中文版 | English
题名

自旋-轨道耦合材料新奇物性的对称性判定及设计理论

其他题名
Symmetry diagnosis and design of spin-orbit coupled materials with exotic properties
姓名
姓名拼音
LI Jiayu
学号
12031333
学位类型
博士
学位专业
0702 物理学
学科门类/专业学位类别
07 理学
导师
刘奇航
导师单位
物理系
论文答辩日期
2024-04-29
论文提交日期
2024-06-20
学位授予单位
南方科技大学
学位授予地点
深圳
摘要

自旋-轨道耦合作用是现代凝聚态物理诸多重要现象的核心,与自旋电子学、低维磁性物态和拓扑物态等前沿领域密切相关。近年来的研究发现自旋-轨道耦合可以诱导不同拓扑物态间的相变,从而产生自旋-轨道耦合驱动的独特输运效应,如陈绝缘体具有量子反常霍尔效应,拓扑绝缘体表现出量子自旋霍尔效应等。对自旋-轨道耦合新奇物相的判定及其独特输运效应的设计是将其应用至自旋电子学、谷电子学等领域中的关键。
正如“凝聚态物理之父”安德森所言:“稍微夸张地说,研究物理就是研究对称性”,群论和对称性分析是处理各种物理问题的有力工具。近年来基于对称性指标等理论系统预言逾8000种拓扑材料,是使用对称性设计和判定新奇拓扑材料的经典成功案例。为高效设计自旋-轨道耦合功能材料,亟需发展新的对称性理论来设计具有稳健量子化输运效应或显著反常输运效应材料,以克服以往根据原子序数设计得到的自旋-轨道耦合材料普遍不稳定的缺点,拓宽可用材料库。本文主要研究自旋-轨道耦合驱动下拓扑物态的对称性判定理论以及具有相关输运效应材料的对称性设计理论,具体将从以下方面展开研究。
探究了对称性保护的轨道简并态可以产生一阶自旋-轨道耦合,提出了部分占据的轨道多重态下电子关联增强自旋-轨道耦合效应的机制,明确轨道极化量是该增强效应的核心。基于以上机制,提出了具有强自旋-轨道耦合效应轻元素材料的设计准则,并在二维材料数据库中筛选得到71 种轻元素候选材料,并系统得到9种高温陈绝缘体材料。以单层Fe2S2为例,结合第一性原理计算和紧束缚模型计算定量解释了其628 meV的拓扑带隙。
建立了准对称性与准对称群理论,其中准对称性定义为禁戒一阶微扰效应的隐藏对称性,提供了存在准晶体对称性禁戒一阶微扰效应的晶体点群。基于以上理论,提出准对称性禁戒的轨道角动量矩阵元是设计自旋-轨道耦合导致二阶简并劈裂的关键。以四方AgLa为例,基于第一性原理计算,展示了自旋-轨道耦合驱动的狄拉克节线半金属到准狄拉克半金属相变,证明了准狄拉克点的微小自旋-轨道耦合劈裂受准空间反演对称性的保护。
通过建立本征磁性拓扑绝缘体MnBi2Te4/(Bi2Te3)n家族的统一超晶格模型,构建体系在调节磁性交换作用或等效自旋-轨道耦合作用以及层间距下的拓扑相图,使用空间反演对称性和晶体平移对称性联合保护的对称性指标完整刻画了铁磁轴子绝缘体相、三维陈绝缘体相、三维量子自旋霍尔绝缘体相、外尔半金属相之间的相变行为,指出轴子绝缘体相和三维量子自旋霍尔绝缘相具有相同的Z4不变量,需要利用晶格平移对称性保护的Z2不变量进行区分。基于第一性原理计算,指出轴子绝缘体相具有表面半整数霍尔电导,并表明手性转角态是铁磁轴子绝缘体相的指纹信号。

其他摘要

Spin-orbit coupling (SOC) is at the core of many important phenomena in modern condensed matter physics, closely related to frontier areas such as spintronics, low-dimensional magnets, and topological states. Recent research has found that SOC can induce phase transitions between different topological states, leading to unique transport effects driven by SOC, such as the quantum anomalous Hall effect in Chern insulators and the quantum spin Hall effect in topological insulators. Diagnosing novel topological phases and designing their unique transport effects are key to applying them in spintronics, valleytronics, and other subfields. 

"It is only slightly overstating the case to say that physics is the study of symmetry.", said by Philip Anderson. Group theory and symmetry analysis are powerful tools for addressing various physical problems. Recently, over 8000 topological materials have been systematically predicted based on symmetry theories like symmetry-based indicator, serving as a huge success of symmetry diagnosis of topological states. For the efficient design of SOC-driven functional materials, there is an urgent need to develop new symmetry theories to design materials with robust quantized transport effects or significant anomalous transport effects. The new symmetry-based theories are expected to overcome the common instability issue of functional materials designed solely based on atomic numbers, and to expand the pool of candidate materials. Therefore, this thesis primarily investigates the symmetry diagnosis of topological states driven by SOC and the symmetry-based design principles of materials with relevant transport effects. Specifically, it will address the following aspects:

As the symmetry-protected orbital multiplets can generate first-order SOC, a mechanism for enhancing the SOC effect through electronic correlations in partially occupied orbital multiplets is proposed, emphasizing that orbital polarization is the core of this enhancement. Based on this mechanism, design principles for materials with strong SOC effects in light elements are proposed, resulting in the screening of 71 candidate materials and 9 high-temperature Chern insulators from two-dimensional materials database. Taking monolayer Fe2S2 as an example, a quantitative explanation of its large topological band gap of 628 meV is provided through the first-principles calculations and tight-binding model calculations.

A generic theory on quasi-symmetry, defined as the hidden symmetry that eliminates the first-order perturbation, and quasi-symmetry group is established, providing all the possible crystalline symmetry as quasi-symmetry in crystallographic point groups. Based on this theory, we proposed that the vanish of orbital angular momentum matrix element, ensured by quasi-symmetry, is crucial for designing the tiny energy splitting induced by the second-order SOC effect. Taking tetragonal AgLa as an example and applying first-principles calculations, an SOC-driven transition from a Dirac nodal-line semimetal to a quasi-Dirac semimetal is demonstrated, proving that the tiny SOC splitting of quasi-Dirac points is protected by quasi-inversion symmetry. 

By establishing a unified superlattice model for intrinsic magnetic topological insulators MnBi2Te4/(Bi2Te3)n family, a topological phase diagram via tuning the magnetic exchange or SOC and interlayer distance is predicted. Meanwhile, the complete characterization of the ferromagnetic axion insulating phase, the three-dimensional Chern insulating phase, the three-dimensional quantum spin Hall (3DQSH) insulating phase, and the Weyl semimetal phase is provided, based on the symmetry indicators and invariants protected by inversion symmetry and crystal translational symmetry. It is pointed out that the axion insulating phase and the 3DQSH insulating phase share the same Z4 invariant, requiring the extra Z2 invariants protected by lattice translation symmetry for distinction. Based on first-principles calculations, it is indicated that the axion insulating phase exhibits surface half-quantized Hall conductivity, and it is demonstrated that the chiral hinge states are the representations of the ferromagnetic axion insulator phase. 

关键词
语种
中文
培养类别
独立培养
入学年份
2020
学位授予年份
2024-06
参考文献列表

[1] MANCHON A, KOO H C, NITTA J, et al. New Perspectives for Rashba Spin–Orbit Coupling [J/OL]. Nature Materials, 2015, 14(9): 871-882. DOI: 10.1038/nmat4360.
[2] FOLDY L L, WOUTHUYSEN S A. On the Dirac Theory of Spin 1/2 Particles and Its Non-Relativistic Limit[J/OL]. Physical Review, 1950, 78(1): 29-36. DOI: 10.1103/physrev.78.29.
[3] FOLDY L L. The Electromagnetic Properties of Dirac Particles[J/OL]. Physical Review, 1952, 87(5): 688-693. DOI: 10.1103/physrev.87.688.
[4] DRESSELHAUS G. Spin-Orbit Coupling Effects in Zinc Blende Structures[J/OL]. Physical Review, 1955, 100(2): 580-586. DOI: 10.1103/physrev.100.580.
[5] BYCHKOV Y A, RASHBA É I. Properties of a 2D Electron Gas with Lifted Spectral Degeneracy[J/OL]. Soviet Journal of Experimental and Theoretical Physics Letters, 1984, 39: 78.https://ui.adsabs.harvard.edu/abs/1984JETPL..39...78B.
[6] DRESSELHAUS G, KIP A F, KITTEL C. Cyclotron Resonance of Electrons and Holes in Silicon and Germanium Crystals[J/OL]. Physical Review, 1955, 98(2): 368-384. DOI: 10.1103/physrev.98.368.
[7] WILLARDSON R K. Semiconductors and Semimetals: v.4 Semiconductors and Semimetals[M]. Burlington: Elsevier, 1968.
[8] DRESSELHAUS M S. Group Theory[M]. Berlin/Heidelberg: Springer Berlin Heidelberg,2008.
[9] VAS’KO F T. Spin Splitting in the Spectrum of Two-Dimensional Electrons Due to the Surface Potential[J/OL]. Soviet Journal of Experimental and Theoretical Physics Letters, 1979, 30: 541. https://ui.adsabs.harvard.edu/abs/1979JETPL..30..541V.
[10] MAAß H, BENTMANN H, SEIBEL C, et al. Spin-Texture Inversion in the Giant Rashba Semiconductor BiTeI[J/OL]. Nature Communications, 2016, 7(1): 11621. DOI: 10.1038/ncomms11621.
