/OL]. Physical Review Letters, 2007, 98(10): 106803. DOI: 10.1103/physrevlett.98.106803.
[65] FU L, KANE C L. Topological Insulators with Inversion Symmetry[J/OL]. Physical Review B, 2007, 76(4): 045302. DOI: 10.1103/physrevb.76.045302.
[66] ZHANG H, LIU C X, QI X L, et al. Topological Insulators in Bi2Se3, Bi2Te3 and Sb2Te3 with a Single Dirac Cone on the Surface[J/OL]. Nature Physics, 2009, 5(6): 438-442. DOI: 10.1038/nphys1270.
[67] LIU C X, QI X L, ZHANG H, et al. Model Hamiltonian for Topological Insulators[J/OL]. Physical Review B, 2010, 82(4): 045122. DOI: 10.1103/physrevb.82.045122.
[68] HSIEH D, QIAN D, WRAY L, et al. A Topological Dirac Insulator in a Quantum Spin Hall Phase[J/OL]. Nature, 2008, 452(7190): 970-974. DOI: 10.1038/nature06843.
[69] XIA Y, QIAN D, HSIEH D, et al. Observation of a Large-Gap Topological-Insulator Class with a Single Dirac Cone on the Surface[J/OL]. Nature Physics, 2009, 5(6): 398-402. DOI: 10.1038/nphys1274.
[70] HERRING C. Accidental Degeneracy in the Energy Bands of Crystals[J/OL]. Physical Review, 1937, 52(4): 365-373. DOI: 10.1103/physrev.52.365.
[71] WAN X, TURNER A M, VISHWANATH A, et al. Topological Semimetal and Fermi-Arc Surface States in the Electronic Structure of Pyrochlore Iridates[J/OL]. Physical Review B, 2011, 83(20): 205101. DOI: 10.1103/physrevb.83.205101.
[72] WENG H, FANG C, FANG Z, et al. Weyl Semimetal Phase in Noncentrosymmetric Transition-Metal Monophosphides[J/OL]. Physical Review X, 2015, 5(1): 011029. DOI: 10.1103/physrevx.5.011029.
[73] XU S Y, BELOPOLSKI I, ALIDOUST N, et al. Discovery of a Weyl Fermion Semimetal and Topological Fermi Arcs[J/OL]. Science, 2015, 349(6248): 613-617. DOI: 10.1126/science.aaa9297.
[74] LIU E, SUN Y, KUMAR N, et al. Giant Anomalous Hall Effect in a Ferromagnetic Kagome-Lattice Semimetal[J/OL]. Nature Physics, 2018, 14(11): 1125-1131. DOI: 10.1038/s41567-018-0234-5.
[75] LIU D F, LIANG A J, LIU E K, et al. Magnetic Weyl Semimetal Phase in a Kagomé Crystal[J/OL]. Science, 2019, 365(6459): 1282-1285. DOI: 10.1126/science.aav2873.
[76] LV B, QIAN T, DING H. Experimental Perspective on Three-Dimensional Topological Semimetals[J/OL]. Reviews of Modern Physics, 2021, 93(2): 025002. DOI: 10.1103/revmodphys.93.025002.135
[77] WANG Z, SUN Y, CHEN X Q, et al. Dirac Semimetal and Topological Phase Transitions in A3Bi (A=Na, K, Rb)[J/OL]. Physical Review B, 2012, 85(19): 195320. DOI: 10.1103/physrevb.85.195320.
[78] WANG Z, WENG H, WU Q, et al. Three-Dimensional Dirac Semimetal and Quantum Transport in Cd3As2[J/OL]. Physical Review B, 2013, 88(12): 125427. DOI: 10.1103/physrevb.88.125427.
[79] YOUNG S M, ZAHEER S, TEO J C Y, et al. Dirac Semimetal in Three Dimensions[J/OL]. Physical Review Letters, 2012, 108(14): 140405. DOI: 10.1103/physrevlett.108.140405.
[80] LIU Z K, ZHOU B, ZHANG Y, et al. Discovery of a Three-Dimensional Topological Dirac Semimetal, Na3Bi[J/OL]. Science, 2014, 343(6173): 864-867. DOI: 10.1126/science.1245085.
[81] NEUPANE M, XU S Y, SANKAR R, et al. Observation of a Three-Dimensional Topological Dirac Semimetal Phase in High-Mobility Cd3As2[J/OL]. Nature Communications, 2014, 5(1): 3786. DOI: 10.1038/ncomms4786.
[82] WENG H, FANG C, FANG Z, et al. Topological Semimetals with Triply Degenerate Nodal Points in 𝜃-Phase Tantalum Nitride[J/OL]. Physical Review B, 2016, 93(24): 241202. DOI: 10.1103/physrevb.93.241202.
[83] ZHU Z, WINKLER G W, WU Q, et al. Triple Point Topological Metals[J/OL]. Physical Review X, 2016, 6(3): 031003. DOI: 10.1103/physrevx.6.031003.
[84] WENG H, FANG C, FANG Z, et al. Coexistence of Weyl Fermion and Massless Triply Degenerate Nodal Points[J/OL]. Physical Review B, 2016, 94(16): 165201. DOI: 10.1103/physrevb.94.165201.
[85] LV B Q, FENG Z L, XU Q N, et al. Observation of Three-Component Fermions in the Topological Semimetal Molybdenum Phosphide[J/OL]. Nature, 2017, 546(7660): 627-631. DOI: 10.1038/nature22390.
[86] KUMAR N, SUN Y, NICKLAS M, et al. Extremely High Conductivity Observed in the Triple Point Topological Metal MoP[J/OL]. Nature Communications, 2019, 10(1): 2475. DOI: 10.1038/s41467-019-10126-y.
[87] KIM Y, WIEDER B J, KANE C, et al. Dirac Line Nodes in Inversion-Symmetric Crystals[J/OL]. Physical Review Letters, 2015, 115(3): 036806. DOI: 10.1103/physrevlett.115.036806.
[88] FANG C, CHEN Y, KEE H Y, et al. Topological Nodal Line Semimetals with and without Spin-Orbital Coupling[J/OL]. Physical Review B, 2015, 92(8): 081201. DOI: 10.1103/physrevb.92.081201.
[89] WENG H, LIANG Y, XU Q, et al. Topological Node-Line Semimetal in Three-Dimensional Graphene Networks[J/OL]. Physical Review B, 2015, 92(4): 045108. DOI: 10.1103/physrevb.92.045108.
[90] YU R, WENG H, FANG Z, et al. Topological Node-Line Semimetal and Dirac Semimetal State in Antiperovskite Cu3PdN[J/OL]. Physical Review Letters, 2015, 115(3): 036807. DOI: 10.1103/physrevlett.115.036807.
