中文版 | English
题名

M-N-C 模型单原子催化剂的制备及 CO2 电还原构效关系研究

其他题名
PREPARATION OF M-N-C MODEL SINGLE ATOM CATALYST AND STUDY ON STRUCTURE-ACTIVITY RELATIONSHIP OF CO2 ELECTROREDUCTION
姓名
姓名拼音
CHENG Yaoti
学号
11930681
学位类型
硕士
学位专业
0703 化学
学科门类/专业学位类别
07 理学
导师
顾均
导师单位
化学系
论文答辩日期
2024-05-08
论文提交日期
2024-06-20
学位授予单位
南方科技大学
学位授予地点
深圳
摘要

电催化二氧化碳还原是解决全球变暖的气候问题以及化石能源短缺的能源问题的重要手段。M-N-C 单原子电催化剂由于其在 CO2 电还原过程中具有高活性而备受关注,但其真正活性中心仍存在争议。为了研究 M-N-C单原子催化剂在 CO2 电还原过程中的构效关系,本文制备了 Co-N-C 模型单原子催化剂,对可能影响催化活性的三个因素:配位数、配体的电子结构以及碳载体和金属中心之间的电子转移过程进行研究。边缘位点的 Co-Nxx=2,3,4)催化剂被用来研究配位数对于 CO2 电还原催化活性的影响,通过电镜、XPS 等手段来确定边缘位点催化剂的结构,再通过电化学测试获得边缘位点催化剂的 CO2 电还原催化活性,发现边缘位点 Co-N4 催化剂的产生 CO 的法拉第效率最高,CO 的分电流密度也最大,说明 Co-N4 是边缘位点催化剂的真正活性中心。电中性的大环 N4 配体和已报道的阴离子大环 N4 配体被用来研究配体的电子结构对于 CO2 电还原催化活性的影响。通过将两种大环 Co-N4 配合物与碳纳米管吸附制成电催化剂来测试电催化性能,再利用 DFT 计算两种大环 Co-N4 配合物的局部结构电子性质差异以及 CO2 电还原过程的自由能差异,得出电中性大环 N4 配体形成的 Co 催化剂更有利于活化 CO2 分子,所以 CO2 电还原催化活性更好。边缘 Cu-N2 催化剂被用于研究碳载体与金属中心之间的电子转移过程,通过 XPSAESEPR 等表征手段揭示了碳载体上自由基向 Cu 金属中心进行电子转移并还原 Cu2 +Cu+,并有望利用该方法构建异相的 Cu+催化 中心,进一步研究在特定催化反应中的应用。

本文通过系统性地对配位数、配体的电子结构以及碳载体和金属中心之间的电子转移过程等三个因素对于 M-N-C 单原子电催化剂的 CO2 电还原性能影响进行研究,揭示了 M-N-C 单原子电催化剂进行 CO2 电还原的构效关系。为之后 M-N-C 型单原子电催化剂的设计和合成提供了思路和借鉴价值。

 

关键词
语种
中文
培养类别
独立培养
入学年份
2021
学位授予年份
2024-06
参考文献列表

[1]COMPANY B P. BP statistical review of world energy 2022[EB/OL].
[2024-03-25]. https://www.bp.com/content/dam/bp/business-sites/en/global/corporate/pdfs/energy-economics/statistical-review/bp-stats-review-2022-full-report.pdf
[2]NOAA. Global monitoring laboratory, carbon cycle greenhouse gases: trends in atmospheric CO2[EB/OL].
[2024-03-25]. https://gml.noaa.gov/ccgg/trends/global.html
[3]NOAA. Global climate report[EB/OL].
[2024-03-25]. https://www.energy.gov/sites/default/files/2024-02/093.%20Rebecca%20Lindsey%20and%20Luann%20Dahlman%2C%20NOAA%2C%20Climate%20Change_%20Global%20Temperature.pdf
[4]IPCC. AR6 climate change 2021: the physical science basis; 2021[EB/OL].
[2024-03-25]. https://www.ipcc.ch/report/sixth-assessment-report-working-group-i/
[5]NATIONS U. Causes and effects of climate change[EB/OL].
[2024-03-25]. https://www.un.org/en/climatechange/science/causes-effects-climate-change
[6]NASA. The effects of climate change[EB/OL].
[2024-03-25]. https://science.nasa.gov/climate-change/effects/
[7]NATIONS U. The paris agreement | UNFCCC. United Nations framework convention on climate change[EB/OL].