[11] FENG Y, JIANG Q, FENG B, et al. Rashba-like Spin Splitting along Three Momentum Directions in Trigonal Layered PtBi2[J/OL]. Nature Communications, 2019, 10(1): 4765. DOI: 10.1038/s41467-019-12805-2.
[12] KEPENEKIAN M, EVEN J. Rashba and Dresselhaus Couplings in Halide Perovskites: Accomplishments and Opportunities for Spintronics and Spin–Orbitronics[J/OL]. The Journal of Physical Chemistry Letters, 2017, 8(14): 3362-3370. DOI: 10.1021/acs.jpclett.7b01015.
[13] NITTA J, AKAZAKI T, TAKAYANAGI H, et al. Gate Control of Spin-Orbit Interaction in an Inverted In0.53Ga0.47As/In0.52Al0.48As Heterostructure[J/OL]. Physical Review Letters, 1997, 78 (7): 1335-1338. DOI: 10.1103/physrevlett.78.1335.
[14] DATTA S, DAS B. Electronic Analog of the Electro-Optic Modulator[J/OL]. Applied Physics Letters, 1990, 56(7): 665-667. DOI: 10.1063/1.102730.131
[15] BERNEVIG B A, ORENSTEIN J, ZHANG S C. Exact SU(2) Symmetry and Persistent Spin Helix in a Spin-Orbit Coupled System[J/OL]. Physical Review Letters, 2006, 97(23): 236601. DOI: 10.1103/physrevlett.97.236601.
[16] SCHLIEMANN J. Colloquium: Persistent Spin Textures in Semiconductor Nanostructures[J/OL]. Reviews of Modern Physics, 2017, 89(1): 011001. DOI: 10.1103/revmodphys.89.011001.
[17] TAO L L, TSYMBAL E Y. Persistent Spin Texture Enforced by Symmetry[J/OL]. Nature Communications, 2018, 9(1): 2763. DOI: 10.1038/s41467-018-05137-0.
[18] KORALEK J D, WEBER C P, ORENSTEIN J, et al. Emergence of the Persistent Spin Helix in Semiconductor Quantum Wells[J/OL]. Nature, 2009, 458(7238): 610-613. DOI: 10.1038/nature07871.
[19] DERY H, DALAL P, CYWIńSKI L, et al. Spin-Based Logic in Semiconductors for Reconfigurable Large-scale Circuits[J/OL]. Nature, 2007, 447(7144): 573-576. DOI: 10.1038/nature05833.
[20] BEHIN-AEIN B, DATTA D, SALAHUDDIN S, et al. Proposal for an All-Spin Logic Device with Built-in Memory[J/OL]. Nature Nanotechnology, 2010, 5(4): 266-270. DOI: 10.1038/nnano.2010.31.
[21] MANIPATRUNI S, NIKONOV D E, LIN C C, et al. Scalable Energy-Efficient Magnetoelectric Spin-Orbit Logic[J/OL]. Nature, 2018, 565(7737): 35-42. DOI: 10.1038/s41586-018-0770-2.
[22] PHAM V T, GROEN I, MANIPATRUNI S, et al. Spin-Orbit Magnetic State Readout in Scaled Ferromagnetic/Heavy Metal Nanostructures[J/OL]. Nature Electronics, 2020, 3(6): 309-315. DOI: 10.1038/s41928-020-0395-y.
[23] DIENY B, PREJBEANU I L, GARELLO K, et al. Opportunities and Challenges for Spintronics in the Microelectronics Industry[J/OL]. Nature Electronics, 2020, 3(8): 446-459. DOI: 10.1038/s41928-020-0461-5.
[24] ŽUTIć I, FABIAN J, DAS SARMA S. Spintronics: Fundamentals and Applications[J/OL]. Reviews of Modern Physics, 2004, 76(2): 323-410. DOI: 10.1103/revmodphys.76.323.
[25] SCHLIEMANN J, EGUES J C, LOSS D. Nonballistic Spin-Field-Effect Transistor[J/OL]. Physical Review Letters, 2003, 90(14): 146801. DOI: 10.1103/physrevlett.90.146801.
[26] LIU X, LIU X J, SINOVA J. Spin Dynamics in the Strong Spin-Orbit Coupling Regime[J/OL]. Physical Review B, 2011, 84(3): 035318. DOI: 10.1103/physrevb.84.035318.
[27] ALOMAR M I. Spin and Charge Transport in Thermally and AC Driven Nanodevices[M]. Universidad de las Islas Baleares, 2017.
[28] COEY J M D. Magnetism and Magnetic Materials[M]. Repr. ed. Cambridge [u.a.]: Cambridge Univ. Press, 2013.
[29] JILES D. Introduction to Magnetism and Magnetic Materials[M/OL]. CRC Press, 2015. DOI: 10.1201/b18948.
[30] LANDAU L. The Theory of Phase Transitions[J/OL]. Nature, 1936, 138(3498): 840-841. DOI: 10.1038/138840a0.132
[31] MERMIN N D, WAGNER H. Absence of Ferromagnetism or Antiferromagnetism in One- or Two-Dimensional Isotropic Heisenberg Models[J/OL]. Physical Review Letters, 1966, 17(22): 1133-1136. DOI: 10.1103/physrevlett.17.1133.
[32] BEREZINSKIǏ V L. Destruction of Long-range Order in One-dimensional and Twodimensional Systems Possessing a Continuous Symmetry Group. II. Quantum Systems[J/OL]. Soviet Journal of Experimental and Theoretical Physics, 1972, 34: 610. https://ui.adsabs.harvard.edu/abs/1972JETP...34..610B.
[33] KOSTERLITZ J M, THOULESS D J. Ordering, Metastability and Phase Transitions in Two-Dimensional Systems[J/OL]. Journal of Physics C: Solid State Physics, 1973, 6(7): 1181-1203. DOI: 10.1088/0022-3719/6/7/010.
[34] KUO C T, NEUMANN M, BALAMURUGAN K, et al. Exfoliation and Raman Spectroscopic Fingerprint of Few-Layer NiPS3 Van der Waals Crystals[J/OL]. Scientific Reports, 2016, 6(1). DOI: 10.1038/srep20904.
[35] DU K Z, WANG X Z, LIU Y, et al. Weak Van der Waals Stacking, Wide-Range Band Gap, and Raman Study on Ultrathin Layers of Metal Phosphorus Trichalcogenides[J/OL]. ACS Nano, 2015, 10(2): 1738-1743. DOI: 10.1021/acsnano.5b05927.
[36] LEE J U, LEE S, RYOO J H, et al. Ising-Type Magnetic Ordering in Atomically Thin FePS3[J/OL]. Nano Letters, 2016, 16(12): 7433-7438. DOI: 10.1021/acs.nanolett.6b03052.
[37] WANG X, DU K, FREDRIK LIU Y Y, et al. Raman Spectroscopy of Atomically Thin Two-Dimensional Magnetic Iron Phosphorus Trisulfide (FePS3) Crystals[J/OL]. 2D Materials, 2016, 3(3): 031009. DOI: 10.1088/2053-1583/3/3/031009.
[38] LIN M W, ZHUANG H L, YAN J, et al. Ultrathin Nanosheets of CrSiTe3: A Semiconducting Two-Dimensional Ferromagnetic Material[J/OL]. Journal of Materials Chemistry C, 2016, 4(2): 315-322. DOI: 10.1039/c5tc03463a.
[39] GONG C, LI L, LI Z, et al. Discovery of Intrinsic Ferromagnetism in Two-Dimensional Van der Waals Crystals[J/OL]. Nature, 2017, 546(7657): 265-269. DOI: 10.1038/nature22060.
[40] HUANG B, CLARK G, NAVARRO-MORATALLA E, et al. Layer-Dependent Ferromagnetism in a Van der Waals Crystal down to the Monolayer Limit[J/OL]. Nature, 2017, 546(7657): 270-273. DOI: 10.1038/nature22391.
[41] BONILLA M, KOLEKAR S, MA Y, et al. Strong Room-Temperature Ferromagnetism in VSe2 Monolayers on Van der Waals Substrates[J/OL]. Nature Nanotechnology, 2018, 13(4): 289-293. DOI: 10.1038/s41565-018-0063-9.
[42] O’HARA D J, ZHU T, TROUT A H, et al. Room Temperature Intrinsic Ferromagnetism in Epitaxial Manganese Selenide Films in the Monolayer Limit[J/OL]. Nano Letters, 2018, 18(5): 3125-3131. DOI: 10.1021/acs.nanolett.8b00683.
[43] BURCH K S, MANDRUS D, PARK J G. Magnetism in Two-Dimensional Van der Waals Materials[J/OL]. Nature, 2018, 563(7729): 47-52. DOI: 10.1038/s41586-018-0631-z.
[44] GIBERTINI M, KOPERSKI M, MORPURGO A F, et al. Magnetic 2D Materials and Heterostructures[J/OL]. Nature Nanotechnology, 2019, 14(5): 408-419. DOI: 10.1038/s41565-019-0438-6.133
[45] KLITZING K V, DORDA G, PEPPER M. New Method for High-Accuracy Determination of the Fine-Structure Constant Based on Quantized Hall Resistance[J/OL]. Physical Review Letters, 1980, 45(6): 494-497. DOI: 10.1103/physrevlett.45.494.
[46] TSUI D C, STORMER H L, GOSSARD A C. Two-Dimensional Magnetotransport in the Extreme Quantum Limit[J/OL]. Physical Review Letters, 1982, 48(22): 1559-1562. DOI: 10.1103/physrevlett.48.1559.
[47] BERRY M V. Quantal Phase Factors Accompanying Adiabatic Changes[J/OL]. Proceedings of the Royal Society of London Series A, 1984, 392(1802): 45-57. https://ui.adsabs.harvard.edu/abs/1984RSPSA.392...45B. DOI: 10.1098/rspa.1984.0023.
