中文版 | English
题名

带状突触中RIBEYE蛋白介导的带状结构调控的分子机制研究

其他题名
MOLECULAR MECHANISM OF RIBEYE MEDIATED HIGH-ORDER STRUCTURE IN RIBBON SYNAPSE FORMATION
姓名
姓名拼音
LIU Yang
学号
12133050
学位类型
硕士
学位专业
07 理学
学科门类/专业学位类别
07 理学
导师
魏志毅
导师单位
神经生物学系
论文答辩日期
2024-05
论文提交日期
2024-06-20
学位授予单位
南方科技大学
学位授予地点
深圳
摘要

带状突触是一种特异性存在于感知性神经元如光感受器细胞、双极细胞、内耳细胞、松果体细胞等的突触结构。带状突触的突触前端活性区存在一个盘状或马蹄状的高电子密度致密区,其外周锚定了大量的突触小泡。 带状结构通过锚定和运输突触囊泡、招募钙离子通道等方式来调节神经递 质的释放,从而响应复杂的外界信息,比如声音、光、昼夜节律等信号范 围广、持续时间长、需要被及时响应的信号。RIBEYE 蛋白特异性存在于 带状突触中,是组成带状结构的主要成分。目前,对于 RIBEYE 蛋白如何 组装形成带状结构以及 RIBEYE 蛋白如何介导带状结构形态调节的过程等 问题还没有被研究清楚。为了回答这些问题,论文首先对 RIBEYE 蛋白进 行了序列保守性以及高级结构的分析。鉴定出 RIBEYE蛋白的保守区以及非保守区、折叠区和无序区,并将 RIBEYE 蛋白划分为不同的结构域,包 括:preSAM 结构域、SAM 结构域、 postSAM 结构域以及与 CtBP2 蛋白 高 度 同 源 的 B 结 构 域 。 通 过 在 HeLa 细 胞 中 过 表 达 RIBEYE 发 现 , RIBEYE 蛋白在细胞中能通过相分离形成球状凝胶体。RIBEYE 蛋白通过 相分离可以形成两种形态的结构:球状结构、棒状结构。通过对不同结构 域的功能性分析,发现 RIBEYE 蛋白的 SAM 结构域、postSAM 结构域以 及 B 结构域对于棒状结构的形成至关重要。而且,RIBEYE 在细胞中的这 两种结构形态可以通过 preSAM 结构域进行调节。当存在 preSAM 时,棒 状结构被转换成球状结构。进一步分析发现,preSAM 结构域上的芳香族 氨基酸是调节这一转换的关键性氨基酸。当 preSAM结构域的芳香族氨基酸被突变后,preSAM 不再具有转换带状结构到球状结构的能力。综上所 述 , 本 论 文 通 过 结 合 结 构 、 生 化 、 细 胞 等 多 种 实 验 分 析 方 法 , 揭 示 了 RIBEYE 蛋白组装形成带状结构的关键性结构域,并进一步提出了调节带 状结构的可能性结构域以及关键性氨基酸。这些发现将有力地推动对带状 突触的功能和调控机制的理解。

关键词
语种
中文
培养类别
独立培养
入学年份
2021
学位授予年份
2024-06
参考文献列表

[1] SüDHOF T C. The presynaptic active zone [J]. Neuron, 2012, 75(1): 11-25.
[2] SZULE J A, JUNG J H, MCMAHAN U J. The structure and function of 'active zone material' at synapses [J]. Philosophical transactions of the Royal Society of London. Series B, Biological sciences, 2015, 370(1672):
[3] VAN VACTOR D, SIGRIST S J. Presynaptic morphogenesis, active zone organization and structural plasticity in Drosophila [J]. Current opinion in neurobiology, 2017, 43(119-129.
[4] SCHOCH S, GUNDELFINGER E D. Molecular organization of the presynaptic active zone [J]. Cell and tissue research, 2006, 326(2): 379-391.
[5] MICHEL K, MüLLER J A, OPRIŞOREANU A M, et al. The presynaptic active zone: A dynamic scaffold that regulates synaptic efficacy [J]. Experimental cell research, 2015, 335(2): 157-164.