[2024-03-25]. https://unfccc.int/process-and-meetings/the-paris-agreement
[8]新华网. 习近平在第七十五届联合国大会一般性辩论上的讲话(全文)[EB/OL].(2020.09.22)
[2024-03-25]. http://www.xinhuanet.com/politics/leaders/2020-09/22/c_1126527652.htm
[9]ANITA S. LEE J C E, DAVID C. MILLER. Comparisons of amine solvents for post-combustion CO2 capture: A multi-objective analysis approach [J]. Int J Greenhouse Gas Control, 2013, 18:68-74.
[10]LIANG Z, FU K, IDEM R, et al. Review on current advances, future challenges and consideration issues for post-combustion CO2 capture using amine-based absorbents[J]. Chin J Chem Eng, 2016, 24(2): 278-288.
[11]ERANS M, SANZ-PéREZ E S, HANAK D P, et al. Direct air capture: process technology, techno-economic and socio-political challenges[J]. Energy Environ Sci, 2022, 15(4): 1360-1405.
[12]FASIHI M, EFIMOVA O, BREYER C. Techno-economic assessment of CO2 direct air capture plants[J]. J Cleaner Prod, 2019, 224: 957-80.
[13]GOVERNMENT A. What is CCS?[EB/OL]. 2023.06.22
[14]KELEMEN P, BENSON S M, PILORGe H, et al. An overview of the status and challenges of CO2 storage in minerals and geological formations[J]. Frontiers in Climate, 2019, 1.
[15]GHOLAMI R, RAZA A, IGLAUER S. Leakage risk assessment of a CO2 storage site: a review[J]. Earth Sci Rev, 2021, 223.
[16]TETTEH E K, AMANKWA M O, YEBOAH C, et al. Emerging carbon abatement technologies to mitigate energy-carbon footprint- a review[J]. Clean Mater, 2021, 2.
[17]ZHANG X, ZHANG Z, LI H, et al. Insight into heterogeneous electrocatalyst design understanding for the reduction of carbon dioxide[J]. Adv Energy Mater, 2022, 12(39).
[18]KIBRIA M G, EDWARDS J P, GABARDO C M, et al. Electrochemical CO2 reduction into chemical feedstocks: from mechanistic electrocatalysis models to system design[J]. Adv Mater, 2019, 31(31): e1807166.
[19]OMAE I. Recent developments in carbon dioxide utilization for the production of organic chemicals[J]. Coord Chem Rev, 2012, 256(13-14): 1384-1405.
[20]WU J, HUANG Y, YE W, et al. CO2 reduction: from the electrochemical to photochemical approach[J]. Adv Sci, 2017, 4(11): 1700194.
[21]QIAO J, LIU Y, HONG F, et al. A review of catalysts for the electroreduction of carbon dioxide to produce low-carbon fuels[J]. Chem Soc Rev, 2014, 43(2): 631-675.
[22]BIRDJA Y Y, PéREZ-GALLENT E, FIGUEIREDO M C, et al. Advances and challenges in understanding the electrocatalytic conversion of carbon dioxide to fuels[J]. Nat Energy, 2019, 4(9): 732-745.
[23]QIAO B, WANG A, YANG X, et al. Single-atom catalysis of CO oxidation using Pt1/FeOx[J]. Nat Chem, 2011, 3(8): 634-641.
[24]WANG B, CAI H, SHEN S. Single metal atom photocatalysis[J]. Small Methods, 2019, 3(9).
[25]GAO C, LOW J, LONG R, et al. Heterogeneous single-atom photocatalysts: fundamentals and applications[J]. Chem Rev, 2020, 120(21): 12175-12216.
[26]RIVERA CáRCAMO C, SERP P. Single atom catalysts on carbon‐based materials[J]. Chem Cat Chem, 2018, 10(22): 5058-5091.
[27]LI X, RONG H, ZHANG J, et al. Modulating the local coordination environment of single-atom catalysts for enhanced catalytic performance[J]. Nano Res, 2020, 13(7): 1842-1855.
[28]LI Z, JI S, LIU Y, et al. Well-defined materials for heterogeneous catalysis: from nanoparticles to isolated single-atom sites[J]. Chem Rev, 2020, 120(2): 623-682.
[29]CHEN Y, JI S, CHEN C, et al. Single-atom catalysts: synthetic strategies and electrochemical applications[J]. Joule, 2018, 2(7): 1242-1264.
[30]PENG Y, LU B, CHEN S. Carbon-supported single atom catalysts for electrochemical energy conversion and storage[J]. Adv Mater, 2018, 30(48): e1801995.