[91] SCHOOP L M, ALI M N, STRAßER C, et al. Dirac Cone Protected by Non-Symmorphic Symmetry and Three-Dimensional Dirac Line Node in ZrSiS[J/OL]. Nature Communications, 2016, 7(1): 11696. DOI: 10.1038/ncomms11696.136
[92] XU Q, YU R, FANG Z, et al. Topological Nodal Line Semimetals in the CaP3 Family of Materials[J/OL]. Physical Review B, 2017, 95(4): 045136. DOI: 10.1103/physrevb.95.045136.
[93] ZHONG C, CHEN Y, XIE Y, et al. Towards Three-Dimensional Weyl-Surface Semimetals in Graphene Networks[J/OL]. Nanoscale, 2016, 8(13): 7232-7239. DOI: 10.1039/c6nr00882h.
[94] LIANG Q F, ZHOU J, YU R, et al. Node-Surface and Node-Line Fermions from Nonsymmorphic Lattice Symmetries[J/OL]. Physical Review B, 2016, 93(8): 085427. DOI: 10.1103/physrevb.93.085427.
[95] WU W, LIU Y, LI S, et al. Nodal Surface Semimetals: Theory and Material Realization[J/OL]. Physical Review B, 2018, 97(11): 115125. DOI: 10.1103/physrevb.97.115125.
[96] YANG T, ZHANG X. Nearly Flat Nodal Surface States in Pseudo-One-Dimensional Molybdenum Monochalcogenides X(MoS)3 (X = K, Rb, and Cs)[J/OL]. Journal of Materials Chemistry C, 2020, 8(26): 9046-9054. DOI: 10.1039/d0tc01978j.
[97] ALTLAND A, ZIRNBAUER M R. Nonstandard Symmetry Classes in Mesoscopic Normal-Superconducting Hybrid Structures[J/OL]. Physical Review B, 1997, 55(2): 1142-1161. DOI: 10.1103/physrevb.55.1142.
[98] KITAEV A, LEBEDEV V, FEIGEL’MAN M. Periodic Table for Topological Insulators and Superconductors[C/OL]//AIP Conference Proceedings. AIP, 2009. DOI: 10.1063/1.3149495.
[99] RYU S, SCHNYDER A P, FURUSAKI A, et al. Topological Insulators and Superconductors: Tenfold Way and Dimensional Hierarchy[J/OL]. New Journal of Physics, 2010, 12(6): 065010. DOI: 10.1088/1367-2630/12/6/065010.
[100] FU L. Topological Crystalline Insulators[J/OL]. Physical Review Letters, 2011, 106(10): 106802. DOI: 10.1103/physrevlett.106.106802.
[101] HSIEH T H, LIN H, LIU J, et al. Topological Crystalline Insulators in the SnTe Material Class[J/OL]. Nature Communications, 2012, 3(1): 982. DOI: 10.1038/ncomms1969.
[102] TANAKA Y, REN Z, SATO T, et al. Experimental Realization of a Topological Crystalline Insulator in SnTe[J/OL]. Nature Physics, 2012, 8(11): 800-803. DOI: 10.1038/nphys2442.
[103] LIU C X, ZHANG R X, VANLEEUWEN B K. Topological Nonsymmorphic Crystalline Insulators[J/OL]. Physical Review B, 2014, 90(8): 085304. DOI: 10.1103/physrevb.90.085304.
[104] FANG C, FU L. New Classes of Three-Dimensional Topological Crystalline Insulators: Nonsymmorphic and Magnetic[J/OL]. Physical Review B, 2015, 91(16): 161105. DOI: 10.1103/physrevb.91.161105.
[105] SHIOZAKI K, SATO M, GOMI K. 𝑍2 Topology in Nonsymmorphic Crystalline Insulators: Möbius Twist in Surface States[J/OL]. Physical Review B, 2015, 91(15): 155120. DOI: 10.1103/physrevb.91.155120.
[106] ANDO Y, FU L. Topological Crystalline Insulators and Topological Superconductors: From Concepts to Materials[J/OL]. Annual Review of Condensed Matter Physics, 2015, 6(1): 361-381. DOI: 10.1146/annurev-conmatphys-031214-014501.
[107] SCHINDLER F, COOK A M, VERGNIORY M G, et al. Higher-Order Topological Insulators[J/OL]. Science Advances, 2018, 4(6). DOI: 10.1126/sciadv.aat0346.137
[108] SCHINDLER F, WANG Z, VERGNIORY M G, et al. Higher-Order Topology in Bismuth[J/OL]. Nature Physics, 2018, 14(9): 918-924. DOI: 10.1038/s41567-018-0224-7.
[109] BENALCAZAR W A, BERNEVIG B A, HUGHES T L. Quantized Electric Multipole Insulators[J/OL]. Science, 2017, 357(6346): 61-66. DOI: 10.1126/science.aah6442.
[110] SONG Z, ZHANG T, FANG Z, et al. Quantitative Mappings between Symmetry and Topology in Solids[J/OL]. Nature Communications, 2018, 9(1): 3530. DOI: 10.1038/s41467-018-06010-w.
[111] SMIT J. The Spontaneous Hall Effect in Ferromagnetics I[J/OL]. Physica, 1955, 21(6–10): 877-887. DOI: 10.1016/s0031-8914(55)92596-9.
[112] SMIT J. The Spontaneous Hall Effect in Ferromagnetics II[J/OL]. Physica, 1958, 24(1–5): 39-51. DOI: 10.1016/s0031-8914(58)93541-9.
[113] BERGER L. Side-Jump Mechanism for the Hall Effect of Ferromagnets[J/OL]. Physical Review B, 1970, 2(11): 4559-4566. DOI: 10.1103/physrevb.2.4559.
[114] KARPLUS R, LUTTINGER J M. Hall Effect in Ferromagnetics[J/OL]. Physical Review, 1954, 95(5): 1154-1160. DOI: 10.1103/physrev.95.1154.
[115] SUNDARAM G, NIU Q. Wave-Packet Dynamics in Slowly Perturbed Crystals: Gradient Corrections and Berry-Phase Effects[J/OL]. Physical Review B, 1999, 59(23): 14915-14925. DOI: 10.1103/physrevb.59.14915.
[116] CZESCHKA F D. Spin Currents in Metallic Nanostructures[Z]. Technische Universität München, 2011.
[117] YU R, ZHANG W, ZHANG H J, et al. Quantized Anomalous Hall Effect in Magnetic Topological Insulators[J/OL]. Science, 2010, 329(5987): 61-64. DOI: 10.1126/science.1187485.
[118] CHANG C Z, ZHANG J, FENG X, et al. Experimental Observation of the Quantum Anomalous Hall Effect in a Magnetic Topological Insulator[J/OL]. Science, 2013, 340(6129): 167-170. DOI: 10.1126/science.1234414.