[6] ROSENMUND C, RETTIG J, BROSE N. Molecular mechanisms of active zone function [J]. Current opinion in neurobiology, 2003, 13(5): 509-519.
[7] NOUVIAN R, BEUTNER D, PARSONS T D, et al. Structure and function of the hair cell ribbon synapse [J]. The Journal of membrane biology, 2006, 209(2-3): 153-165.
[8] VOORN R A, VOGL C. Molecular Assembly and Structural Plasticity of Sensory Ribbon Synapses-A Presynaptic Perspective [J]. International journal of molecular sciences, 2020, 21(22):
[9] STERLING P, MATTHEWS G. Structure and function of ribbon synapses [J]. Trends in neurosciences, 2005, 28(1): 20-29.
[10] REGUS-LEIDIG H, BRANDSTäTTER J H. Structure and function of a complex sensory synapse [J]. Acta physiologica (Oxford, England), 2012, 204(4): 479-486.
[11] RUTHERFORD M A. Resolving the structure of inner ear ribbon synapses with STED microscopy [J]. Synapse (New York, N.Y.), 2015, 69(5): 242-255.
[12] MAXEINER S, LUO F, TAN A, et al. How to make a synaptic ribbon: RIBEYE deletion abolishes ribbons in retinal synapses and disrupts neurotransmitter release [J]. The EMBO journal, 2016, 35(10): 1098-1114.
[13] BECKER L, SCHNEE M E, NIWA M, et al. The presynaptic ribbon maintains vesicle populations at the hair cell afferent fiber synapse [J]. eLife, 2018, 7(
[14] THORESON W B. Transmission at rod and cone ribbon synapses in the retina [J]. Pflugers Archiv : European journal of physiology, 2021, 473(9): 1469-1491.
[15] GRABNER C P, MOSER T. The mammalian rod synaptic ribbon is essential for Ca(v) channel facilitation and ultrafast synaptic vesicle fusion [J]. eLife, 2021, 10(
[16] VOLLRATH L, SPIWOKS-BECKER I. Plasticity of retinal ribbon synapses [J]. Microscopy research and technique, 1996, 35(6): 472-487.
[17] XIONG W, YU S, LIU K, et al. Loss of cochlear ribbon synapses in the early stage of aging causes initial hearing impairment [J]. American journal of translational research, 2020, 12(11): 7354-7366.
[18] JEAN P, LOPEZ DE LA MORENA D, MICHANSKI S, et al. The synaptic ribbon is critical for sound encoding at high rates and with temporal precision [J]. eLife, 2018, 7(
[19] LOVINGER D M. Communication networks in the brain: neurons, receptors, neurotransmitters, and alcohol [J]. Alcohol research & health : the journal of the National Institute on Alcohol Abuse and Alcoholism, 2008, 31(3): 196-214.
[20] ARTHUR C P, SERRELL D B, PAGRATIS M, et al. Electron tomographic methods for studying the chemical synapse [J]. Methods in cell biology, 2007, 79(241-257.
[21] LEITCH B. Ultrastructure of electrical synapses: review [J]. Electron microscopy reviews, 1992, 5(2): 311-339.
[22] KING J S. Chemical synapses in the mammalian central nervous system: an introduction [J]. Journal of electron microscopy technique, 1988, 10(2): 205-210.
[23] SüUDHOF T C. Neurotransmitter release [J]. Handbook of experimental pharmacology, 2008, DOI: 10.1007/978-3-540-74805-2_1184): 1-21.
[24] BLAKELY R D, EDWARDS R H. Vesicular and plasma membrane transporters for neurotransmitters [J]. Cold Spring Harbor perspectives in biology, 2012, 4(2):
[25] BOECKH J, SANDRI C, AKERT K. [Sensory inputs and synaptic connections in the insect CNS. Experimental degeneration in the antennal afferent pathway in the supraesophageal ganglia of flies and cockroaches] [J]. Zeitschrift fur Zellforschung und mikroskopische Anatomie (Vienna, Austria : 1948), 1970, 103(3): 429-446.