[31]ZHANG X, WU Z, ZHANG X, et al. Highly selective and active CO2 reduction electrocatalysts based on cobalt phthalocyanine/carbon nanotube hybrid structures[J]. Nat Commun, 2017, 8: 14675.
[32]PENG J, LI Y, CHENG Y, et al. Metal-N4 model single‐atom catalyst with electroneutral quadri‐pyridine macrocyclic ligand for CO2 electroreduction[J]. Carbon Energy, 2024, e506.
[33]WANG X, CHEN Z, ZHAO X, et al. Regulation of coordination number over single Co sites: triggering the efficient electroreduction of CO2[J]. Angew Chem Int Ed, 2018, 57(7): 1944-1948.
[34]JUN GU, C-S H, LICHEN BAI. Atomically dispersed Fe3+ sites catalyze efficient CO2 electroreduction to CO[J]. Science, 2019, 364: 1091-1094.
[35]GUO Y, SHI W, YANG H, et al. Cooperative stabilization of the [pyridinium-CO2-Co] adduct on a metal-organic layer enhances electrocatalytic CO2 reduction[J]. J Am Chem Soc, 2019, 141(44): 17875-17883.
[36]DONG H, LU M, WANG Y, et al. Covalently anchoring covalent organic framework on carbon nanotubes for highly efficient electrocatalytic CO2 reduction[J]. Appl Catal B, 2022, 303.
[37]JACKSON M N, SURENDRANATH Y. Molecular control of heterogeneous electrocatalysis through graphite conjugation[J]. Acc Chem Res, 2019, 52(12): 3432-3441.
[38]JACKSON M N, KAMINSKY C J, OH S, et al. Graphite conjugation eliminates redox intermediates in molecular electrocatalysis[J]. J Am Chem Soc, 2019, 141(36): 14160-14167.
[39]PAN F, LI B, SARNELLO E, et al. Pore-edge tailoring of single-atom iron–nitrogen sites on graphene for enhanced CO2 reduction[J]. ACS Catal, 2020, 10(19): 10803-10811.
[40]CHENG Y, ZHAO S, LI H, et al. Unsaturated edge-anchored Ni single atoms on porous microwave exfoliated graphene oxide for electrochemical CO2[J]. Appl Catal B, 2019, 243: 294-303.
[41]NURUDDIN A, SAPUTRO A G, MAULANA A L, et al. Selectivity of CO2 reduction reaction to CO on the graphitic edge active sites of Fe-single-atom and dual-atom catalysts: A combined DFT and microkinetic modeling[J]. Carbon Resour Convers, 2024, 7(1).
[42]ZHU C, FU S, SHI Q, et al. Single-atom electrocatalysts[J]. Angew Chem Int Ed, 2017, 56(45): 13944-13960.
[43]SUN Z, LIU Q, YAO T, et al. X-ray absorption fine structure spectroscopy in nanomaterials[J]. Sci China Mater, 2015, 58(4): 313-341.
[44]LI X, CAO C-S, HUNG S-F, et al. Identification of the electronic and structural dynamics of catalytic centers in single-Fe-atom material[J]. Chem, 2020, 6(12): 3440-3454.
[45]FEI H, DONG J, FENG Y, et al. General synthesis and definitive structural identification of MN4C4 single-atom catalysts with tunable electrocatalytic activities[J]. Nat Catal, 2018, 1(1): 63-72.
[46]LIANG S, HUANG L, GAO Y, et al. Electrochemical reduction of CO2 to CO over transition metal/N-doped carbon catalysts: the active sites and reaction mechanism[J]. Adv Sci, 2021, 8(24): e2102886.
[47]LI X, BI W, CHEN M, et al. Exclusive Ni-N4 sites realize near-unity CO selectivity for electrochemical CO2 Reduction[J]. J Am Chem Soc, 2017, 139(42): 14889-14892.
[48]FAN Q, HOU P, CHOI C, et al. Activation of Ni particles into single Ni-N atoms for efficient electrochemical reduction of CO2[J]. Adv Energy Mater, 2019, 10(5).
[49]SONG J, LEI X, MU J, et al. Chlorine-coordinated unsaturated Ni-N2 sites for efficient electrochemical carbon dioxide reduction[J]. Small, 2023, 19(52): e2304423.
[50]JU W, BAGGER A, HAO G P, et al. Understanding activity and selectivity of metal-nitrogen-doped carbon catalysts for electrochemical reduction of CO2[J]. Nat Commun, 2017, 8(1): 944.
[51]XU H, CHENG D, CAO D, et al. A universal principle for a rational design of single-atom electrocatalysts[J]. Nat Catal, 2018, 1(5): 339-348.