[119] ZHANG D, SHI M, ZHU T, et al. Topological Axion States in the Magnetic Insulator MnBi2Te4 with the Quantized Magnetoelectric Effect[J/OL]. Physical Review Letters, 2019, 122(20): 206401. DOI: 10.1103/physrevlett.122.206401.
[120] LI J, LI Y, DU S, et al. Intrinsic Magnetic Topological Insulators in Van der Waals Layered MnBi2Te4-Family Materials[J/OL]. Science Advances, 2019, 5(6). DOI: 10.1126/sciadv.aaw5685.
[121] SUN H, XIA B, CHEN Z, et al. Rational Design Principles of the Quantum Anomalous Hall Effect in Superlatticelike Magnetic Topological Insulators[J/OL]. Physical Review Letters, 2019, 123(9): 096401. DOI: 10.1103/physrevlett.123.096401.
[122] DENG Y, YU Y, SHI M Z, et al. Quantum Anomalous Hall Effect in Intrinsic Magnetic Topological Insulator MnBi2Te4[J/OL]. Science, 2020, 367(6480): 895-900. DOI: 10.1126/science.aax8156.
[123] DE GROOT R A, MUELLER F M, ENGEN P G V, et al. New Class of Materials: Half-Metallic Ferromagnets[J/OL]. Physical Review Letters, 1983, 50(25): 2024-2027. DOI: 10.1103/physrevlett.50.2024.138
[124] DEDKOV Y S, RüDIGER U, GüNTHERODT G. Evidence for the Half-Metallic Ferromagnetic State of Fe3O4 by Spin-Resolved Photoelectron Spectroscopy[J/OL]. Physical Review B, 2002, 65(6): 064417. DOI: 10.1103/physrevb.65.064417.
[125] SINOVA J, VALENZUELA S O, WUNDERLICH J, et al. Spin Hall Effects[J/OL]. Reviews of Modern Physics, 2015, 87(4): 1213-1260. DOI: 10.1103/revmodphys.87.1213.
[126] D’YAKONOV M I, PEREL’ V I. Possibility of Orienting Electron Spins with Current[J/OL]. Soviet Journal of Experimental and Theoretical Physics Letters, 1971, 13: 467. https://ui.adsabs.harvard.edu/abs/1971JETPL..13..467D.
[127] HIRSCH J E. Spin Hall Effect[J/OL]. Physical Review Letters, 1999, 83(9): 1834-1837. DOI: 10.1103/physrevlett.83.1834.
[128] ZHANG S. Spin Hall Effect in the Presence of Spin Diffusion[J/OL]. Physical Review Letters, 2000, 85(2): 393-396. DOI: 10.1103/physrevlett.85.393.
[129] MURAKAMI S, NAGAOSA N, ZHANG S C. Dissipationless Quantum Spin Current at Room Temperature[J/OL]. Science, 2003, 301(5638): 1348-1351. DOI: 10.1126/science.1087128.
[130] SINOVA J, CULCER D, NIU Q, et al. Universal Intrinsic Spin Hall Effect[J/OL]. Physical Review Letters, 2004, 92(12): 126603. DOI: 10.1103/physrevlett.92.126603.
[131] VALENZUELA S O, TINKHAM M. Direct Electronic Measurement of the Spin Hall Effect[J/OL]. Nature, 2006, 442(7099): 176-179. DOI: 10.1038/nature04937.
[132] VALENZUELA S O, TINKHAM M. Electrical Detection of Spin Currents: The Spin-Current Induced Hall Effect (Invited)[J/OL]. Journal of Applied Physics, 2007, 101(9). DOI: 10.1063/1.2710794.
[133] SEKI T, HASEGAWA Y, MITANI S, et al. Giant Spin Hall Effect in Perpendicularly Spin-Polarized FePt/Au Devices[J/OL]. Nature Materials, 2008, 7(2): 125-129. DOI: 10.1038/nmat2098.
[134] MOSENDZ O, VLAMINCK V, PEARSON J E, et al. Detection and Quantification of Inverse Spin Hall Effect from Spin Pumping in Permalloy/Normal Metal Bilayers[J/OL]. Physical Review B, 2010, 82(21): 214403. DOI: 10.1103/physrevb.82.214403.
[135] MOROTA M, NIIMI Y, OHNISHI K, et al. Indication of Intrinsic Spin Hall Effect in 4d and 5d Transition Metals[J/OL]. Physical Review B, 2011, 83(17): 174405. DOI: 10.1103/physrevb.83.174405.
[136] INOUE J I, BAUER G E W, MOLENKAMP L W. Suppression of the Persistent Spin Hall Current by Defect Scattering[J/OL]. Physical Review B, 2004, 70(4): 041303. DOI: 10.1103/physrevb.70.041303.
[137] DIMITROVA O V. Spin-Hall Conductivity in a Two-Dimensional Rashba Electron Gas[J/OL]. Physical Review B, 2005, 71(24): 245327. DOI: 10.1103/physrevb.71.245327.
[138] NOETHER E. Invariante Variationsprobleme[J/OL]. Nachrichten von der Gesellschaft der Wissenschaften zu Göttingen, Mathematisch-Physikalische Klasse, 1918, 1918: 235-257. http://eudml.org/doc/59024.
[139] YANG C N. Thematic Melodies of Twentieth Century Theoretical Physics: Quantization, Symmetry and Phase Factor[C/OL]//Few-Body Problems in Physics. WORLD SCIENTIFIC, 2007. DOI: 10.1142/9789812706881_0001.139
[140] ANDERSON P W. More Is Different: Broken Symmetry and the Nature of the Hierarchical Structure of Science.[J/OL]. Science, 1972, 177(4047): 393-396. DOI: 10.1126/science.177.4047.393.
[141] YU R, QI X L, BERNEVIG A, et al. Equivalent Expression of 𝑍2 Topological Invariant for Band Insulators Using the Non-Abelian Berry Connection[J/OL]. Physical Review B, 2011, 84(7): 075119. DOI: 10.1103/physrevb.84.075119.
[142] FANG C, GILBERT M J, BERNEVIG B A. Bulk Topological Invariants in Noninteracting Point Group Symmetric Insulators[J/OL]. Physical Review B, 2012, 86(11): 115112. DOI: 10.1103/physrevb.86.115112.
[143] KRUTHOFF J, DE BOER J, VAN WEZEL J, et al. Topological Classification of Crystalline Insulators through Band Structure Combinatorics[J/OL]. Physical Review X, 2017, 7(4): 041069. DOI: 10.1103/physrevx.7.041069.
[144] PO H C, VISHWANATH A, WATANABE H. Symmetry-Based Indicators of Band Topology in the 230 Space Groups[J/OL]. Nature Communications, 2017, 8(1): 50. DOI: 10.1038/s41467-017-00133-2.