[26] BURKHARDT W, BRAITENBERG V. Some peculiar synaptic complexes in the first visual ganglion of the fly, Musca domestica [J]. Cell and tissue research, 1976, 173(3): 287-308.
[27] OSBORNE M P. The fine structure of synapses and tight junctions in the central nervous system of the blowfly larva [J]. Journal of insect physiology, 1966, 12(12): 1503-1512.
[28] WATSON A H, SCHüRMANN F W. Synaptic structure, distribution, and circuitry in the central nervous system of the locust and related insects [J]. Microscopy research and technique, 2002, 56(3): 210-226.
[29] ZHAI R G, BELLEN H J. The architecture of the active zone in the presynaptic nerve terminal [J]. Physiology (Bethesda, Md.), 2004, 19(262-270.
[30] SZULE J A, HARLOW M L, JUNG J H, et al. Regulation of synaptic vesicle docking by different classes of macromolecules in active zone material [J]. PloS one, 2012, 7(3): e33333.
[31] ACKERMANN F, WAITES C L, GARNER C C. Presynaptic active zones in invertebrates and vertebrates [J]. EMBO reports, 2015, 16(8): 923-938.
[32] WATANABE S, LIU Q, DAVIS M W, et al. Ultrafast endocytosis at Caenorhabditis elegans neuromuscular junctions [J]. eLife, 2013, 2(e00723.
[33] KOENIG J H, IKEDA K. Contribution of active zone subpopulation of vesicles to evoked and spontaneous release [J]. Journal of neurophysiology, 1999, 81(4): 1495-1505.
[34] WAGH D A, RASSE T M, ASAN E, et al. Bruchpilot, a protein with homology to ELKS/CAST, is required for structural integrity and function of synaptic active zones in Drosophila [J]. Neuron, 2006, 49(6): 833-844.
[35] KITTEL R J, WICHMANN C, RASSE T M, et al. Bruchpilot promotes active zone assembly, Ca2+ channel clustering, and vesicle release [J]. Science (New York, N.Y.), 2006, 312(5776): 1051-1054.
[36] FOUQUET W, OWALD D, WICHMANN C, et al. Maturation of active zone assembly by Drosophila Bruchpilot [J]. The Journal of cell biology, 2009, 186(1): 129-145.
[37] GRAF E R, VALAKH V, WRIGHT C M, et al. RIM promotes calcium channel accumulation at active zones of the Drosophila neuromuscular junction [J]. The Journal of neuroscience : the official journal of the Society for Neuroscience, 2012, 32(47): 16586-16596.
[38] SIKSOU L, ROSTAING P, LECHAIRE J P, et al. Three-dimensional architecture of presynaptic terminal cytomatrix [J]. The Journal of neuroscience : the official journal of the Society for Neuroscience, 2007, 27(26): 6868-6877.
[39] MOSER T, GRABNER C P, SCHMITZ F. Sensory Processing at Ribbon Synapses in the Retina and the Cochlea [J]. Physiological reviews, 2020, 100(1): 103-144.
[40] SPIWOKS-BECKER I, MAUS C, TOM DIECK S, et al. Active zone proteins are dynamically associated with synaptic ribbons in rat pinealocytes [J]. Cell and tissue research, 2008, 333(2): 185-195.
[41] NICOLSON T. Ribbon synapses in zebrafish hair cells [J]. Hearing research, 2015, 330(Pt B): 170-177.
[42] SAFIEDDINE S, EL-AMRAOUI A, PETIT C. The auditory hair cell ribbon synapse: from assembly to function [J]. Annual review of neuroscience, 2012, 35(509-528.
[43] MATTHEWS G, FUCHS P. The diverse roles of ribbon synapses in sensory neurotransmission [J]. Nature reviews. Neuroscience, 2010, 11(12): 812-822.
[44] SHI L, LIU L, HE T, et al. Ribbon synapse plasticity in the cochleae of Guinea pigs after noise-induced silent damage [J]. PloS one, 2013, 8(12): e81566.