[48] THOULESS D J, KOHMOTO M, NIGHTINGALE M P, et al. Quantized Hall Conductance in a Two-Dimensional Periodic Potential[J/OL]. Physical Review Letters, 1982, 49(6): 405-408. DOI: 10.1103/physrevlett.49.405.
[49] HALDANE F D M. Model for a Quantum Hall Effect without Landau Levels: Condensed-Matter Realization of the “Parity Anomaly”[J/OL]. Physical Review Letters, 1988, 61(18): 2015-2018. DOI: 10.1103/physrevlett.61.2015.
[50] HASAN M Z, KANE C L. Colloquium: Topological Insulators[J/OL]. Reviews of Modern Physics, 2010, 82(4): 3045-3067. DOI: 10.1103/revmodphys.82.3045.
[51] MOORE J E. The Birth of Topological Insulators[J/OL]. Nature, 2010, 464(7286): 194-198. DOI: 10.1038/nature08916.
[52] QI X L, ZHANG S C. Topological Insulators and Superconductors[J/OL]. Reviews of Modern Physics, 2011, 83(4): 1057-1110. DOI: 10.1103/revmodphys.83.1057.
[53] HASAN M Z, MOORE J E. Three-Dimensional Topological Insulators[J/OL]. Annual Review of Condensed Matter Physics, 2011, 2(1): 55-78. DOI: 10.1146/annurev-conmatphys-062910-140432.
[54] ANDO Y. Topological Insulator Materials[J/OL]. Journal of the Physical Society of Japan, 2013, 82(10): 102001. DOI: 10.7566/jpsj.82.102001.
[55] KANE C L, MELE E J. 𝑍2 Topological Order and the Quantum Spin Hall Effect[J/OL]. Physical Review Letters, 2005, 95(14): 146802. DOI: 10.1103/physrevlett.95.146802.
[56] KANE C L, MELE E J. Quantum Spin Hall Effect in Graphene[J/OL]. Physical Review Letters, 2005, 95(22): 226801. DOI: 10.1103/physrevlett.95.226801.
[57] BERNEVIG B A, HUGHES T L, ZHANG S C. Quantum Spin Hall Effect and Topological Phase Transition in HgTe Quantum Wells[J/OL]. Science, 2006, 314(5806): 1757-1761. DOI: 10.1126/science.1133734.
[58] KÖNIG M, WIEDMANN S, BRÜNE C, et al. Quantum Spin Hall Insulator State in HgTe Quantum Wells[J/OL]. Science, 2007, 318(5851): 766-770. DOI: 10.1126/science.1148047.
[59] LIU C, HUGHES T L, QI X L, et al. Quantum Spin Hall Effect in Inverted Type-II Semiconductors[J/OL]. Physical Review Letters, 2008, 100(23): 236601. DOI: 10.1103/physrevlett.100.236601.
[60] DU L, KNEZ I, SULLIVAN G, et al. Robust Helical Edge Transport in Gated InAs/GaSb Bilayers[J/OL]. Physical Review Letters, 2015, 114(9): 096802. DOI: 10.1103/physrevlett.114.096802.134
[61] QIAN X, LIU J, FU L, et al. Quantum Spin Hall Effect in Two-Dimensional Transition Metal Dichalcogenides[J/OL]. Science, 2014, 346(6215): 1344-1347. DOI: 10.1126/science.1256815.
[62] WU S, FATEMI V, GIBSON Q D, et al. Observation of the Quantum Spin Hall Effect up to 100 Kelvin in a Monolayer Crystal[J/OL]. Science, 2018, 359(6371): 76-79. DOI: 10.1126/science.aan6003.
[63] WEISS N O, ZHOU H, LIAO L, et al. Graphene: An Emerging Electronic Material[J/OL]. Advanced Materials, 2012, 24(43): 5782-5825. DOI: 10.1002/adma.201201482.
[64] FU L, KANE C L, MELE E J. Topological Insulators in Three Dimensions[J/OL]. Physical Review Letters, 2007, 98(10): 106803. DOI: 10.1103/physrevlett.98.106803.
[65] FU L, KANE C L. Topological Insulators with Inversion Symmetry[J/OL]. Physical Review B, 2007, 76(4): 045302. DOI: 10.1103/physrevb.76.045302.
[66] ZHANG H, LIU C X, QI X L, et al. Topological Insulators in Bi2Se3, Bi2Te3 and Sb2Te3 with a Single Dirac Cone on the Surface[J/OL]. Nature Physics, 2009, 5(6): 438-442. DOI: 10.1038/nphys1270.
[67] LIU C X, QI X L, ZHANG H, et al. Model Hamiltonian for Topological Insulators[J/OL]. Physical Review B, 2010, 82(4): 045122. DOI: 10.1103/physrevb.82.045122.
[68] HSIEH D, QIAN D, WRAY L, et al. A Topological Dirac Insulator in a Quantum Spin Hall Phase[J/OL]. Nature, 2008, 452(7190): 970-974. DOI: 10.1038/nature06843.
[69] XIA Y, QIAN D, HSIEH D, et al. Observation of a Large-Gap Topological-Insulator Class with a Single Dirac Cone on the Surface[J/OL]. Nature Physics, 2009, 5(6): 398-402. DOI: 10.1038/nphys1274.
[70] HERRING C. Accidental Degeneracy in the Energy Bands of Crystals[J/OL]. Physical Review, 1937, 52(4): 365-373. DOI: 10.1103/physrev.52.365.
[71] WAN X, TURNER A M, VISHWANATH A, et al. Topological Semimetal and Fermi-Arc Surface States in the Electronic Structure of Pyrochlore Iridates[J/OL]. Physical Review B, 2011, 83(20): 205101. DOI: 10.1103/physrevb.83.205101.
[72] WENG H, FANG C, FANG Z, et al. Weyl Semimetal Phase in Noncentrosymmetric Transition-Metal Monophosphides[J/OL]. Physical Review X, 2015, 5(1): 011029. DOI: 10.1103/physrevx.5.011029.
[73] XU S Y, BELOPOLSKI I, ALIDOUST N, et al. Discovery of a Weyl Fermion Semimetal and Topological Fermi Arcs[J/OL]. Science, 2015, 349(6248): 613-617. DOI: 10.1126/science.aaa9297.
[74] LIU E, SUN Y, KUMAR N, et al. Giant Anomalous Hall Effect in a Ferromagnetic Kagome-Lattice Semimetal[J/OL]. Nature Physics, 2018, 14(11): 1125-1131. DOI: 10.1038/s41567-018-0234-5.
[75] LIU D F, LIANG A J, LIU E K, et al. Magnetic Weyl Semimetal Phase in a Kagomé Crystal[J/OL]. Science, 2019, 365(6459): 1282-1285. DOI: 10.1126/science.aav2873.
[76] LV B, QIAN T, DING H. Experimental Perspective on Three-Dimensional Topological Semimetals[J/OL]. Reviews of Modern Physics, 2021, 93(2): 025002. DOI: 10.1103/revmodphys.93.025002.135
[77] WANG Z, SUN Y, CHEN X Q, et al. Dirac Semimetal and Topological Phase Transitions in A3Bi (A=Na, K, Rb)[J/OL]. Physical Review B, 2012, 85(19): 195320. DOI: 10.1103/physrevb.85.195320.
[78] WANG Z, WENG H, WU Q, et al. Three-Dimensional Dirac Semimetal and Quantum Transport in Cd3As2[J/OL]. Physical Review B, 2013, 88(12): 125427. DOI: 10.1103/physrevb.88.125427.
[79] YOUNG S M, ZAHEER S, TEO J C Y, et al. Dirac Semimetal in Three Dimensions[J/OL]. Physical Review Letters, 2012, 108(14): 140405. DOI: 10.1103/physrevlett.108.140405.
[80] LIU Z K, ZHOU B, ZHANG Y, et al. Discovery of a Three-Dimensional Topological Dirac Semimetal, Na3Bi[J/OL]. Science, 2014, 343(6173): 864-867. DOI: 10.1126/science.1245085.
[81] NEUPANE M, XU S Y, SANKAR R, et al. Observation of a Three-Dimensional Topological Dirac Semimetal Phase in High-Mobility Cd3As2[J/OL]. Nature Communications, 2014, 5(1): 3786. DOI: 10.1038/ncomms4786.
[82] WENG H, FANG C, FANG Z, et al. Topological Semimetals with Triply Degenerate Nodal Points in 𝜃-Phase Tantalum Nitride[J/OL]. Physical Review B, 2016, 93(24): 241202. DOI: 10.1103/physrevb.93.241202.
[83] ZHU Z, WINKLER G W, WU Q, et al. Triple Point Topological Metals[J/OL]. Physical Review X, 2016, 6(3): 031003. DOI: 10.1103/physrevx.6.031003.
[84] WENG H, FANG C, FANG Z, et al. Coexistence of Weyl Fermion and Massless Triply Degenerate Nodal Points[J/OL]. Physical Review B, 2016, 94(16): 165201. DOI: 10.1103/physrevb.94.165201.
[85] LV B Q, FENG Z L, XU Q N, et al. Observation of Three-Component Fermions in the Topological Semimetal Molybdenum Phosphide[J/OL]. Nature, 2017, 546(7660): 627-631. DOI: 10.1038/nature22390.
[86] KUMAR N, SUN Y, NICKLAS M, et al. Extremely High Conductivity Observed in the Triple Point Topological Metal MoP[J/OL]. Nature Communications, 2019, 10(1): 2475. DOI: 10.1038/s41467-019-10126-y.
[87] KIM Y, WIEDER B J, KANE C, et al. Dirac Line Nodes in Inversion-Symmetric Crystals[J/OL]. Physical Review Letters, 2015, 115(3): 036806. DOI: 10.1103/physrevlett.115.036806.