[145] BRADLYN B, ELCORO L, CANO J, et al. Topological Quantum Chemistry[J/OL]. Nature, 2017, 547(7663): 298-305. DOI: 10.1038/nature23268.
[146] CANO J, BRADLYN B, WANG Z, et al. Building Blocks of Topological Quantum Chemistry: Elementary Band Representations[J/OL]. Physical Review B, 2018, 97(3): 035139. DOI: 10.1103/physrevb.97.035139.
[147] VERGNIORY M G, ELCORO L, WANG Z, et al. Graph Theory Data for Topological Quantum Chemistry[J/OL]. Physical Review E, 2017, 96(2): 023310. DOI: 10.1103/physreve.96.023310.
[148] TANG F, PO H C, VISHWANATH A, et al. Efficient Topological Materials Discovery Using Symmetry Indicators[J/OL]. Nature Physics, 2019, 15(5): 470-476. DOI: 10.1038/s41567-019-0418-7.
[149] VERGNIORY M G, ELCORO L, FELSER C, et al. A Complete Catalogue of High-Quality Topological Materials[J/OL]. Nature, 2019, 566(7745): 480-485. DOI: 10.1038/s41586-019-0954-4.
[150] ZHANG T, JIANG Y, SONG Z, et al. Catalogue of Topological Electronic Materials[J/OL]. Nature, 2019, 566(7745): 475-479. DOI: 10.1038/s41586-019-0944-6.
[151] TANG F, PO H C, VISHWANATH A, et al. Comprehensive Search for Topological Materials Using Symmetry Indicators[J/OL]. Nature, 2019, 566(7745): 486-489. DOI: 10.1038/s41586-019-0937-5.
[152] TANG F, PO H C, VISHWANATH A, et al. Topological Materials Discovery by Large-Order Symmetry Indicators[J/OL]. Science Advances, 2019, 5(3). DOI: 10.1126/sciadv.aau8725.
[153] VERGNIORY M G, WIEDER B J, ELCORO L, et al. All Topological Bands of all Nonmagnetic Stoichiometric Materials[J/OL]. Science, 2022, 376(6595). DOI: 10.1126/science.abg9094.
[154] WATANABE H, PO H C, VISHWANATH A. Structure and Topology of Band Structures in the 1651 Magnetic Space Groups[J/OL]. Science Advances, 2018, 4(8). DOI: 10.1126/sciadv.aat8685.140
[155] ELCORO L, WIEDER B J, SONG Z, et al. Magnetic Topological Quantum Chemistry[J/OL]. Nature Communications, 2021, 12(1): 5965. DOI: 10.1038/s41467-021-26241-8.
[156] XU Y, ELCORO L, SONG Z D, et al. High-Throughput Calculations of Magnetic Topological Materials[J/OL]. Nature, 2020, 586(7831): 702-707. DOI: 10.1038/s41586-020-2837-0.
[157] OKAMURA Y, MINAMI S, KATO Y, et al. Giant Magneto-Optical Responses in Magnetic Weyl Semimetal Co3Sn2S2[J/OL]. Nature Communications, 2020, 11(1): 4619. DOI: 10.1038/s41467-020-18470-0.
[158] KIM K, SEO J, LEE E, et al. Large Anomalous Hall Current Induced by Topological Nodal Lines in a Ferromagnetic Van Der Waals Semimetal[J/OL]. Nature Materials, 2018, 17(9): 794-799. DOI: 10.1038/s41563-018-0132-3.
[159] SEO J, DE C, HA H, et al. Colossal Angular Magnetoresistance in Ferrimagnetic Nodal-Line Semiconductors[J/OL]. Nature, 2021, 599(7886): 576-581. DOI: 10.1038/s41586-021-04028-7.
[160] VON KLITZING K, CHAKRABORTY T, KIM P, et al. 40 Years of the Quantum Hall Effect[J/OL]. Nature Reviews Physics, 2020, 2(8): 397-401. DOI: 10.1038/s42254-020-0209-1.
[161] SHANAVAS K V, POPOVIć Z S, SATPATHY S. Theoretical Model for Rashba Spin-Orbit Interaction in d Electrons[J/OL]. Physical Review B, 2014, 90(16): 165108. DOI: 10.1103/physrevb.90.165108.
[162] LANDAU L D, LIFšIC E M. Course of Theoretical Physics: Vol. 3[M]. 3. ed., rev. and enl., reprinted ed. Oxford [u.a.]: Pergamon Press, 1994.
[163] LIU L, MORIYAMA T, RALPH D C, et al. Spin-Torque Ferromagnetic Resonance Induced by the Spin Hall Effect[J/OL]. Physical Review Letters, 2011, 106(3): 036601. DOI: 10.1103/physrevlett.106.036601.
[164] DZIAWA P, KOWALSKI B J, DYBKO K, et al. Topological Crystalline Insulator States in Pb1−xSn𝑥Se[J/OL]. Nature Materials, 2012, 11(12): 1023-1027. DOI: 10.1038/nmat3449.
[165] SCANLON D O, KING P D C, SINGH R P, et al. Controlling Bulk Conductivity in Topological Insulators: Key Role of Anti‐Site Defects[J/OL]. Advanced Materials, 2012, 24(16): 2154-2158. DOI: 10.1002/adma.201200187.
[166] BLACK-SCHAFFER A M, BALATSKY A V, FRANSSON J. Filling of Magnetic-Impurity-Induced Gap in Topological Insulators by Potential Scattering[J/OL]. Physical Review B, 2015, 91(20): 201411. DOI: 10.1103/physrevb.91.201411.
[167] XU Y, CHIU J, MIAO L, et al. Disorder Enabled Band Structure Engineering of a Topological Insulator Surface[J/OL]. Nature Communications, 2017, 8(1): 14081. DOI: 10.1038/ncomms14081.
[168] YAO Y, YE F, QI X L, et al. Spin-Orbit Gap of Graphene: First-Principles Calculations[J/OL]. Physical Review B, 2007, 75(4): 041401. DOI: 10.1103/physrevb.75.041401.
[169] BRADLEY C J, CRACKNELL A P. Oxford classic texts in the physical sciences: The Mathematical Theory of Symmetry in Solids[M]. Repr. ed. Oxford: Clarendon Press, 2011.
[170] WIGNER E. Group Theory: and Its Application to the Quantum Mechanics of Atomic Spectra: Vol. 5[M]. Elsevier, 2012.141
[171] ZAK J. Symmetry Specification of Bands in Solids[J/OL]. Physical Review Letters, 1980, 45(12): 1025-1028. DOI: 10.1103/physrevlett.45.1025.
[172] ZAK J. Band Representations and Symmetry Types of Bands in Solids[J/OL]. Physical Review B, 1981, 23(6): 2824-2835. DOI: 10.1103/physrevb.23.2824.