[45] ARSHAVSKY V Y, LAMB T D, PUGH E N, JR. G proteins and phototransduction [J]. Annual review of physiology, 2002, 64(153-187.
[46] FIELD G D, SAMPATH A P. Behavioural and physiological limits to vision in mammals [J]. Philosophical transactions of the Royal Society of London. Series B, Biological sciences, 2017, 372(1717):
[47] GRIMES W N, SONGCO-AGUAS A, RIEKE F. Parallel Processing of Rod and Cone Signals: Retinal Function and Human Perception [J]. Annual review of vision science, 2018, 4(123-141.
[48] GRIMES W N, BAUDIN J, AZEVEDO A W, et al. Range, routing and kinetics of rod signaling in primate retina [J]. eLife, 2018, 7(
[49] PAHLBERG J, FREDERIKSEN R, POLLOCK G E, et al. Voltage-sensitive conductances increase the sensitivity of rod photoresponses following pigment bleaching [J]. The Journal of physiology, 2017, 595(11): 3459-3469.
[50] SCHNEEWEIS D M, SCHNAPF J L. Photovoltage of rods and cones in the macaque retina [J]. Science (New York, N.Y.), 1995, 268(5213): 1053-1056.
[51] BADER C R, BERTRAND D, SCHWARTZ E A. Voltage-activated and calcium-activated currents studied in solitary rod inner segments from the salamander retina [J]. The Journal of physiology, 1982, 331(253-284.
[52] HAGIWARA A, KITAHARA Y, GRABNER C P, et al. Cytomatrix proteins CAST and ELKS regulate retinal photoreceptor development and maintenance [J]. The Journal of cell biology, 2018, 217(11): 3993-4006.
[53] PACKER O S, VERWEIJ J, LI P H, et al. Blue-yellow opponency in primate S cone photoreceptors [J]. The Journal of neuroscience : the official journal of the Society for Neuroscience, 2010, 30(2): 568-572.
[54] RUSSELL I J, SELLICK P M. Low-frequency characteristics of intracellularly recorded receptor potentials in guinea-pig cochlear hair cells [J]. The Journal of physiology, 1983, 338(179-206.
[55] KöPPL C. Phase locking to high frequencies in the auditory nerve and cochlear nucleus magnocellularis of the barn owl, Tyto alba [J]. The Journal of neuroscience : the official journal of the Society for Neuroscience, 1997, 17(9): 3312-3321.
[56] JOHNSON S L, BEURG M, MARCOTTI W, et al. Prestin-driven cochlear amplification is not limited by the outer hair cell membrane time constant [J]. Neuron, 2011, 70(6): 1143-1154.
[57] BRANDT A, STRIESSNIG J, MOSER T. CaV1.3 channels are essential for development and presynaptic activity of cochlear inner hair cells [J]. The Journal of neuroscience : the official journal of the Society for Neuroscience, 2003, 23(34): 10832-10840.
[58] KOSCHAK A, REIMER D, HUBER I, et al. alpha 1D (Cav1.3) subunits can form l-type Ca2+ channels activating at negative voltages [J]. The Journal of biological chemistry, 2001, 276(25): 22100-22106.
[59] PICHER M M, GEHRT A, MEESE S, et al. Ca(2+)-binding protein 2 inhibits Ca(2+)-channel inactivation in mouse inner hair cells [J]. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114(9): E1717-e1726.
[60] SCHMITZ F. The making of synaptic ribbons: how they are built and what they do [J]. The Neuroscientist : a review journal bringing neurobiology, neurology and psychiatry, 2009, 15(6): 611-624.
[61] KEROV V, LAIRD J G, JOINER M L, et al. α(2)δ-4 Is Required for the Molecular and Structural Organization of Rod and Cone Photoreceptor Synapses [J]. The Journal of neuroscience : the official journal of the Society for Neuroscience, 2018, 38(27): 6145-6160.
[62] TSUKAMOTO Y, OMI N. Classification of Mouse Retinal Bipolar Cells: Type-Specific Connectivity with Special Reference to Rod-Driven AII Amacrine Pathways [J]. Frontiers in neuroanatomy, 2017, 11(92.