[88] FANG C, CHEN Y, KEE H Y, et al. Topological Nodal Line Semimetals with and without Spin-Orbital Coupling[J/OL]. Physical Review B, 2015, 92(8): 081201. DOI: 10.1103/physrevb.92.081201.
[89] WENG H, LIANG Y, XU Q, et al. Topological Node-Line Semimetal in Three-Dimensional Graphene Networks[J/OL]. Physical Review B, 2015, 92(4): 045108. DOI: 10.1103/physrevb.92.045108.
[90] YU R, WENG H, FANG Z, et al. Topological Node-Line Semimetal and Dirac Semimetal State in Antiperovskite Cu3PdN[J/OL]. Physical Review Letters, 2015, 115(3): 036807. DOI: 10.1103/physrevlett.115.036807.
[91] SCHOOP L M, ALI M N, STRAßER C, et al. Dirac Cone Protected by Non-Symmorphic Symmetry and Three-Dimensional Dirac Line Node in ZrSiS[J/OL]. Nature Communications, 2016, 7(1): 11696. DOI: 10.1038/ncomms11696.136
[92] XU Q, YU R, FANG Z, et al. Topological Nodal Line Semimetals in the CaP3 Family of Materials[J/OL]. Physical Review B, 2017, 95(4): 045136. DOI: 10.1103/physrevb.95.045136.
[93] ZHONG C, CHEN Y, XIE Y, et al. Towards Three-Dimensional Weyl-Surface Semimetals in Graphene Networks[J/OL]. Nanoscale, 2016, 8(13): 7232-7239. DOI: 10.1039/c6nr00882h.
[94] LIANG Q F, ZHOU J, YU R, et al. Node-Surface and Node-Line Fermions from Nonsymmorphic Lattice Symmetries[J/OL]. Physical Review B, 2016, 93(8): 085427. DOI: 10.1103/physrevb.93.085427.
[95] WU W, LIU Y, LI S, et al. Nodal Surface Semimetals: Theory and Material Realization[J/OL]. Physical Review B, 2018, 97(11): 115125. DOI: 10.1103/physrevb.97.115125.
[96] YANG T, ZHANG X. Nearly Flat Nodal Surface States in Pseudo-One-Dimensional Molybdenum Monochalcogenides X(MoS)3 (X = K, Rb, and Cs)[J/OL]. Journal of Materials Chemistry C, 2020, 8(26): 9046-9054. DOI: 10.1039/d0tc01978j.
[97] ALTLAND A, ZIRNBAUER M R. Nonstandard Symmetry Classes in Mesoscopic Normal-Superconducting Hybrid Structures[J/OL]. Physical Review B, 1997, 55(2): 1142-1161. DOI: 10.1103/physrevb.55.1142.
[98] KITAEV A, LEBEDEV V, FEIGEL’MAN M. Periodic Table for Topological Insulators and Superconductors[C/OL]//AIP Conference Proceedings. AIP, 2009. DOI: 10.1063/1.3149495.
[99] RYU S, SCHNYDER A P, FURUSAKI A, et al. Topological Insulators and Superconductors: Tenfold Way and Dimensional Hierarchy[J/OL]. New Journal of Physics, 2010, 12(6): 065010. DOI: 10.1088/1367-2630/12/6/065010.
[100] FU L. Topological Crystalline Insulators[J/OL]. Physical Review Letters, 2011, 106(10): 106802. DOI: 10.1103/physrevlett.106.106802.
[101] HSIEH T H, LIN H, LIU J, et al. Topological Crystalline Insulators in the SnTe Material Class[J/OL]. Nature Communications, 2012, 3(1): 982. DOI: 10.1038/ncomms1969.
[102] TANAKA Y, REN Z, SATO T, et al. Experimental Realization of a Topological Crystalline Insulator in SnTe[J/OL]. Nature Physics, 2012, 8(11): 800-803. DOI: 10.1038/nphys2442.
[103] LIU C X, ZHANG R X, VANLEEUWEN B K. Topological Nonsymmorphic Crystalline Insulators[J/OL]. Physical Review B, 2014, 90(8): 085304. DOI: 10.1103/physrevb.90.085304.
[104] FANG C, FU L. New Classes of Three-Dimensional Topological Crystalline Insulators: Nonsymmorphic and Magnetic[J/OL]. Physical Review B, 2015, 91(16): 161105. DOI: 10.1103/physrevb.91.161105.
[105] SHIOZAKI K, SATO M, GOMI K. 𝑍2 Topology in Nonsymmorphic Crystalline Insulators: Möbius Twist in Surface States[J/OL]. Physical Review B, 2015, 91(15): 155120. DOI: 10.1103/physrevb.91.155120.
[106] ANDO Y, FU L. Topological Crystalline Insulators and Topological Superconductors: From Concepts to Materials[J/OL]. Annual Review of Condensed Matter Physics, 2015, 6(1): 361-381. DOI: 10.1146/annurev-conmatphys-031214-014501.
[107] SCHINDLER F, COOK A M, VERGNIORY M G, et al. Higher-Order Topological Insulators[J/OL]. Science Advances, 2018, 4(6). DOI: 10.1126/sciadv.aat0346.137
[108] SCHINDLER F, WANG Z, VERGNIORY M G, et al. Higher-Order Topology in Bismuth[J/OL]. Nature Physics, 2018, 14(9): 918-924. DOI: 10.1038/s41567-018-0224-7.
[109] BENALCAZAR W A, BERNEVIG B A, HUGHES T L. Quantized Electric Multipole Insulators[J/OL]. Science, 2017, 357(6346): 61-66. DOI: 10.1126/science.aah6442.
[110] SONG Z, ZHANG T, FANG Z, et al. Quantitative Mappings between Symmetry and Topology in Solids[J/OL]. Nature Communications, 2018, 9(1): 3530. DOI: 10.1038/s41467-018-06010-w.
[111] SMIT J. The Spontaneous Hall Effect in Ferromagnetics I[J/OL]. Physica, 1955, 21(6–10): 877-887. DOI: 10.1016/s0031-8914(55)92596-9.
[112] SMIT J. The Spontaneous Hall Effect in Ferromagnetics II[J/OL]. Physica, 1958, 24(1–5): 39-51. DOI: 10.1016/s0031-8914(58)93541-9.
[113] BERGER L. Side-Jump Mechanism for the Hall Effect of Ferromagnets[J/OL]. Physical Review B, 1970, 2(11): 4559-4566. DOI: 10.1103/physrevb.2.4559.
[114] KARPLUS R, LUTTINGER J M. Hall Effect in Ferromagnetics[J/OL]. Physical Review, 1954, 95(5): 1154-1160. DOI: 10.1103/physrev.95.1154.
[115] SUNDARAM G, NIU Q. Wave-Packet Dynamics in Slowly Perturbed Crystals: Gradient Corrections and Berry-Phase Effects[J/OL]. Physical Review B, 1999, 59(23): 14915-14925. DOI: 10.1103/physrevb.59.14915.
[116] CZESCHKA F D. Spin Currents in Metallic Nanostructures[Z]. Technische Universität München, 2011.
[117] YU R, ZHANG W, ZHANG H J, et al. Quantized Anomalous Hall Effect in Magnetic Topological Insulators[J/OL]. Science, 2010, 329(5987): 61-64. DOI: 10.1126/science.1187485.
[118] CHANG C Z, ZHANG J, FENG X, et al. Experimental Observation of the Quantum Anomalous Hall Effect in a Magnetic Topological Insulator[J/OL]. Science, 2013, 340(6129): 167-170. DOI: 10.1126/science.1234414.
[119] ZHANG D, SHI M, ZHU T, et al. Topological Axion States in the Magnetic Insulator MnBi2Te4 with the Quantized Magnetoelectric Effect[J/OL]. Physical Review Letters, 2019, 122(20): 206401. DOI: 10.1103/physrevlett.122.206401.
[120] LI J, LI Y, DU S, et al. Intrinsic Magnetic Topological Insulators in Van der Waals Layered MnBi2Te4-Family Materials[J/OL]. Science Advances, 2019, 5(6). DOI: 10.1126/sciadv.aaw5685.
[121] SUN H, XIA B, CHEN Z, et al. Rational Design Principles of the Quantum Anomalous Hall Effect in Superlatticelike Magnetic Topological Insulators[J/OL]. Physical Review Letters, 2019, 123(9): 096401. DOI: 10.1103/physrevlett.123.096401.
[122] DENG Y, YU Y, SHI M Z, et al. Quantum Anomalous Hall Effect in Intrinsic Magnetic Topological Insulator MnBi2Te4[J/OL]. Science, 2020, 367(6480): 895-900. DOI: 10.1126/science.aax8156.
[123] DE GROOT R A, MUELLER F M, ENGEN P G V, et al. New Class of Materials: Half-Metallic Ferromagnets[J/OL]. Physical Review Letters, 1983, 50(25): 2024-2027. DOI: 10.1103/physrevlett.50.2024.138
[124] DEDKOV Y S, RüDIGER U, GüNTHERODT G. Evidence for the Half-Metallic Ferromagnetic State of Fe3O4 by Spin-Resolved Photoelectron Spectroscopy[J/OL]. Physical Review B, 2002, 65(6): 064417. DOI: 10.1103/physrevb.65.064417.
[125] SINOVA J, VALENZUELA S O, WUNDERLICH J, et al. Spin Hall Effects[J/OL]. Reviews of Modern Physics, 2015, 87(4): 1213-1260. DOI: 10.1103/revmodphys.87.1213.