[173] ZAK J. Band Representations of Space Groups[J/OL]. Physical Review B, 1982, 26(6): 3010-3023. DOI: 10.1103/physrevb.26.3010.
[174] ALLEN P B, BROUGHTON J Q, MCMAHAN A K. Transferable Nonorthogonal Tight-Binding Parameters for Silicon[J/OL]. Physical Review B, 1986, 34(2): 859-862. DOI: 10.1103/physrevb.34.859.
[175] LIU F, PRESS M R, KHANNA S N, et al. Magnetism and Local Order: Ab Initio Tight-Binding Theory[J/OL]. Physical Review B, 1989, 39(10): 6914-6924. DOI: 10.1103/physrevb.39.6914.
[176] BARRETEAU C, SPANJAARD D, DESJONQUèRES M C. Electronic Structure and Total Energy of Transition Metals from an spd Tight-Binding Method: Application to Surfaces and Clusters of Rh[J/OL]. Physical Review B, 1998, 58(15): 9721-9731. DOI: 10.1103/physrevb.58.9721.
[177] SLATER J C, KOSTER G F. Simplified LCAO Method for the Periodic Potential Problem[J/OL]. Physical Review, 1954, 94(6): 1498-1524. DOI: 10.1103/physrev.94.1498.
[178] AUTÈS G. Transport électronique polarisé en spin dans les contacts atomiques de fer[Z]. Universite Pierre et Marie Curie - Paris VI, 2008.
[179] TAKEGAHARA K, AOKI Y, YANASE A. Slater-Koster Tables for f Electrons[J/OL]. Journal of Physics C: Solid State Physics, 1980, 13(4): 583-588. DOI: 10.1088/0022-3719/13/4/016.
[180] SCHENA T. Tight-Binding Treatment of Complex Magnetic Structures in Low-Dimensional Systems[Z]. Aachen University, Germany, 2010.
[181] HUBBARD J. Electron Correlations in Narrow Energy Bands[J/OL]. Proceedings of the Royal Society of London Series A, 1963, 276(1365): 238-257. https://ui.adsabs.harvard.edu/abs/1963RSPSA.276..238H. DOI: 10.1098/rspa.1963.0204.
[182] LöWDIN P O. A Note on the Quantum-Mechanical Perturbation Theory[J/OL]. The Journal of Chemical Physics, 1951, 19(11): 1396-1401. DOI: 10.1063/1.1748067.
[183] FAZEKAS P. Lecture Notes on Electron Correlation and Magnetism[M/OL]. WORLD SCIENTIFIC, 1999. DOI: 10.1142/2945.
[184] VOON L C L Y. The 𝑘 ⋅ 𝑝 Method[M]. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009.
[185] HARTREE D R. The Wave Mechanics of an Atom with a Non-Coulomb Central Field. Part I. Theory and Methods[J/OL]. Mathematical Proceedings of the Cambridge Philosophical Society, 1928, 24(1): 89-110. DOI: 10.1017/s0305004100011919.
[186] FOCK V. Näherungsmethode Zur Lösung Des Quantenmechanischen Mehrkörperproblems[J/OL]. Zeitschrift fur Physik, 1930, 61(1-2): 126-148. https://ui.adsabs.harvard.edu/abs/1930ZPhy...61..126F. DOI: 10.1007/BF01340294.
[187] HOHENBERG P, KOHN W. Inhomogeneous Electron Gas[J/OL]. Physical Review, 1964, 136(3B): B864-B871. DOI: 10.1103/physrev.136.b864.142
[188] KOHN W, SHAM L J. Self-Consistent Equations Including Exchange and Correlation Effects[J/OL]. Physical Review, 1965, 140(4A): A1133-A1138. DOI: 10.1103/physrev.140.a1133.
[189] PERDEW J P, BURKE K, ERNZERHOF M. Generalized Gradient Approximation Made Simple[J/OL]. Physical Review Letters, 1996, 77(18): 3865-3868. DOI: 10.1103/physrevlett.77.3865.
[190] PERDEW J P, BURKE K, ERNZERHOF M. Generalized Gradient Approximation Made Simple [Phys. Rev. Lett. 77, 3865 (1996)][J/OL]. Physical Review Letters, 1997, 78(7): 1396-1396. DOI: 10.1103/physrevlett.78.1396.
[191] PERDEW J P, WANG Y. Accurate and Simple Analytic Representation of the Electron-Gas Correlation Energy[J/OL]. Physical Review B, 1992, 45(23): 13244-13249. DOI: 10.1103/physrevb.45.13244.
[192] SUN J, RUZSINSZKY A, PERDEW J. Strongly Constrained and Appropriately Normed Semilocal Density Functional[J/OL]. Physical Review Letters, 2015, 115(3): 036402. DOI: 10.1103/physrevlett.115.036402.
[193] RAGHU S, QI X L, HONERKAMP C, et al. Topological Mott Insulators[J/OL]. Physical Review Letters, 2008, 100(15): 156401. DOI: 10.1103/physrevlett.100.156401.
[194] PESIN D, BALENTS L. Mott Physics and Band Topology in Materials with Strong Spin–Orbit Interaction[J/OL]. Nature Physics, 2010, 6(5): 376-381. DOI: 10.1038/nphys1606.
[195] WITCZAK-KREMPA W, CHEN G, KIM Y B, et al. Correlated Quantum Phenomena in the Strong Spin-Orbit Regime[J/OL]. Annual Review of Condensed Matter Physics, 2014, 5(1): 57-82. DOI: 10.1146/annurev-conmatphys-020911-125138.
[196] ZHOU Y, KANODA K, NG T K. Quantum Spin Liquid States[J/OL]. Reviews of Modern Physics, 2017, 89(2): 025003. DOI: 10.1103/revmodphys.89.025003.
[197] LIU G Q, ANTONOV V N, JEPSEN O, et al. Coulomb-Enhanced Spin-Orbit Splitting: The Missing Piece in the Sr2RhO4 Puzzle[J/OL]. Physical Review Letters, 2008, 101(2): 026408. DOI: 10.1103/physrevlett.101.026408.
[198] ZHANG G, GORELOV E, SARVESTANI E, et al. Fermi Surface of Sr2RuO4: Spin-Orbit and Anisotropic Coulomb Interaction Effects[J/OL]. Physical Review Letters, 2016, 116(10): 106402. DOI: 10.1103/physrevlett.116.106402.
[199] KIM M, MRAVLJE J, FERRERO M, et al. Spin-Orbit Coupling and Electronic Correlations in Sr2RuO4[J/OL]. Physical Review Letters, 2018, 120(12): 126401. DOI: 10.1103/physrevlett.120.126401.