[63] FRANCIS H W, RIVAS A, LEHAR M, et al. Two types of afferent terminals innervate cochlear inner hair cells in C57BL/6J mice [J]. Brain research, 2004, 1016(2): 182-194.
[64] FRANK T, RUTHERFORD M A, STRENZKE N, et al. Bassoon and the synaptic ribbon organize Ca²+ channels and vesicles to add release sites and promote refilling [J]. Neuron, 2010, 68(4): 724-738.
[65] KHIMICH D, NOUVIAN R, PUJOL R, et al. Hair cell synaptic ribbons are essential for synchronous auditory signalling [J]. Nature, 2005, 434(7035): 889-894.
[66] GRAYDON C W, ZHANG J, OESCH N W, et al. Passive diffusion as a mechanism underlying ribbon synapse vesicle release and resupply [J]. The Journal of neuroscience : the official journal of the Society for Neuroscience, 2014, 34(27): 8948-8962.
[67] GRAYDON C W, CHO S, LI G L, et al. Sharp Ca²⁺ nanodomains beneath the ribbon promote highly synchronous multivesicular release at hair cell synapses [J]. The Journal of neuroscience : the official journal of the Society for Neuroscience, 2011, 31(46): 16637-16650.
[68] HEIDELBERGER R, HEINEMANN C, NEHER E, et al. Calcium dependence of the rate of exocytosis in a synaptic terminal [J]. Nature, 1994, 371(6497): 513-515.
[69] SCHMITZ F, KöNIGSTORFER A, SüDHOF T C. RIBEYE, a component of synaptic ribbons: a protein's journey through evolution provides insight into synaptic ribbon function [J]. Neuron, 2000, 28(3): 857-872.
[70] SCHWARZ K, NATARAJAN S, KASSAS N, et al. The synaptic ribbon is a site of phosphatidic acid generation in ribbon synapses [J]. The Journal of neuroscience : the official journal of the Society for Neuroscience, 2011, 31(44): 15996-16011.
[71] TOM DIECK S, SANMARTí-VILA L, LANGNAESE K, et al. Bassoon, a novel zinc-finger CAG/glutamine-repeat protein selectively localized at the active zone of presynaptic nerve terminals [J]. The Journal of cell biology, 1998, 142(2): 499-509.
[72] FENSTER S D, CHUNG W J, ZHAI R, et al. Piccolo, a presynaptic zinc finger protein structurally related to bassoon [J]. Neuron, 2000, 25(1): 203-214.
[73] DAVISON A, GIERKE K, BRANDSTäTTER J H, et al. Functional and Structural Development of Mouse Cone Photoreceptor Ribbon Synapses [J]. Investigative ophthalmology & visual science, 2022, 63(3): 21.
[74] CLAUßEN M, SCHULZE J, NOTHWANG H G. Loss of inner hair cell ribbon synapses and auditory nerve fiber regression in Cldn14 knockout mice [J]. Hearing research, 2020, 391(107950.
[75] NIWA M, YOUNG E D, GLOWATZKI E, et al. Functional subgroups of cochlear inner hair cell ribbon synapses differently modulate their EPSC properties in response to stimulation [J]. Journal of neurophysiology, 2021, 125(6): 2461-2479.
[76] MCNULTY J A, FOX L M. Pinealocyte synaptic ribbons and neuroendocrine function [J]. Microscopy research and technique, 1992, 21(3): 175-187.
[77] KURUMADO K, MORI W. Synaptic ribbon in the human pinealocyte [J]. Acta pathologica japonica, 1976, 26(3): 381-384.
[78] CHINNADURAI G. The transcriptional corepressor CtBP: a foe of multiple tumor suppressors [J]. Cancer research, 2009, 69(3): 731-734.
[79] LAGNADO L, SCHMITZ F. Ribbon Synapses and Visual Processing in the Retina [J]. Annual review of vision science, 2015, 1(235-262.