[126] D’YAKONOV M I, PEREL’ V I. Possibility of Orienting Electron Spins with Current[J/OL]. Soviet Journal of Experimental and Theoretical Physics Letters, 1971, 13: 467. https://ui.adsabs.harvard.edu/abs/1971JETPL..13..467D.
[127] HIRSCH J E. Spin Hall Effect[J/OL]. Physical Review Letters, 1999, 83(9): 1834-1837. DOI: 10.1103/physrevlett.83.1834.
[128] ZHANG S. Spin Hall Effect in the Presence of Spin Diffusion[J/OL]. Physical Review Letters, 2000, 85(2): 393-396. DOI: 10.1103/physrevlett.85.393.
[129] MURAKAMI S, NAGAOSA N, ZHANG S C. Dissipationless Quantum Spin Current at Room Temperature[J/OL]. Science, 2003, 301(5638): 1348-1351. DOI: 10.1126/science.1087128.
[130] SINOVA J, CULCER D, NIU Q, et al. Universal Intrinsic Spin Hall Effect[J/OL]. Physical Review Letters, 2004, 92(12): 126603. DOI: 10.1103/physrevlett.92.126603.
[131] VALENZUELA S O, TINKHAM M. Direct Electronic Measurement of the Spin Hall Effect[J/OL]. Nature, 2006, 442(7099): 176-179. DOI: 10.1038/nature04937.
[132] VALENZUELA S O, TINKHAM M. Electrical Detection of Spin Currents: The Spin-Current Induced Hall Effect (Invited)[J/OL]. Journal of Applied Physics, 2007, 101(9). DOI: 10.1063/1.2710794.
[133] SEKI T, HASEGAWA Y, MITANI S, et al. Giant Spin Hall Effect in Perpendicularly Spin-Polarized FePt/Au Devices[J/OL]. Nature Materials, 2008, 7(2): 125-129. DOI: 10.1038/nmat2098.
[134] MOSENDZ O, VLAMINCK V, PEARSON J E, et al. Detection and Quantification of Inverse Spin Hall Effect from Spin Pumping in Permalloy/Normal Metal Bilayers[J/OL]. Physical Review B, 2010, 82(21): 214403. DOI: 10.1103/physrevb.82.214403.
[135] MOROTA M, NIIMI Y, OHNISHI K, et al. Indication of Intrinsic Spin Hall Effect in 4d and 5d Transition Metals[J/OL]. Physical Review B, 2011, 83(17): 174405. DOI: 10.1103/physrevb.83.174405.
[136] INOUE J I, BAUER G E W, MOLENKAMP L W. Suppression of the Persistent Spin Hall Current by Defect Scattering[J/OL]. Physical Review B, 2004, 70(4): 041303. DOI: 10.1103/physrevb.70.041303.
[137] DIMITROVA O V. Spin-Hall Conductivity in a Two-Dimensional Rashba Electron Gas[J/OL]. Physical Review B, 2005, 71(24): 245327. DOI: 10.1103/physrevb.71.245327.
[138] NOETHER E. Invariante Variationsprobleme[J/OL]. Nachrichten von der Gesellschaft der Wissenschaften zu Göttingen, Mathematisch-Physikalische Klasse, 1918, 1918: 235-257. http://eudml.org/doc/59024.
[139] YANG C N. Thematic Melodies of Twentieth Century Theoretical Physics: Quantization, Symmetry and Phase Factor[C/OL]//Few-Body Problems in Physics. WORLD SCIENTIFIC, 2007. DOI: 10.1142/9789812706881_0001.139
[140] ANDERSON P W. More Is Different: Broken Symmetry and the Nature of the Hierarchical Structure of Science.[J/OL]. Science, 1972, 177(4047): 393-396. DOI: 10.1126/science.177.4047.393.
[141] YU R, QI X L, BERNEVIG A, et al. Equivalent Expression of 𝑍2 Topological Invariant for Band Insulators Using the Non-Abelian Berry Connection[J/OL]. Physical Review B, 2011, 84(7): 075119. DOI: 10.1103/physrevb.84.075119.
[142] FANG C, GILBERT M J, BERNEVIG B A. Bulk Topological Invariants in Noninteracting Point Group Symmetric Insulators[J/OL]. Physical Review B, 2012, 86(11): 115112. DOI: 10.1103/physrevb.86.115112.
[143] KRUTHOFF J, DE BOER J, VAN WEZEL J, et al. Topological Classification of Crystalline Insulators through Band Structure Combinatorics[J/OL]. Physical Review X, 2017, 7(4): 041069. DOI: 10.1103/physrevx.7.041069.
[144] PO H C, VISHWANATH A, WATANABE H. Symmetry-Based Indicators of Band Topology in the 230 Space Groups[J/OL]. Nature Communications, 2017, 8(1): 50. DOI: 10.1038/s41467-017-00133-2.
[145] BRADLYN B, ELCORO L, CANO J, et al. Topological Quantum Chemistry[J/OL]. Nature, 2017, 547(7663): 298-305. DOI: 10.1038/nature23268.
[146] CANO J, BRADLYN B, WANG Z, et al. Building Blocks of Topological Quantum Chemistry: Elementary Band Representations[J/OL]. Physical Review B, 2018, 97(3): 035139. DOI: 10.1103/physrevb.97.035139.
[147] VERGNIORY M G, ELCORO L, WANG Z, et al. Graph Theory Data for Topological Quantum Chemistry[J/OL]. Physical Review E, 2017, 96(2): 023310. DOI: 10.1103/physreve.96.023310.
[148] TANG F, PO H C, VISHWANATH A, et al. Efficient Topological Materials Discovery Using Symmetry Indicators[J/OL]. Nature Physics, 2019, 15(5): 470-476. DOI: 10.1038/s41567-019-0418-7.
[149] VERGNIORY M G, ELCORO L, FELSER C, et al. A Complete Catalogue of High-Quality Topological Materials[J/OL]. Nature, 2019, 566(7745): 480-485. DOI: 10.1038/s41586-019-0954-4.
[150] ZHANG T, JIANG Y, SONG Z, et al. Catalogue of Topological Electronic Materials[J/OL]. Nature, 2019, 566(7745): 475-479. DOI: 10.1038/s41586-019-0944-6.
[151] TANG F, PO H C, VISHWANATH A, et al. Comprehensive Search for Topological Materials Using Symmetry Indicators[J/OL]. Nature, 2019, 566(7745): 486-489. DOI: 10.1038/s41586-019-0937-5.
[152] TANG F, PO H C, VISHWANATH A, et al. Topological Materials Discovery by Large-Order Symmetry Indicators[J/OL]. Science Advances, 2019, 5(3). DOI: 10.1126/sciadv.aau8725.
[153] VERGNIORY M G, WIEDER B J, ELCORO L, et al. All Topological Bands of all Nonmagnetic Stoichiometric Materials[J/OL]. Science, 2022, 376(6595). DOI: 10.1126/science.abg9094.
[154] WATANABE H, PO H C, VISHWANATH A. Structure and Topology of Band Structures in the 1651 Magnetic Space Groups[J/OL]. Science Advances, 2018, 4(8). DOI: 10.1126/sciadv.aat8685.140
[155] ELCORO L, WIEDER B J, SONG Z, et al. Magnetic Topological Quantum Chemistry[J/OL]. Nature Communications, 2021, 12(1): 5965. DOI: 10.1038/s41467-021-26241-8.
[156] XU Y, ELCORO L, SONG Z D, et al. High-Throughput Calculations of Magnetic Topological Materials[J/OL]. Nature, 2020, 586(7831): 702-707. DOI: 10.1038/s41586-020-2837-0.
[157] OKAMURA Y, MINAMI S, KATO Y, et al. Giant Magneto-Optical Responses in Magnetic Weyl Semimetal Co3Sn2S2[J/OL]. Nature Communications, 2020, 11(1): 4619. DOI: 10.1038/s41467-020-18470-0.
[158] KIM K, SEO J, LEE E, et al. Large Anomalous Hall Current Induced by Topological Nodal Lines in a Ferromagnetic Van Der Waals Semimetal[J/OL]. Nature Materials, 2018, 17(9): 794-799. DOI: 10.1038/s41563-018-0132-3.
[159] SEO J, DE C, HA H, et al. Colossal Angular Magnetoresistance in Ferrimagnetic Nodal-Line Semiconductors[J/OL]. Nature, 2021, 599(7886): 576-581. DOI: 10.1038/s41586-021-04028-7.
[160] VON KLITZING K, CHAKRABORTY T, KIM P, et al. 40 Years of the Quantum Hall Effect[J/OL]. Nature Reviews Physics, 2020, 2(8): 397-401. DOI: 10.1038/s42254-020-0209-1.
[161] SHANAVAS K V, POPOVIć Z S, SATPATHY S. Theoretical Model for Rashba Spin-Orbit Interaction in d Electrons[J/OL]. Physical Review B, 2014, 90(16): 165108. DOI: 10.1103/physrevb.90.165108.
[162] LANDAU L D, LIFšIC E M. Course of Theoretical Physics: Vol. 3[M]. 3. ed., rev. and enl., reprinted ed. Oxford [u.a.]: Pergamon Press, 1994.
[163] LIU L, MORIYAMA T, RALPH D C, et al. Spin-Torque Ferromagnetic Resonance Induced by the Spin Hall Effect[J/OL]. Physical Review Letters, 2011, 106(3): 036601. DOI: 10.1103/physrevlett.106.036601.
[164] DZIAWA P, KOWALSKI B J, DYBKO K, et al. Topological Crystalline Insulator States in Pb1−xSn𝑥Se[J/OL]. Nature Materials, 2012, 11(12): 1023-1027. DOI: 10.1038/nmat3449.