[52]SUN L, HUANG Z, REDDU V, et al. A planar, conjugated N4-macrocyclic cobalt complex for heterogeneous electrocatalytic CO2 reduction with high activity[J]. Angew Chem Int Ed, 2020, 59(39): 17104-17109.
[53]LEVERETT J. Structure-activity relationships of single atom catalysts for the electrochemical conversion of CO2 to value added products [D/OL], 2023
[2024-03-25]. https://unsworks.unsw.edu.au/entities/publication/a06fdc31-b5cc-4158-91d4-159538f69db6
[54]LIU K, SMITH W A, BURDYNY T. Introductory guide to assembling and operating gas diffusion electrodes for electrochemical CO2 reduction[J]. ACS Energy Lett, 2019, 4(3): 639-643.
[55]HANSEN H A, VARLEY J B, PETERSON A A, et al. Understanding trends in the electrocatalytic activity of metals and enzymes for CO2 reduction to CO[J]. J Phys Chem Lett, 2013, 4(3): 388–392.
[56]HU J, SHANG W, XIN C, et al. Uncovering dynamic edge-sites in atomic Co-N-C electrocatalyst for selective hydrogen peroxide production[J]. Angew Chem Int Ed, 2023, 62(27): e202304754.
[57]TIAN Y, LI M, WU Z, et al. Edge-hosted atomic Co-N4 sites on hierarchical porous carbon for highly selective two-electron oxygen reduction reaction[J]. Angew Chem Int Ed, 2022, 61(51): e202213296.
[58]YAN C, LI H, YE Y, et al. Coordinatively unsaturated nickel–nitrogen sites towards selective and high-rate CO2 electroreduction[J]. Energy Environ Sci, 2018, 11(5): 1204-12010.
[59]OH S, GALLAGHER J R, MILLER J T, et al. Graphite-conjugated rhenium catalysts for carbon dioxide reduction[J]. J Am Chem Soc, 2016, 138(6): 1820-823.
[60]YANG J, LIU H W, MARTENS N W, et al. Synthesis and characterization of cobalt hydroxide, cobalt oxyhydroxide,and cobalt oxide nanodiscs[J]. J Phys Chem C, 2010, 114(1):111–119.
[61]KHASSIN A A, YURIEVA T M, KAICHEV V V, et al, Metal-support interactions in cobalt-aluminum coprecipitated catalysts: XPS and CO adsorption studies[J]. J Mol Catal A: Chem, 2001, 175, 189-204.
[62]CHEN Y, ZHAO S, LIU Z, Influence of the synergistic effect between Co-N-C and ceria on the catalytic performance for selective oxidation of ethylbenzene[J]. Phys Chem Chem Phys, 2015,17,14012-14020.
[63]SUN K, HUANG Y, WANG Q, et al, Manipulating the spin state of Co sites in metal-organic frameworks for boosting CO2 photoreduction[J]. J Am Chem Soc, 2024,146, 3241-3249.
[64]JU W, BAGGER A, HAO G P, et al, Understanding activity and selectivity of metal-nitrogen- doped carbon catalysts for electrochemical reduction of CO2[J]. Nat Commun, 2017, 8, 944.
[65]ZHANG X Q, PTASINSKA S, Dissociative adsorption of water on an H2O/GaAs(100) interface: in situ near-ambient pressure XPS studies[J]. J Phys Chem C, 2014, 118(8): 4259–4266.
[66]FU Z, WU M, ZHOU Y, et al. Support-based modulation strategies in single-atom catalysts for electrochemical CO2 reduction: graphene and conjugated macrocyclic complexes[J]. J Mater Chem A, 2022, 10(11): 5699-5716.
[67]KIM H, SHIN D, YANG W, et al. Identification of single-atom Ni site active toward electrochemical CO2 conversion to CO[J]. J Am Chem Soc, 2021, 143(2): 925-933.
[68]YANG S, YU Y, GAO X, et al. Recent advances in electrocatalysis with phthalocyanines[J]. Chem Soc Rev, 2021, 50(23): 12985-13011.
[69]SUN L, REDDU V, SU T, et al. Effects of axial functional groups on heterogeneous molecular catalysts for electrocatalytic CO2 reduction[J]. Small Struct, 2021, 2(11).
[70]SUN S G,CAI W B, WAN L J, et al . Infrared absorption enhancement for CO adsorbed on Au films in perchloric acid solutions and effects of surface structure studied by cyclic voltammetry, scanning tunneling microscopy, and surface-enhanced IR spectroscopy[J]. J Phys Chem B, 1999, 103(13): 2460-2466.
