[1] ORGANIZATION W H, et al. Global plan for the decade of action for road safety 2021-2030[R]. WHO Regional Office for the Western Pacific, 2022.
[2] ZHOU J. Active safety measures for vehicles involved in light vehicle-to-vehicle impacts[M]. University of Michigan, 2009.
[3] MCGEHEE D V, MAZZAE E N, BALDWIN G S. Driver reaction time in crash avoidance research: Validation of a driving simulator study on a test track[C]//Proceedings of the human factors and ergonomics society annual meeting: volume 44. Sage Publications Sage CA: Los Angeles, CA, 2000: 3-320.
[4] YANG D, GORDON T J, JACOBSON B, et al. Quasi-linear optimal path controller applied to post impact vehicle dynamics[J]. IEEE transactions on intelligent transportation systems, 2012, 13(4): 1586-1598.
[5] NHTSA. Automated driving systems 2.0: A vision for safety[J]. Washington, DC: US Department of Transportation, DOT HS, 2017, 812: 442.
[6] National Automotive Sampling System and Crash worthiness Data System, Case ID: 179012709, Case Number: 2009-09-088[J/OL]. NASS CDS (2004-2015) search - NHTSA Crash Viewer, 2022. https://crashviewer.nhtsa.dot.gov/LegacyCDS/Search.
[7] KIM B. Optimal Vehicle Motion Control to Mitigate Secondary Crashes after an Initial Impact. [D]. University of Michigan, 2015.
[8] 郭景华, 李克强, 罗禹贡. 智能车辆运动控制研究综述[J]. 汽车安全与节能学报, 2016, 7 (2): 151-159.
[9] 胡云峰, 曲婷, 刘俊, 等. 智能汽车人机协同控制的研究现状与展望[J]. 自动化学报, 2019, 45(7): 1261-1280.
[10] AO D, HUA X, YU G, et al. Robust active post-impact motion control for restraining a second crash[C]//2020 IEEE 16th International Conference on Automation Science and Engineering (CASE). IEEE, 2020: 159-164.
[11] CAO M, WANG R, CHEN N. Integrated feedback compensation control and model predictive control with AFS for secondary collisions mitigation after an initial impact[C]//2018 Annual American Control Conference (ACC). IEEE, 2018: 5542-5547.
[12] YANG D, JACOBSON B, JONASSON M, et al. Closed-loop controller for post-impact vehicle dynamics using individual wheel braking and front axle steering[J]. International Journal of Vehicle Autonomous Systems, 2014, 12(2): 158-179.
[13] KIM B, PENG H. Collision strength estimation and preemptive steering control for post-impact vehicle motion control[C]//12th Int. Sympo. Adv. Veh. Control. 2014: 496-503.
[14] MOK Y M, ZHAI L, WANG C, et al. A Post Impact Stability Control for Four Hub-Motor Independent-Drive Electric Vehicles[J/OL]. IEEE Transactions on Vehicular Technology, 2022, 71(2): 1384-1396. DOI: 10.1109/TVT.2021.3136186.
[15] WANG C, WANG Z, ZHANG Z, et al. Integrated post-impact planning and active safety control for autonomous vehicles[J/OL]. IEEE Transactions on Intelligent Vehicles, 2023: 1-13. DOI: 10.1109/TIV.2023.3236150.
[16] YIN Y, LI S E, LI K, et al. Self-learning drift control of automated vehicles beyond handling limit after rear-end collision[J]. Transportation Safety and Environment, 2020, 2(2): 97-105.
[17] ZHAO T, YURTSEVER E, CHLADNY R, et al. Collision avoidance with transitional drift control[C]//2021 IEEE International Intelligent Transportation Systems Conference (ITSC). IEEE, 2021: 907-914.
[18] 王星宇. 汽车碰后稳定性控制方法研究[D]. 吉林大学, 2020.
[19] ZHOU J, PENG H, LU J. Collision model for vehicle motion prediction after light impacts[J]. Vehicle System Dynamics, 2008, 46(S1): 3-15.
[20] KIM B, PENG H. Optimal vehicle motion control to mitigate secondary crashes after an initial impact[C]//Dynamic Systems and Control Conference: volume 46186. American Society of Mechanical Engineers, 2014: V001T10A002.
[21] BABU V, THOMSON K R, SAKATIS C. LS-DYNA 3D interface component analysis to predict FMVSS 208 occupant responses[R]. SAE Technical Paper, 2003.
[22] SOLANKI K, OGLESBY D, BURTON C, et al. Crashworthiness Simulations Comparing PAM-CRASH and LS-DYNA[R]. SAE Technical Paper, 2004.
[23] PARSEH M, NYBACKA M, ASPLUND F. Motion planning for autonomous vehicles with the inclusion of post-impact motions for minimising collision risk[J]. Vehicle System Dynamics, 2022: 1-27.
[24] 郑何妍, 卢耀辉, 张德文, 等. 汽车正面耐碰撞性有限元仿真分析[J]. 重庆理工大学学报(自然科学), 2018.