[165] SCANLON D O, KING P D C, SINGH R P, et al. Controlling Bulk Conductivity in Topological Insulators: Key Role of Anti‐Site Defects[J/OL]. Advanced Materials, 2012, 24(16): 2154-2158. DOI: 10.1002/adma.201200187.
[166] BLACK-SCHAFFER A M, BALATSKY A V, FRANSSON J. Filling of Magnetic-Impurity-Induced Gap in Topological Insulators by Potential Scattering[J/OL]. Physical Review B, 2015, 91(20): 201411. DOI: 10.1103/physrevb.91.201411.
[167] XU Y, CHIU J, MIAO L, et al. Disorder Enabled Band Structure Engineering of a Topological Insulator Surface[J/OL]. Nature Communications, 2017, 8(1): 14081. DOI: 10.1038/ncomms14081.
[168] YAO Y, YE F, QI X L, et al. Spin-Orbit Gap of Graphene: First-Principles Calculations[J/OL]. Physical Review B, 2007, 75(4): 041401. DOI: 10.1103/physrevb.75.041401.
[169] BRADLEY C J, CRACKNELL A P. Oxford classic texts in the physical sciences: The Mathematical Theory of Symmetry in Solids[M]. Repr. ed. Oxford: Clarendon Press, 2011.
[170] WIGNER E. Group Theory: and Its Application to the Quantum Mechanics of Atomic Spectra: Vol. 5[M]. Elsevier, 2012.141
[171] ZAK J. Symmetry Specification of Bands in Solids[J/OL]. Physical Review Letters, 1980, 45(12): 1025-1028. DOI: 10.1103/physrevlett.45.1025.
[172] ZAK J. Band Representations and Symmetry Types of Bands in Solids[J/OL]. Physical Review B, 1981, 23(6): 2824-2835. DOI: 10.1103/physrevb.23.2824.
[173] ZAK J. Band Representations of Space Groups[J/OL]. Physical Review B, 1982, 26(6): 3010-3023. DOI: 10.1103/physrevb.26.3010.
[174] ALLEN P B, BROUGHTON J Q, MCMAHAN A K. Transferable Nonorthogonal Tight-Binding Parameters for Silicon[J/OL]. Physical Review B, 1986, 34(2): 859-862. DOI: 10.1103/physrevb.34.859.
[175] LIU F, PRESS M R, KHANNA S N, et al. Magnetism and Local Order: Ab Initio Tight-Binding Theory[J/OL]. Physical Review B, 1989, 39(10): 6914-6924. DOI: 10.1103/physrevb.39.6914.
[176] BARRETEAU C, SPANJAARD D, DESJONQUèRES M C. Electronic Structure and Total Energy of Transition Metals from an spd Tight-Binding Method: Application to Surfaces and Clusters of Rh[J/OL]. Physical Review B, 1998, 58(15): 9721-9731. DOI: 10.1103/physrevb.58.9721.
[177] SLATER J C, KOSTER G F. Simplified LCAO Method for the Periodic Potential Problem[J/OL]. Physical Review, 1954, 94(6): 1498-1524. DOI: 10.1103/physrev.94.1498.
[178] AUTÈS G. Transport électronique polarisé en spin dans les contacts atomiques de fer[Z]. Universite Pierre et Marie Curie - Paris VI, 2008.
[179] TAKEGAHARA K, AOKI Y, YANASE A. Slater-Koster Tables for f Electrons[J/OL]. Journal of Physics C: Solid State Physics, 1980, 13(4): 583-588. DOI: 10.1088/0022-3719/13/4/016.
[180] SCHENA T. Tight-Binding Treatment of Complex Magnetic Structures in Low-Dimensional Systems[Z]. Aachen University, Germany, 2010.
[181] HUBBARD J. Electron Correlations in Narrow Energy Bands[J/OL]. Proceedings of the Royal Society of London Series A, 1963, 276(1365): 238-257. https://ui.adsabs.harvard.edu/abs/1963RSPSA.276..238H. DOI: 10.1098/rspa.1963.0204.
[182] LöWDIN P O. A Note on the Quantum-Mechanical Perturbation Theory[J/OL]. The Journal of Chemical Physics, 1951, 19(11): 1396-1401. DOI: 10.1063/1.1748067.
[183] FAZEKAS P. Lecture Notes on Electron Correlation and Magnetism[M/OL]. WORLD SCIENTIFIC, 1999. DOI: 10.1142/2945.
[184] VOON L C L Y. The 𝑘 ⋅ 𝑝 Method[M]. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009.
[185] HARTREE D R. The Wave Mechanics of an Atom with a Non-Coulomb Central Field. Part I. Theory and Methods[J/OL]. Mathematical Proceedings of the Cambridge Philosophical Society, 1928, 24(1): 89-110. DOI: 10.1017/s0305004100011919.
[186] FOCK V. Näherungsmethode Zur Lösung Des Quantenmechanischen Mehrkörperproblems[J/OL]. Zeitschrift fur Physik, 1930, 61(1-2): 126-148. https://ui.adsabs.harvard.edu/abs/1930ZPhy...61..126F. DOI: 10.1007/BF01340294.
[187] HOHENBERG P, KOHN W. Inhomogeneous Electron Gas[J/OL]. Physical Review, 1964, 136(3B): B864-B871. DOI: 10.1103/physrev.136.b864.142
[188] KOHN W, SHAM L J. Self-Consistent Equations Including Exchange and Correlation Effects[J/OL]. Physical Review, 1965, 140(4A): A1133-A1138. DOI: 10.1103/physrev.140.a1133.
[189] PERDEW J P, BURKE K, ERNZERHOF M. Generalized Gradient Approximation Made Simple[J/OL]. Physical Review Letters, 1996, 77(18): 3865-3868. DOI: 10.1103/physrevlett.77.3865.
[190] PERDEW J P, BURKE K, ERNZERHOF M. Generalized Gradient Approximation Made Simple [Phys. Rev. Lett. 77, 3865 (1996)][J/OL]. Physical Review Letters, 1997, 78(7): 1396-1396. DOI: 10.1103/physrevlett.78.1396.
[191] PERDEW J P, WANG Y. Accurate and Simple Analytic Representation of the Electron-Gas Correlation Energy[J/OL]. Physical Review B, 1992, 45(23): 13244-13249. DOI: 10.1103/physrevb.45.13244.
[192] SUN J, RUZSINSZKY A, PERDEW J. Strongly Constrained and Appropriately Normed Semilocal Density Functional[J/OL]. Physical Review Letters, 2015, 115(3): 036402. DOI: 10.1103/physrevlett.115.036402.
[193] RAGHU S, QI X L, HONERKAMP C, et al. Topological Mott Insulators[J/OL]. Physical Review Letters, 2008, 100(15): 156401. DOI: 10.1103/physrevlett.100.156401.
[194] PESIN D, BALENTS L. Mott Physics and Band Topology in Materials with Strong Spin–Orbit Interaction[J/OL]. Nature Physics, 2010, 6(5): 376-381. DOI: 10.1038/nphys1606.
[195] WITCZAK-KREMPA W, CHEN G, KIM Y B, et al. Correlated Quantum Phenomena in the Strong Spin-Orbit Regime[J/OL]. Annual Review of Condensed Matter Physics, 2014, 5(1): 57-82. DOI: 10.1146/annurev-conmatphys-020911-125138.
[196] ZHOU Y, KANODA K, NG T K. Quantum Spin Liquid States[J/OL]. Reviews of Modern Physics, 2017, 89(2): 025003. DOI: 10.1103/revmodphys.89.025003.
[197] LIU G Q, ANTONOV V N, JEPSEN O, et al. Coulomb-Enhanced Spin-Orbit Splitting: The Missing Piece in the Sr2RhO4 Puzzle[J/OL]. Physical Review Letters, 2008, 101(2): 026408. DOI: 10.1103/physrevlett.101.026408.
[198] ZHANG G, GORELOV E, SARVESTANI E, et al. Fermi Surface of Sr2RuO4: Spin-Orbit and Anisotropic Coulomb Interaction Effects[J/OL]. Physical Review Letters, 2016, 116(10): 106402. DOI: 10.1103/physrevlett.116.106402.
[199] KIM M, MRAVLJE J, FERRERO M, et al. Spin-Orbit Coupling and Electronic Correlations in Sr2RuO4[J/OL]. Physical Review Letters, 2018, 120(12): 126401. DOI: 10.1103/physrevlett.120.126401.
[200] BRINKMAN W, ELLIOTT R J. Space Group Theory for Spin Waves[J/OL]. Journal of Applied Physics, 1966, 37(3): 1457-1459. DOI: 10.1063/1.1708514.
[201] LITVIN D, OPECHOWSKI W. Spin Groups[J/OL]. Physica, 1974, 76(3): 538-554. DOI: 10.1016/0031-8914(74)90157-8.
[202] LITVIN D B. Spin Point Groups[J/OL]. Acta Crystallographica Section A, 1977, 33(2): 279-287. DOI: 10.1107/s0567739477000709.
[203] LIU P, LI J, HAN J, et al. Spin-Group Symmetry in Magnetic Materials with Negligible Spin-Orbit Coupling[J/OL]. Physical Review X, 2022, 12(2): 021016. DOI: 10.1103/physrevx.12.021016.143
[204] KANAMORI J. Electron Correlation and Ferromagnetism of Transition Metals[J/OL]. Progress of Theoretical Physics, 1963, 30(3): 275-289. DOI: 10.1143/ptp.30.275.
[205] ALLMANN R, HINEK R. The Introduction of Structure Types into the Inorganic Crystal Structure Database ICSD[J/OL]. Acta Crystallographica Section A Foundations of Crystallography, 2007, 63(5): 412-417. DOI: 10.1107/s0108767307038081.