[71]JIANG K, MA X-Y, BACK S, et al. Local coordination and reactivity of a Pt single-atom catalyst as probed by spectroelectrochemical and computational approaches[J]. CCS Chem, 2021, 3(12): 241-251.
[72]QIN X, ZHU S, XIAO F, et al. Active sites on heterogeneous single-iron-atom electrocatalysts in CO2 reduction reaction[J]. ACS Energy Lett, 2019, 4(7): 1778-1783.
[73]WEI Z, LIU Y, DING J, et al. Promoting electrocatalytic CO2 reduction to CO via sulfur-doped Co-N-C single atom catalyst[J]. Chinese J Chem, 2023, 41(24): 3553-3559.
[74]WANG J, HUANG Y-C, WANG Y, et al. Atomically dispersed metal–nitrogen–carbon catalysts with d-orbital electronic configuration-dependent selectivity for electrochemical CO2-to-CO reduction[J]. ACS Catal, 2023, 13(4): 2374-2385.
[75]LIU C, WU Y, SUN K, et al. Constructing FeN4/graphitic nitrogen atomic interface for high-efficiency electrochemical CO2 reduction over a broad potential window[J]. Chem, 2021, 7(5): 1297-1307.
[76]VANDEVONDELE J, KRACK M, MOHAMED F, et al. Quickstep: fast and accurate density functional calculations using a mixed gaussian and plane waves approach[J]. Comput Phys Commun, 2005, 167(2): 103-128.
[77]ZHANG X, WANG Y, GU M, et al. Molecular engineering of dispersed nickel phthalocyanines on carbon nanotubes for selective CO2 reduction [J]. Nat Energy, 2020, 5(9): 684-692.
[78]VIJAY S, GAUTHIER J A, HEENEN H H, et al. Dipole-field interactions determine the CO2 reduction activity of 2D Fe-N-C single-atom catalysts[J]. ACS Catal, 2020, 10(14): 7826-7835.
[79]IVANOVA T M, MASLAKOV K I, SIDOROV A A, et al. XPS detection of unusual Cu(II) to Cu(I) transition on the surface of complexes with redox-active ligands[J]. J Electron Spectrosc Relat Phenom, 2020, 238.
[80]BRAZZOLOTTO D, NEDELLEC Y, PHILOUZE C, et al. Functionalizing carbon nanotubes with bis(2,9-dialkyl-1,10-phenanthroline)copper(II) complexes for the oxygen reduction reaction[J]. Inorg Chem, 2022, 61(38): 14997-15006.
[81]SUSUMU KITAGAWA, MEGUMU MUNAKATA, HIGASHIE A. Autoreduction of copper(II) complexes of 6,6'-dialkyl-2,2-bipyridine and characterization of their copper(I) complexes[J]. Inorg Chim Acta, 1983, 84: 79-84.
[82]ILIA PLATZMAN, REUVEN BRENER, HOSSAM HAICK, et al. Oxidation of polyerystalline copper thin films at ambient conditions[J]. J Phys Chem C, 2008, 112: 1101-1108.
[83]SAMBIAGIO C, MARSDEN S P, BLACKER A J, et al. Copper catalysed Ullmann type chemistry: from mechanistic aspects to modern development[J]. Chem Soc Rev, 2014, 43(10): 3525-3550.
[84]VAN DER HAM C J M, ZWAGERMAN D N H, WU L, et al. A heterogenized copper phenanthroline system to catalyze the oxygen reduction reaction[J]. ChemElectroChem, 2022, 9(3): e202101365.
[85]AMAL JOSEPH P J, PRIYADARSHINI S. Copper-mediated C–X functionalization of aryl halides[J]. Org Process Res Dev, 2017, 21(12): 1889-1924.
[86]RYAN A.ALTMAN, ERICA D.KOVAL, L.BUCHWALD S. Copper-catalyzed N-arylation of imidazoles and benzimidazoles[J]. J Org Chem, 2007, 72: 6190-6199.

所在学位评定分委会
化学
国内图书分类号
O646.541
来源库
人工提交
成果类型学位论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/765734
专题南方科技大学
理学院_化学系
推荐引用方式
GB/T 7714
程要提. M-N-C 模型单原子催化剂的制备及 CO2 电还原构效关系研究[D]. 深圳. 南方科技大学,2024.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可 操作
11930681-程要提-化学系.pdf(9252KB)----限制开放--请求全文
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[程要提]的文章
百度学术
百度学术中相似的文章
[程要提]的文章
必应学术
必应学术中相似的文章
[程要提]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。