[25] 邹铁方, 张勇刚, 陈元新. 基于 Pc-Crash 的车辆侧滑事故再现方法[J]. 中国安全科学学报, 2013(1): 77-82.
[26] KIM B J, PENG H. Vehicle stability control of heading angle and lateral deviation to mitigate secondary collisions[C]//11th International Symposium on Advanced Vehicle Control. 2012: 1-6.
[27] CHEN G, ZHAO X, GAO Z, et al. Dynamic drifting control for general path tracking of autonomous vehicles[J]. IEEE Transactions on Intelligent Vehicles, 2023.
[28] JIA F, JING H, LIU Z. A novel nonlinear drift control for sharp turn of autonomous vehicles [J]. Vehicle System Dynamics, 2023: 1-21.
[29] WANG C, WANG Z, ZHANG L, et al. Post-impact motion planning and tracking control for autonomous vehicles[J]. Chinese Journal of Mechanical Engineering, 2022, 35(1): 54.
[30] BERGMANN D P, DENZEL J, BADEN A, et al. Innovative scaled test platform e-genius-mod-scaling methods and systems design[J]. Aerospace, 2019, 6(2): 20.
[31] PERETZ A, EINAV O, HASHMONAY B A, et al. Development of a laboratory-scale system for hybrid rocket motor testing[J]. Journal of Propulsion and Power, 2011, 27(1): 190-196.
[32] WENJIN W, GUANXUE W, BEN L, et al. Control system design and experiment for largescale high-speed unmanned underwater vehicle[J]. Chinese Journal of Ship Research, 2020, 15 (2): 95-103.
[33] PFITSCH D, GORDON B, RICE J, et al. Development and deployment of autonomous scale submarine models for hydrodynamic testing of US Navy submarine maneuvering characteristics [C]//OCEANS 2016 MTS/IEEE Monterey. IEEE, 2016: 1-6.
[34] GOLDFAIN B, DREWS P, YOU C, et al. Autorally: An open platform for aggressive autonomous driving[J]. IEEE Control Systems Magazine, 2019, 39(1): 26-55.
[35] WANG R, CHEN Y, FENG D, et al. Development and performance characterization of an electric ground vehicle with independently actuated in-wheel motors[J]. Journal of Power Sources, 2011, 196(8): 3962-3971.
[36] KATZOURAKIS D I, PAPAEFSTATHIOU I, LAGOUDAKIS M G. An open-source scaled automobile platform for fault-tolerant electronic stability control[J]. IEEE Transactions on Instrumentation and Measurement, 2010, 59(9): 2303-2314.
[37] LAPAPONG S, GUPTA V, CALLEJAS E, et al. Fidelity of using scaled vehicles for chassis dynamic studies[J]. Vehicle System Dynamics, 2009, 47(11): 1401-1437.
[38] DOMBERG F, WEMBERS C C, PATEL H, et al. Deep drifting: Autonomous drifting of arbitrary trajectories using deep reinforcement learning[C]//2022 International Conference on Robotics and Automation (ICRA). IEEE, 2022: 7753-7759.
[39] PARSEH M, NYBACKA M, ASPLUND F. Motion planning for autonomous vehicles with the inclusion of post-impact motions for minimising collision risk[J]. Vehicle system dynamics, 2023, 61(6): 1707-1733.
[40] GOH J Y, GOEL T, CHRISTIAN GERDES J. Toward automated vehicle control beyond the stability limits: drifting along a general path[J]. Journal of Dynamic Systems, Measurement, and Control, 2020, 142(2): 021004.
[41] CUTLER M, HOW J P. Autonomous drifting using simulation-aided reinforcement learning [C]//2016 IEEE International Conference on Robotics and Automation (ICRA). IEEE, 2016: 5442-5448.
[42] CAO M, HU C, WANG J, et al. Adaptive complementary filter-based post-impact control for independently-actuated and differentially-steered autonomous vehicles[J]. Mechanical Systems and Signal Processing, 2020, 144: 106852.
[43] LIEBEMANN E, MEDER K, SCHUH J, et al. Safety and performance enhancement: The Bosch electronic stability control (ESP)[J]. SAE Paper, 2004, 20004(2004): 21-0060.
[44] SCHOENEBURG R, BREITLING T. Enhancement of active and passive safety by future PRESAFE systems[C]//Proceedings of the 19th ESV Conference, Washington, DC, USA. 2005.
[45] YANG D, GORDON T J, JACOBSON B, et al. A nonlinear post impact path controller based on optimised brake sequences[J]. Vehicle System Dynamics, 2012, 50(sup1): 131-149.
[46] LI Z, GAO C, ZHU Z, et al. Post-Impact Control to Mitigate the Secondary Collision by Combining LQR with Feed-Forward Control[C]//2022 International Conference on Advanced Robotics and Mechatronics (ICARM). IEEE, 2022: 937-942.
[47] 申棋仁, 代凯, 蒲永锋, 等. 四轮驱动及其融合技术发展综述[J]. 汽车文摘, 2020, 7.
[48] GANGOPADHYAY B, DASGUPTA P, DEY S. Safe and Stable RL (S 2 RL) Driving Policies Using Control Barrier and Control Lyapunov Functions[J]. IEEE Transactions on Intelligent Vehicles, 2022, 8(2): 1889-1899.