[206] HAASTRUP S, STRANGE M, PANDEY M, et al. The Computational 2D Materials Database: High-Throughput Modeling and Discovery of Atomically Thin Crystals[J/OL]. 2D Materials, 2018, 5(4): 042002. DOI: 10.1088/2053-1583/aacfc1.
[207] GJERDING M N, TAGHIZADEH A, RASMUSSEN A, et al. Recent Progress of the Computational 2D Materials Database (C2DB)[J/OL]. 2D Materials, 2021, 8(4): 044002. DOI: 10.1088/2053-1583/ac1059.
[208] STOKES H T, HATCH D M. FINDSYM: Program for Identifying the Space-Group Symmetry of a Crystal[J/OL]. Journal of Applied Crystallography, 2005, 38(1): 237-238. DOI: 10.1107/s0021889804031528.
[209] WANG Y, WANG Z, FANG Z, et al. Interaction-Induced Quantum Anomalous Hall Phase in (111) Bilayer of LaCoO3[J/OL]. Physical Review B, 2015, 91(12): 125139. DOI: 10.1103/physrevb.91.125139.
[210] KIM H S, KEE H Y. Realizing Haldane Model in Fe-Based Honeycomb Ferromagnetic Insulators[J/OL]. npj Quantum Materials, 2017, 2(1). DOI: 10.1038/s41535-017-0021-z.
[211] JIN Y, CHEN Z, XIA B, et al. Large-Gap Quantum Anomalous Hall Phase in Hexagonal Organometallic Frameworks[J/OL]. Physical Review B, 2018, 98(24): 245127. DOI: 10.1103/physrevb.98.245127.
[212] ZHANG L, ZHANG C W, ZHANG S F, et al. Two-Dimensional Honeycomb-Kagome Ta2S3: A Promising Single-Spin Dirac Fermion and Quantum Anomalous Hall Insulator with Half-Metallic Edge States[J/OL]. Nanoscale, 2019, 11(12): 5666-5673. DOI: 10.1039/c9nr00826h.
[213] SUI Q, ZHANG J, JIN S, et al. Model Hamiltonian for the Quantum Anomalous Hall State in Iron-Halogenide[J/OL]. Chinese Physics Letters, 2020, 37(9): 097301. DOI: 10.1088/0256-307x/37/9/097301.
[214] TANG F, WAN X. Exhaustive Construction of Effective Models in 1651 Magnetic Space Groups[J/OL]. Physical Review B, 2021, 104(8): 085137. DOI: 10.1103/physrevb.104.085137.
[215] MONKHORST H J, PACK J D. Special Points for Brillouin-Zone Integrations[J/OL]. Physical Review B, 1976, 13(12): 5188-5192. DOI: 10.1103/physrevb.13.5188.
[216] PIZZI G, VITALE V, ARITA R, et al. Wannier90 as a Community Code: New Features and Applications[J/OL]. Journal of Physics: Condensed Matter, 2020, 32(16): 165902. DOI: 10.1088/1361-648x/ab51ff.
[217] WU Q, ZHANG S, SONG H F, et al. WannierTools: An Open-Source Software Package for Novel Topological Materials[J/OL]. Computer Physics Communications, 2018, 224: 405-416. DOI: 10.1016/j.cpc.2017.09.033.144
[218] BLUME M, WATSON R E. Theory of Spin-Orbit Coupling in Atoms. II. Comparison of Theory with Experiment[J/OL]. Proceedings of the Royal Society of London Series A, 1963, 271(1347): 565-578. https://ui.adsabs.harvard.edu/abs/1963RSPSA.271..565B. DOI: 10.1098/rspa.1963.0036.
[219] CHEN T, MINAMI S, SAKAI A, et al. Large Anomalous Nernst Effect and Nodal Plane in an Iron-Based Kagome Ferromagnet[J/OL]. Science Advances, 2022, 8(2). DOI: 10.1126/sciadv.abk1480.
[220] GUO C, HU L, PUTZKE C, et al. Quasi-Symmetry-Protected Topology in a Semi-Metal[J/OL]. Nature Physics, 2022, 18(7): 813-818. DOI: 10.1038/s41567-022-01604-0.
[221] MEZEY P G, MARUANI J. The Concept of ‘Syntopy’: A Continuous Extension of the Symmetry Concept for Quasi-Symmetric Structures Using Fuzzy-Set Theory[J/OL]. Molecular Physics, 1990, 69(1): 97-113. DOI: 10.1080/00268979000100071.
[222] KöHLER A E. A Fuzzy Symmetry Concept for Forms with Imperfect Symmetries[J/OL]. Computers and Mathematics with Applications, 1991, 22(9): 35-50. DOI: 10.1016/0898-1221(91)90205-i.
[223] ZORKY P. Symmetry, Pseudosymmetry and Hypersymmetry of Organic Crystals[J/OL]. Journal of Molecular Structure, 1996, 374(1–3): 9-28. DOI: 10.1016/0022-2860(95)09092-4.
[224] MOGI M, KAWAMURA M, TSUKAZAKI A, et al. Tailoring Tricolor Structure of Magnetic Topological Insulator for Robust Axion Insulator[J/OL]. Science Advances, 2017, 3(10). DOI: 10.1126/sciadv.aao1669.
[225] FU L, KANE C L. Topology, Delocalization via Average Symmetry and the Symplectic Anderson Transition[J/OL]. Physical Review Letters, 2012, 109(24): 246605. DOI: 10.1103/physrevlett.109.246605.
[226] MA R, WANG C. Average Symmetry-Protected Topological Phases[J/OL]. Physical Review X, 2023, 13(3): 031016. DOI: 10.1103/physrevx.13.031016.
[227] TAO Y L, WANG J H, XU Y. Average Symmetry Protected Higher-Order Topological Amorphous Insulators[J/OL]. SciPost Physics, 2023, 15(5). DOI: 10.21468/scipostphys.15.5.193.
[228] HU L H, GUO C, SUN Y, et al. Hierarchy of Quasisymmetries and Degeneracies in the CoSi Family of Chiral Crystal Materials[J/OL]. Physical Review B, 2023, 107(12): 125145. DOI: 10.1103/physrevb.107.125145.
[229] REN J, LIANG C, FANG C. Quasisymmetry Groups and Many-Body Scar Dynamics[J/OL]. Physical Review Letters, 2021, 126(12): 120604. DOI: 10.1103/physrevlett.126.120604.
[230] GAO J, WU Q, PERSSON C, et al. Irvsp: To Obtain Irreducible Representations of Electronic States in the VASP[J/OL]. Computer Physics Communications, 2021, 261: 107760. DOI: 10.1016/j.cpc.2020.107760.
[231] SCHILLING J, METHFESSEL S, SHELTON R. LaAg under Hydrostatic Pressure: Superconductivity and Phase Transformation[J/OL]. Solid State Communications, 1977, 24(9): 659-664. DOI: 10.1016/0038-1098(77)90385-4.
[232] HERATH U, TAVADZE P, HE X, et al. PyProcar: A Python Library for Electronic Structure Pre/Post-Processing[J/OL]. Computer Physics Communications, 2020, 251: 107080. DOI: 10.1016/j.cpc.2019.107080.145
[233] SAKAMOTO K, KAKUTA H, SUGAWARA K, et al. Peculiar Rashba Splitting Originating from the Two-Dimensional Symmetry of the Surface[J/OL]. Physical Review Letters, 2009, 103(15): 156801. DOI: 10.1103/physrevlett.103.156801.
[234] XIAO D, CHANG M C, NIU Q. Berry Phase Effects on Electronic Properties[J/OL]. Reviews of Modern Physics, 2010, 82(3): 1959-2007. DOI: 10.1103/revmodphys.82.1959.
[235] FEI F, ZHANG S, ZHANG M, et al. The Material Efforts for Quantized Hall Devices Based on Topological Insulators[J/OL]. Advanced Materials, 2019, 32(27). DOI: 10.1002/adma.201904593.
[236] HE K. MnBi2Te4-Family Intrinsic Magnetic Topological Materials[J/OL]. npj Quantum Materials, 2020, 5(1). DOI: 10.1038/s41535-020-00291-5.
[237] NING W, MAO Z. Recent Advancements in the Study of Intrinsic Magnetic Topological Insulators and Magnetic Weyl Semimetals[J/OL]. APL Materials, 2020, 8(9). DOI: 10.1063/5.0015328.
[238] WANG P, GE J, LI J, et al. Intrinsic Magnetic Topological Insulators[J/OL]. The Innovation, 2021, 2(2): 100098. DOI: 10.1016/j.xinn.2021.100098.
[239] ZHAO Y, LIU Q. Routes to Realize the Axion-Insulator Phase in MnBi2Te4(Bi2Te3)n family [J/OL]. Applied Physics Letters, 2021, 119(6). DOI: 10.1063/5.0059447.
[240] WANG Y, MA X M, HAO Z, et al. On the Topological Surface States of the Intrinsic Magnetic Topological Insulator Mn-Bi-Te Family[J/OL]. National Science Review, 2023, 11(2). DOI: 10.1093/nsr/nwad066.
[241] LI S, LIU T, LIU C, et al. Progress on the Antiferromagnetic Topological Insulator MnBi2Te4[J/OL]. National Science Review, 2023, 11(2). DOI: 10.1093/nsr/nwac296.
[242] ALIEV Z S, AMIRASLANOV I R, NASONOVA D I, et al. Novel Ternary Layered Manganese Bismuth Tellurides of the MnTe-Bi2Te3 System: Synthesis and Crystal Structure[J/OL]. Journal of Alloys and Compounds, 2019, 789: 443-450. DOI: 10.1016/j.jallcom.2019.03.030.
[243] HU C, GORDON K N, LIU P, et al. A Van der Waals Antiferromagnetic Topological Insulator with Weak Interlayer Magnetic Coupling[J/OL]. Nature Communications, 2020, 11(1). DOI: 10.1038/s41467-019-13814-x.