[200] BRINKMAN W, ELLIOTT R J. Space Group Theory for Spin Waves[J/OL]. Journal of Applied Physics, 1966, 37(3): 1457-1459. DOI: 10.1063/1.1708514.
[201] LITVIN D, OPECHOWSKI W. Spin Groups[J/OL]. Physica, 1974, 76(3): 538-554. DOI: 10.1016/0031-8914(74)90157-8.
[202] LITVIN D B. Spin Point Groups[J/OL]. Acta Crystallographica Section A, 1977, 33(2): 279-287. DOI: 10.1107/s0567739477000709.
[203] LIU P, LI J, HAN J, et al. Spin-Group Symmetry in Magnetic Materials with Negligible Spin-Orbit Coupling[J/OL]. Physical Review X, 2022, 12(2): 021016. DOI: 10.1103/physrevx.12.021016.143
[204] KANAMORI J. Electron Correlation and Ferromagnetism of Transition Metals[J/OL]. Progress of Theoretical Physics, 1963, 30(3): 275-289. DOI: 10.1143/ptp.30.275.
[205] ALLMANN R, HINEK R. The Introduction of Structure Types into the Inorganic Crystal Structure Database ICSD[J/OL]. Acta Crystallographica Section A Foundations of Crystallography, 2007, 63(5): 412-417. DOI: 10.1107/s0108767307038081.
[206] HAASTRUP S, STRANGE M, PANDEY M, et al. The Computational 2D Materials Database: High-Throughput Modeling and Discovery of Atomically Thin Crystals[J/OL]. 2D Materials, 2018, 5(4): 042002. DOI: 10.1088/2053-1583/aacfc1.
[207] GJERDING M N, TAGHIZADEH A, RASMUSSEN A, et al. Recent Progress of the Computational 2D Materials Database (C2DB)[J/OL]. 2D Materials, 2021, 8(4): 044002. DOI: 10.1088/2053-1583/ac1059.
[208] STOKES H T, HATCH D M. FINDSYM: Program for Identifying the Space-Group Symmetry of a Crystal[J/OL]. Journal of Applied Crystallography, 2005, 38(1): 237-238. DOI: 10.1107/s0021889804031528.
[209] WANG Y, WANG Z, FANG Z, et al. Interaction-Induced Quantum Anomalous Hall Phase in (111) Bilayer of LaCoO3[J/OL]. Physical Review B, 2015, 91(12): 125139. DOI: 10.1103/physrevb.91.125139.
[210] KIM H S, KEE H Y. Realizing Haldane Model in Fe-Based Honeycomb Ferromagnetic Insulators[J/OL]. npj Quantum Materials, 2017, 2(1). DOI: 10.1038/s41535-017-0021-z.
[211] JIN Y, CHEN Z, XIA B, et al. Large-Gap Quantum Anomalous Hall Phase in Hexagonal Organometallic Frameworks[J/OL]. Physical Review B, 2018, 98(24): 245127. DOI: 10.1103/physrevb.98.245127.
[212] ZHANG L, ZHANG C W, ZHANG S F, et al. Two-Dimensional Honeycomb-Kagome Ta2S3: A Promising Single-Spin Dirac Fermion and Quantum Anomalous Hall Insulator with Half-Metallic Edge States[J/OL]. Nanoscale, 2019, 11(12): 5666-5673. DOI: 10.1039/c9nr00826h.
[213] SUI Q, ZHANG J, JIN S, et al. Model Hamiltonian for the Quantum Anomalous Hall State in Iron-Halogenide[J/OL]. Chinese Physics Letters, 2020, 37(9): 097301. DOI: 10.1088/0256-307x/37/9/097301.
[214] TANG F, WAN X. Exhaustive Construction of Effective Models in 1651 Magnetic Space Groups[J/OL]. Physical Review B, 2021, 104(8): 085137. DOI: 10.1103/physrevb.104.085137.
[215] MONKHORST H J, PACK J D. Special Points for Brillouin-Zone Integrations[J/OL]. Physical Review B, 1976, 13(12): 5188-5192. DOI: 10.1103/physrevb.13.5188.
[216] PIZZI G, VITALE V, ARITA R, et al. Wannier90 as a Community Code: New Features and Applications[J/OL]. Journal of Physics: Condensed Matter, 2020, 32(16): 165902. DOI: 10.1088/1361-648x/ab51ff.
[217] WU Q, ZHANG S, SONG H F, et al. WannierTools: An Open-Source Software Package for Novel Topological Materials[J/OL]. Computer Physics Communications, 2018, 224: 405-416. DOI: 10.1016/j.cpc.2017.09.033.144
[218] BLUME M, WATSON R E. Theory of Spin-Orbit Coupling in Atoms. II. Comparison of Theory with Experiment[J/OL]. Proceedings of the Royal Society of London Series A, 1963, 271(1347): 565-578. https://ui.adsabs.harvard.edu/abs/1963RSPSA.271..565B. DOI: 10.1098/rspa.1963.0036.
[219] CHEN T, MINAMI S, SAKAI A, et al. Large Anomalous Nernst Effect and Nodal Plane in an Iron-Based Kagome Ferromagnet[J/OL]. Science Advances, 2022, 8(2). DOI: 10.1126/sciadv.abk1480.
[220] GUO C, HU L, PUTZKE C, et al. Quasi-Symmetry-Protected Topology in a Semi-Metal[J/OL]. Nature Physics, 2022, 18(7): 813-818. DOI: 10.1038/s41567-022-01604-0.
[221] MEZEY P G, MARUANI J. The Concept of ‘Syntopy’: A Continuous Extension of the Symmetry Concept for Quasi-Symmetric Structures Using Fuzzy-Set Theory[J/OL]. Molecular Physics, 1990, 69(1): 97-113. DOI: 10.1080/00268979000100071.
[222] KöHLER A E. A Fuzzy Symmetry Concept for Forms with Imperfect Symmetries[J/OL]. Computers and Mathematics with Applications, 1991, 22(9): 35-50. DOI: 10.1016/0898-1221(91)90205-i.
[223] ZORKY P. Symmetry, Pseudosymmetry and Hypersymmetry of Organic Crystals[J/OL]. Journal of Molecular Structure, 1996, 374(1–3): 9-28. DOI: 10.1016/0022-2860(95)09092-4.
[224] MOGI M, KAWAMURA M, TSUKAZAKI A, et al. Tailoring Tricolor Structure of Magnetic Topological Insulator for Robust Axion Insulator[J/OL]. Science Advances, 2017, 3(10). DOI: 10.1126/sciadv.aao1669.
[225] FU L, KANE C L. Topology, Delocalization via Average Symmetry and the Symplectic Anderson Transition[J/OL]. Physical Review Letters, 2012, 109(24): 246605. DOI: 10.1103/physrevlett.109.246605.