[49] LEE D, KWON M. Stability Analysis in Mixed-Autonomous Traffic With Deep Reinforcement Learning[J]. IEEE Transactions on Vehicular Technology, 2022, 72(3): 2848-2862.
[50] CUTLER M, HOW J P. Efficient reinforcement learning for robots using informative simulated priors[C]//2015 IEEE international conference on robotics and automation (ICRA). IEEE, 2015: 2605-2612.
[51] AHMIC K, ULTSCH J, BREMBECK J, et al. Reinforcement Learning-Based Path following Control with Dynamics Randomization for Parametric Uncertainties in Autonomous Driving [J]. Applied Sciences, 2023, 13(6): 3456.
[52] PACEJKA H. Tire and vehicle dynamics[M]. Elsevier, 2005.
[53] DUGOFF H, FANCHER P S, SEGEL L. An analysis of tire traction properties and their influence on vehicle dynamic performance[J]. SAE transactions, 1970: 1219-1243.
[54] HANG P, CHEN X. Towards autonomous driving: Review and perspectives on configuration and control of four-wheel independent drive/steering electric vehicles[C]//Actuators: volume 10. MDPI, 2021: 184.
[55] MORERA TORRES E. Real-Data-Based Modelling and Torque Vectoring Algorithm for a 4-Wheel-Drive Formula Student Vehicle[D]. Universitat Politècnica de Catalunya, 2020.
[56] KARAMAN S, ANDERS A, BOULET M, et al. Project-based, collaborative, algorithmic robotics for high school students: Programming self-driving race cars at MIT[C/OL]//2017IEEE Integrated STEM Education Conference (ISEC). 2017: 195-203. DOI: 10.1109/ISEC on.2017.7910242.
[57] 李玲. 车辆稳定性五自由度模型的有效性验证及车队稳定时距预测[D]. 吉林大学, 2017.
[58] WENSING P M, WANG A, SEOK S, et al. Proprioceptive actuator design in the mit cheetah: Impact mitigation and high-bandwidth physical interaction for dynamic legged robots[J]. IEEE transactions on robotics, 2017, 33(3): 509-522.
[59] LI Z, CHEN S, GAO C, et al. Lenny-Lee-ustb’s 4WD-CAR-ROMA-ros2 Repository[EB/OL].2024. https://github.com/Lenny-Lee-ustb/4WD-CAR-ROMA-ros2.
[60] SIERRA C, TSENG E, JAIN A, et al. Cornering stiffness estimation based on vehicle lateral dynamics[J]. Vehicle System Dynamics, 2006, 44(sup1): 24-38.
[61] VOSER C, HINDIYEH R Y, GERDES J C. Analysis and control of high sideslip manoeuvres [J]. Vehicle System Dynamics, 2010, 48(S1): 317-336.
[62] WONG J Y. Theory of ground vehicles[M]. John Wiley & Sons, 2022.
[63] BRENNAN S. Similarity conditions for comparing closed-loop vehicle roll and pitch dynamics [C]//Proceedings of the 2004 American Control Conference: volume 4. IEEE, 2004: 3393-3398.
[64] 李玲. 车辆稳定性五自由度模型的有效性验证及车队稳定时距预测[D]. 吉林大学, 2017.
[65] WANG Y, TAO W, NAN Z, et al. A Passive Optical Motion Capture Method towards Occlusion Conditions Based on Multi-vision System[C]//Proceedings of the 2022 10th International Conference on Information Technology: IoT and Smart City. 2022: 67-73.
[66] NHTSA. National Highway Traffic Safety Administration: Vehicle Crash Test Database [EB/OL]. 2024. https://www.nhtsa.gov/research-data/research-testing-databases#/vehicle.
[67] ZOIS H, APEKIS L, OMASTOVÁ M. Electrical properties of carbon black-filled polymer composites[C]//Macromolecular Symposia: volume 170. Wiley Online Library, 2001: 249-256.
[68] JAKOBI N, HUSBANDS P, HARVEY I. Noise and the reality gap: The use of simulation in evolutionary robotics[C]//Advances in Artificial Life: Third European Conference on Artificial Life Granada, Spain, June 4–6, 1995 Proceedings 3. Springer, 1995: 704-720.
[69] SILVER D, LEVER G, HEESS N, et al. Deterministic policy gradient algorithms[C]// International conference on machine learning. Pmlr, 2014: 387-395.
[70] LILLICRAP T P, HUNT J J, PRITZEL A, et al. Continuous control with deep reinforcement learning[A]. 2015.
[71] THRUN S, SCHWARTZ A. Issues in using function approximation for reinforcement learning [C]//Proceedings of the 1993 connectionist models summer school. Psychology Press, 2014: 255-263.
[72] FUJIMOTO S, HOOF H, MEGER D. Addressing function approximation error in actor-critic methods[C]//International conference on machine learning. PMLR, 2018: 1587-1596.
[73] 尹冲. 基于强化学习的智能车辆横向控制研究[D]. 湖南大学, 2022.
修改评论