[244] WU X, LI J, MA X M, et al. Distinct Topological Surface States on the Two Terminations of MnBi4Te7[J/OL]. Physical Review X, 2020, 10(3): 031013. DOI: 10.1103/physrevx.10.031013.
[245] WU J, LIU F, SASASE M, et al. Natural Van der Waals Heterostructural Single Crystals with both Magnetic and Topological Properties[J/OL]. Science Advances, 2019, 5(11). DOI: 10.1126/sciadv.aax9989.
[246] MA X M, CHEN Z, SCHWIER E F, et al. Hybridization-Induced Gapped and Gapless States on the Surface of Magnetic Topological Insulators[J/OL]. Physical Review B, 2020, 102(24): 245136. DOI: 10.1103/physrevb.102.245136.
[247] HU Y, XU L, SHI M, et al. Universal Gapless Dirac Cone and Tunable Topological States in (MnBi2Te4)m(Bi2Te3)n Heterostructures[J/OL]. Physical Review B, 2020, 101(16): 161113. DOI: 10.1103/physrevb.101.161113.146
[248] KLIMOVSKIKH I I, OTROKOV M M, ESTYUNIN D, et al. Tunable 3D/2D Magnetism in the (MnBi2Te4)(Bi2Te2)m Topological Insulators Family[J/OL]. npj Quantum Materials, 2020, 5(1). DOI: 10.1038/s41535-020-00255-9.
[249] HU C, DING L, GORDON K N, et al. Realization of an Intrinsic Ferromagnetic Topological State in MnBi8Te13[J/OL]. Science Advances, 2020, 6(30). DOI: 10.1126/sciadv.aba4275.
[250] LU R, SUN H, KUMAR S, et al. Half-Magnetic Topological Insulator with Magnetization-Induced Dirac Gap at a Selected Surface[J/OL]. Physical Review X, 2021, 11(1): 011039. DOI: 10.1103/physrevx.11.011039.
[251] GE J, LIU Y, LI J, et al. High-Chern-Number and High-Temperature Quantum Hall Effect without Landau Levels[J/OL]. National Science Review, 2020, 7(8): 1280-1287. DOI: 10.1093/nsr/nwaa089.
[252] TIAN S, GAO S, NIE S, et al. Magnetic Topological Insulator MnBi6Te10 with a Zero-Field Ferromagnetic State and Gapped Dirac Surface States[J/OL]. Physical Review B, 2020, 102(3): 035144. DOI: 10.1103/physrevb.102.035144.
[253] ZHANG R X, WU F, DAS SARMA S. Möbius Insulator and Higher-Order Topology in MnBi2nTe3n+1[J/OL]. Physical Review Letters, 2020, 124(13): 136407. DOI: 10.1103/physrevlett.124.136407.
[254] WANG J, LIAN B, ZHANG S C. Universal Scaling of the Quantum Anomalous Hall Plateau Transition[J/OL]. Physical Review B, 2014, 89(8): 085106. DOI: 10.1103/physrevb.89.085106.
[255] WANG J, LIAN B, QI X L, et al. Quantized Topological Magnetoelectric Effect of the Zero-Plateau Quantum Anomalous Hall State[J/OL]. Physical Review B, 2015, 92(8): 081107. DOI: 10.1103/physrevb.92.081107.
[256] MOGI M, KAWAMURA M, YOSHIMI R, et al. A Magnetic Heterostructure of Topological Insulators as a Candidate for an Axion Insulator[J/OL]. Nature Materials, 2017, 16(5): 516-521. DOI: 10.1038/nmat4855.
[257] LIU C, WANG Y, LI H, et al. Robust Axion Insulator and Chern Insulator Phases in a Two-Dimensional Antiferromagnetic Topological Insulator[J/OL]. Nature Materials, 2020, 19(5): 522-527. DOI: 10.1038/s41563-019-0573-3.
[258] KOU X, PAN L, WANG J, et al. Metal-to-Insulator Switching in Quantum Anomalous Hall States[J/OL]. Nature Communications, 2015, 6(1): 9474. DOI: 10.1038/ncomms9474.
[259] PAN L, LIU X, HE Q L, et al. Probing the Low-Temperature Limit of the Quantum Anomalous Hall Effect[J/OL]. Science Advances, 2020, 6(25). DOI: 10.1126/sciadv.aaz3595.
[260] GOODENOUGH J B. Theory of the Role of Covalence in the Perovskite-Type Manganites [La,M(II)]MnO3[J/OL]. Physical Review, 1955, 100(2): 564-573. DOI: 10.1103/physrev.100.564.
[261] KANAMORI J. Superexchange Interaction and Symmetry Properties of Electron Orbitals[J/OL]. Journal of Physics and Chemistry of Solids, 1959, 10(2–3): 87-98. DOI: 10.1016/0022-3697(59)90061-7.147
[262] MONG R S K, ESSIN A M, MOORE J E. Antiferromagnetic Topological Insulators[J/OL]. Physical Review B, 2010, 81(24): 245209. DOI: 10.1103/physrevb.81.245209.
[263] HAO Y J, LIU P, FENG Y, et al. Gapless Surface Dirac Cone in Antiferromagnetic Topological Insulator MnBi2Te4[J/OL]. Physical Review X, 2019, 9(4): 041038. DOI: 10.1103/physrevx.9.041038.
[264] CHEN B, FEI F, ZHANG D, et al. Intrinsic Magnetic Topological Insulator Phases in the Sb Doped MnBi2Te4 Bulks and Thin Flakes[J/OL]. Nature Communications, 2019, 10(1): 4469. DOI: 10.1038/s41467-019-12485-y.
[265] CHEN Y, XU L, LI J, et al. Topological Electronic Structure and Its Temperature Evolution in Antiferromagnetic Topological Insulator MnBi2Te4[J/OL]. Physical Review X, 2019, 9(4): 041040. DOI: 10.1103/physrevx.9.041040.
[266] LI H, GAO S Y, DUAN S F, et al. Dirac Surface States in Intrinsic Magnetic Topological Insulators EuSn2As2 and MnBi2nTe3n+1[J/OL]. Physical Review X, 2019, 9(4): 041039. DOI: 10.1103/physrevx.9.041039.
[267] LU H Z, SHAN W Y, YAO W, et al. Massive Dirac Fermions and Spin Physics in an Ultrathin Film of Topological Insulator[J/OL]. Physical Review B, 2010, 81(11): 115407. DOI: 10.1103/physrevb.81.115407.
[268] BURKOV A A, BALENTS L. Weyl Semimetal in a Topological Insulator Multilayer[J/OL]. Physical Review Letters, 2011, 107(12): 127205. DOI: 10.1103/physrevlett.107.127205.
[269] ONO S, WATANABE H. Unified Understanding of Symmetry Indicators for All Internal Symmetry Classes[J/OL]. Physical Review B, 2018, 98(11): 115150. DOI: 10.1103/physrevb.98.115150.
[270] PO H C, WATANABE H, VISHWANATH A. Fragile Topology and Wannier Obstructions[J/OL]. Physical Review Letters, 2018, 121(12): 126402. DOI: 10.1103/physrevlett.121.126402.
[271] SONG Z D, ELCORO L, BERNEVIG B A. Twisted Bulk-Boundary Correspondence of Fragile Topology[J/OL]. Science, 2020, 367(6479): 794-797. DOI: 10.1126/science.aaz7650.
[272] TURNER A M, ZHANG Y, MONG R S K, et al. Quantized Response and Topology of Magnetic Insulators with Inversion Symmetry[J/OL]. Physical Review B, 2012, 85(16): 165120. DOI: 10.1103/physrevb.85.165120.
[273] ZHANG J, WANG D, SHI M, et al. Large Dynamical Axion Field in Topological Antiferromagnetic Insulator Mn2Bi2Te5[J/OL]. Chinese Physics Letters, 2020, 37(7): 077304. DOI: 10.1088/0256-307x/37/7/077304.
[274] VARNAVA N, VANDERBILT D. Surfaces of Axion Insulators[J/OL]. Physical Review B, 2018, 98(24): 245117. DOI: 10.1103/physrevb.98.245117.
[275] RAUCH T, OLSEN T, VANDERBILT D, et al. Geometric and Nongeometric Contributions to the Surface Anomalous Hall Conductivity[J/OL]. Physical Review B, 2018, 98(11): 115108. DOI: 10.1103/physrevb.98.115108.
[276] YUE C, XU Y, SONG Z, et al. Symmetry-Enforced Chiral Hinge States and Surface Quantum Anomalous Hall Effect in the Magnetic Axion Insulator Bi2−xSmxSe3[J/OL]. Nature Physics, 2019, 15(6): 577-581. DOI: 10.1038/s41567-019-0457-0.148
[277] POZO O, REPELLIN C, GRUSHIN A G. Quantization in Chiral Higher Order Topological Insulators: Circular Dichroism and Local Chern Marker[J/OL]. Physical Review Letters, 2019, 123(24): 247401. DOI: 10.1103/physrevlett.123.247401.

所在学位评定分委会
物理学
国内图书分类号
O469
来源库
人工提交
成果类型学位论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/765732
专题南方科技大学
理学院_物理系
推荐引用方式
GB/T 7714
李嘉裕. 自旋-轨道耦合材料新奇物性的对称性判定及设计理论[D]. 深圳. 南方科技大学,2024.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可 操作
12031333-李嘉裕-物理系.pdf(18708KB)学位论文--限制开放CC BY-NC-SA请求全文
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[李嘉裕]的文章
百度学术
百度学术中相似的文章
[李嘉裕]的文章
必应学术
必应学术中相似的文章
[李嘉裕]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。