[226] MA R, WANG C. Average Symmetry-Protected Topological Phases[J/OL]. Physical Review X, 2023, 13(3): 031016. DOI: 10.1103/physrevx.13.031016.
[227] TAO Y L, WANG J H, XU Y. Average Symmetry Protected Higher-Order Topological Amorphous Insulators[J/OL]. SciPost Physics, 2023, 15(5). DOI: 10.21468/scipostphys.15.5.193.
[228] HU L H, GUO C, SUN Y, et al. Hierarchy of Quasisymmetries and Degeneracies in the CoSi Family of Chiral Crystal Materials[J/OL]. Physical Review B, 2023, 107(12): 125145. DOI: 10.1103/physrevb.107.125145.
[229] REN J, LIANG C, FANG C. Quasisymmetry Groups and Many-Body Scar Dynamics[J/OL]. Physical Review Letters, 2021, 126(12): 120604. DOI: 10.1103/physrevlett.126.120604.
[230] GAO J, WU Q, PERSSON C, et al. Irvsp: To Obtain Irreducible Representations of Electronic States in the VASP[J/OL]. Computer Physics Communications, 2021, 261: 107760. DOI: 10.1016/j.cpc.2020.107760.
[231] SCHILLING J, METHFESSEL S, SHELTON R. LaAg under Hydrostatic Pressure: Superconductivity and Phase Transformation[J/OL]. Solid State Communications, 1977, 24(9): 659-664. DOI: 10.1016/0038-1098(77)90385-4.
[232] HERATH U, TAVADZE P, HE X, et al. PyProcar: A Python Library for Electronic Structure Pre/Post-Processing[J/OL]. Computer Physics Communications, 2020, 251: 107080. DOI: 10.1016/j.cpc.2019.107080.145
[233] SAKAMOTO K, KAKUTA H, SUGAWARA K, et al. Peculiar Rashba Splitting Originating from the Two-Dimensional Symmetry of the Surface[J/OL]. Physical Review Letters, 2009, 103(15): 156801. DOI: 10.1103/physrevlett.103.156801.
[234] XIAO D, CHANG M C, NIU Q. Berry Phase Effects on Electronic Properties[J/OL]. Reviews of Modern Physics, 2010, 82(3): 1959-2007. DOI: 10.1103/revmodphys.82.1959.
[235] FEI F, ZHANG S, ZHANG M, et al. The Material Efforts for Quantized Hall Devices Based on Topological Insulators[J/OL]. Advanced Materials, 2019, 32(27). DOI: 10.1002/adma.201904593.
[236] HE K. MnBi2Te4-Family Intrinsic Magnetic Topological Materials[J/OL]. npj Quantum Materials, 2020, 5(1). DOI: 10.1038/s41535-020-00291-5.
[237] NING W, MAO Z. Recent Advancements in the Study of Intrinsic Magnetic Topological Insulators and Magnetic Weyl Semimetals[J/OL]. APL Materials, 2020, 8(9). DOI: 10.1063/5.0015328.
[238] WANG P, GE J, LI J, et al. Intrinsic Magnetic Topological Insulators[J/OL]. The Innovation, 2021, 2(2): 100098. DOI: 10.1016/j.xinn.2021.100098.
[239] ZHAO Y, LIU Q. Routes to Realize the Axion-Insulator Phase in MnBi2Te4(Bi2Te3)n family [J/OL]. Applied Physics Letters, 2021, 119(6). DOI: 10.1063/5.0059447.
[240] WANG Y, MA X M, HAO Z, et al. On the Topological Surface States of the Intrinsic Magnetic Topological Insulator Mn-Bi-Te Family[J/OL]. National Science Review, 2023, 11(2). DOI: 10.1093/nsr/nwad066.
[241] LI S, LIU T, LIU C, et al. Progress on the Antiferromagnetic Topological Insulator MnBi2Te4[J/OL]. National Science Review, 2023, 11(2). DOI: 10.1093/nsr/nwac296.
[242] ALIEV Z S, AMIRASLANOV I R, NASONOVA D I, et al. Novel Ternary Layered Manganese Bismuth Tellurides of the MnTe-Bi2Te3 System: Synthesis and Crystal Structure[J/OL]. Journal of Alloys and Compounds, 2019, 789: 443-450. DOI: 10.1016/j.jallcom.2019.03.030.
[243] HU C, GORDON K N, LIU P, et al. A Van der Waals Antiferromagnetic Topological Insulator with Weak Interlayer Magnetic Coupling[J/OL]. Nature Communications, 2020, 11(1). DOI: 10.1038/s41467-019-13814-x.
[244] WU X, LI J, MA X M, et al. Distinct Topological Surface States on the Two Terminations of MnBi4Te7[J/OL]. Physical Review X, 2020, 10(3): 031013. DOI: 10.1103/physrevx.10.031013.
[245] WU J, LIU F, SASASE M, et al. Natural Van der Waals Heterostructural Single Crystals with both Magnetic and Topological Properties[J/OL]. Science Advances, 2019, 5(11). DOI: 10.1126/sciadv.aax9989.
[246] MA X M, CHEN Z, SCHWIER E F, et al. Hybridization-Induced Gapped and Gapless States on the Surface of Magnetic Topological Insulators[J/OL]. Physical Review B, 2020, 102(24): 245136. DOI: 10.1103/physrevb.102.245136.
[247] HU Y, XU L, SHI M, et al. Universal Gapless Dirac Cone and Tunable Topological States in (MnBi2Te4)m(Bi2Te3)n Heterostructures[J/OL]. Physical Review B, 2020, 101(16): 161113. DOI: 10.1103/physrevb.101.161113.146
[248] KLIMOVSKIKH I I, OTROKOV M M, ESTYUNIN D, et al. Tunable 3D/2D Magnetism in the (MnBi2Te4)(Bi2Te2)m Topological Insulators Family[J/OL]. npj Quantum Materials, 2020, 5(1). DOI: 10.1038/s41535-020-00255-9.
[249] HU C, DING L, GORDON K N, et al. Realization of an Intrinsic Ferromagnetic Topological State in MnBi8Te13[J/OL]. Science Advances, 2020, 6(30). DOI: 10.1126/sciadv.aba4275.
[250] LU R, SUN H, KUMAR S, et al. Half-Magnetic Topological Insulator with Magnetization-Induced Dirac Gap at a Selected Surface[J/OL]. Physical Review X, 2021, 11(1): 011039. DOI: 10.1103/physrevx.11.011039.
[251] GE J, LIU Y, LI J, et al. High-Chern-Number and High-Temperature Quantum Hall Effect without Landau Levels[J/OL]. National Science Review, 2020, 7(8): 1280-1287. DOI: 10.1093/nsr/nwaa089.
[252] TIAN S, GAO S, NIE S, et al. Magnetic Topological Insulator MnBi6Te10 with a Zero-Field Ferromagnetic State and Gapped Dirac Surface States[J/OL]. Physical Review B, 2020, 102(3): 035144. DOI: 10.1103/physrevb.102.035144.
[253] ZHANG R X, WU F, DAS SARMA S. Möbius Insulator and Higher-Order Topology in MnBi2nTe3n+1[J/OL]. Physical Review Letters, 2020, 124(13): 136407. DOI: 10.1103/physrevlett.124.136407.
[254] WANG J, LIAN B, ZHANG S C. Universal Scaling of the Quantum Anomalous Hall Plateau Transition[J/OL]. Physical Review B, 2014, 89(8): 085106. DOI: 10.1103/physrevb.89.085106.
[255] WANG J, LIAN B, QI X L, et al. Quantized Topological Magnetoelectric Effect of the Zero-Plateau Quantum Anomalous Hall State[J/OL]. Physical Review B, 2015, 92(8): 081107. DOI: 10.1103/physrevb.92.081107.
[256] MOGI M, KAWAMURA M, YOSHIMI R, et al. A Magnetic Heterostructure of Topological Insulators as a Candidate for an Axion Insulator[J/OL]. Nature Materials, 2017, 16(5): 516-521. DOI: 10.1038/nmat4855.
[257] LIU C, WANG Y, LI H, et al. Robust Axion Insulator and Chern Insulator Phases in a Two-Dimensional Antiferromagnetic Topological Insulator[J/OL]. Nature Materials, 2020, 19(5): 522-527. DOI: 10.1038/s41563-019-0573-3.
[258] KOU X, PAN L, WANG J, et al. Metal-to-Insulator Switching in Quantum Anomalous Hall States[J/OL]. Nature Communications, 2015, 6(1): 9474. DOI: 10.1038/ncomms9474.
[259] PAN L, LIU X, HE Q L, et al. Probing the Low-Temperature Limit of the Quantum Anomalous Hall Effect[J/OL]. Science Advances, 2020, 6(25). DOI: 10.1126/sciadv.aaz3595.
[260] GOODENOUGH J B. Theory of the Role of Covalence in the Perovskite-Type Manganites [La,M(II)]MnO3[J/OL]. Physical Review, 1955, 100(2): 564-573. DOI: 10.1103/physrev.100.564.
[261] KANAMORI J. Superexchange Interaction and Symmetry Properties of Electron Orbitals[J/OL]. Journal of Physics and Chemistry of Solids, 1959, 10(2–3): 87-98. DOI: 10.1016/0022-3697(59)90061-7.147
[262] MONG R S K, ESSIN A M, MOORE J E. Antiferromagnetic Topological Insulators[J/OL]. Physical Review B, 2010, 81(24): 245209. DOI: 10.1103/physrevb.81.245209.
[263] HAO Y J, LIU P, FENG Y, et al. Gapless Surface Dirac Cone in Antiferromagnetic Topological Insulator MnBi2Te4[J/OL]. Physical Review X, 2019, 9(4): 041038. DOI: 10.1103/physrevx.9.041038.
[264] CHEN B, FEI F, ZHANG D, et al. Intrinsic Magnetic Topological Insulator Phases in the Sb Doped MnBi2Te4 Bulks and Thin Flakes[J/OL]. Nature Communications, 2019, 10(1): 4469. DOI: 10.1038/s41467-019-12485-y.
[265] CHEN Y, XU L, LI J, et al. Topological Electronic Structure and Its Temperature Evolution in Antiferromagnetic Topological Insulator MnBi2Te4[J/OL]. Physical Review X, 2019, 9(4): 041040. DOI: 10.1103/physrevx.9.041040.
[266] LI H, GAO S Y, DUAN S F, et al. Dirac Surface States in Intrinsic Magnetic Topological Insulators EuSn2As2 and MnBi2nTe3n+1[J/OL]. Physical Review X, 2019, 9(4): 041039. DOI: 10.1103/physrevx.9.041039.
[267] LU H Z, SHAN W Y, YAO W, et al. Massive Dirac Fermions and Spin Physics in an Ultrathin Film of Topological Insulator[J/OL]. Physical Review B, 2010, 81(11): 115407. DOI: 10.1103/physrevb.81.115407.
[268] BURKOV A A, BALENTS L. Weyl Semimetal in a Topological Insulator Multilayer[J/OL]. Physical Review Letters, 2011, 107(12): 127205. DOI: 10.1103/physrevlett.107.127205.
[269] ONO S, WATANABE H. Unified Understanding of Symmetry Indicators for All Internal Symmetry Classes[J/OL]. Physical Review B, 2018, 98(11): 115150. DOI: 10.1103/physrevb.98.115150.
[270] PO H C, WATANABE H, VISHWANATH A. Fragile Topology and Wannier Obstructions[J/OL]. Physical Review Letters, 2018, 121(12): 126402. DOI: 10.1103/physrevlett.121.126402.
[271] SONG Z D, ELCORO L, BERNEVIG B A. Twisted Bulk-Boundary Correspondence of Fragile Topology[J/OL]. Science, 2020, 367(6479): 794-797. DOI: 10.1126/science.aaz7650.
[272] TURNER A M, ZHANG Y, MONG R S K, et al. Quantized Response and Topology of Magnetic Insulators with Inversion Symmetry[J/OL]. Physical Review B, 2012, 85(16): 165120. DOI: 10.1103/physrevb.85.165120.
[273] ZHANG J, WANG D, SHI M, et al. Large Dynamical Axion Field in Topological Antiferromagnetic Insulator Mn2Bi2Te5[J/OL]. Chinese Physics Letters, 2020, 37(7): 077304. DOI: 10.1088/0256-307x/37/7/077304.
[274] VARNAVA N, VANDERBILT D. Surfaces of Axion Insulators[J/OL]. Physical Review B, 2018, 98(24): 245117. DOI: 10.1103/physrevb.98.245117.
[275] RAUCH T, OLSEN T, VANDERBILT D, et al. Geometric and Nongeometric Contributions to the Surface Anomalous Hall Conductivity[J/OL]. Physical Review B, 2018, 98(11): 115108. DOI: 10.1103/physrevb.98.115108.
[276] YUE C, XU Y, SONG Z, et al. Symmetry-Enforced Chiral Hinge States and Surface Quantum Anomalous Hall Effect in the Magnetic Axion Insulator Bi2−xSmxSe3[J/OL]. Nature Physics, 2019, 15(6): 577-581. DOI: 10.1038/s41567-019-0457-0.148
[277] POZO O, REPELLIN C, GRUSHIN A G. Quantization in Chiral Higher Order Topological Insulators: Circular Dichroism and Local Chern Marker[J/OL]. Physical Review Letters, 2019, 123(24): 247401. DOI: 10.1103/physrevlett.123.247401.
修改评论