[80] PIATIGORSKY J. Dual use of the transcriptional repressor (CtBP2)/ribbon synapse (RIBEYE) gene: how prevalent are multifunctional genes? [J]. Trends in neurosciences, 2001, 24(10): 555-557.
[81] CHINNADURAI G. CtBP, an unconventional transcriptional corepressor in development and oncogenesis [J]. Molecular cell, 2002, 9(2): 213-224.
[82] SHEETS L, TRAPANI J G, MO W, et al. Ribeye is required for presynaptic Ca(V)1.3a channel localization and afferent innervation of sensory hair cells [J]. Development (Cambridge, England), 2011, 138(7): 1309-1319.
[83] CORDA D, COLANZI A, LUINI A. The multiple activities of CtBP/BARS proteins: the Golgi view [J]. Trends in cell biology, 2006, 16(3): 167-173.
[84] MAGUPALLI V G, SCHWARZ K, ALPADI K, et al. Multiple RIBEYE-RIBEYE interactions create a dynamic scaffold for the formation of synaptic ribbons [J]. The Journal of neuroscience : the official journal of the Society for Neuroscience, 2008, 28(32): 7954-7967.
[85] ALPADI K, MAGUPALLI V G, KäPPEL S, et al. RIBEYE recruits Munc119, a mammalian ortholog of the Caenorhabditis elegans protein unc119, to synaptic ribbons of photoreceptor synapses [J]. The Journal of biological chemistry, 2008, 283(39): 26461-26467.
[86] DEMBLA M, WAHL S, KATIYAR R, et al. ArfGAP3 is a component of the photoreceptor synaptic ribbon complex and forms an NAD(H)-regulated, redox-sensitive complex with RIBEYE that is important for endocytosis [J]. The Journal of neuroscience : the official journal of the Society for Neuroscience, 2014, 34(15): 5245-5260.
[87] VENKATESAN J K, NATARAJAN S, SCHWARZ K, et al. Nicotinamide adenine dinucleotide-dependent binding of the neuronal Ca2+ sensor protein GCAP2 to photoreceptor synaptic ribbons [J]. The Journal of neuroscience : the official journal of the Society for Neuroscience, 2010, 30(19): 6559-6576.
[88] WAHL S, MAGUPALLI V G, DEMBLA M, et al. The Disease Protein Tulp1 Is Essential for Periactive Zone Endocytosis in Photoreceptor Ribbon Synapses [J]. The Journal of neuroscience : the official journal of the Society for Neuroscience, 2016, 36(8): 2473-2493.
[89] IVANOVA D, DIRKS A, MONTENEGRO-VENEGAS C, et al. Synaptic activity controls localization and function of CtBP1 via binding to Bassoon and Piccolo [J]. The EMBO journal, 2015, 34(8): 1056-1077.
[90] SPIWOKS-BECKER I, GLAS M, LASARZIK I, et al. Mouse photoreceptor synaptic ribbons lose and regain material in response to illumination changes [J]. The European journal of neuroscience, 2004, 19(6): 1559-1571.
[91] BANANI S F, LEE H O, HYMAN A A, et al. Biomolecular condensates: organizers of cellular biochemistry [J]. Nature reviews. Molecular cell biology, 2017, 18(5): 285-298.
[92] PERAN I, MITTAG T. Molecular structure in biomolecular condensates [J]. Current opinion in structural biology, 2020, 60(17-26.
[93] SHAO W, BI X, PAN Y, et al. Phase separation of RNA-binding protein promotes polymerase binding and transcription [J]. Nature chemical biology, 2022, 18(1): 70-80.
[94] DODSON A E, KENNEDY S. Phase Separation in Germ Cells and Development [J]. Developmental cell, 2020, 55(1): 4-17.
[95] TIWARY A K, ZHENG Y. Protein phase separation in mitosis [J]. Current opinion in cell biology, 2019, 60(92-98.
[96] WESLEY C C, MISHRA S, LEVY D L. Organelle size scaling over embryonic development [J]. Wiley interdisciplinary reviews. Developmental biology, 2020, 9(5): e376.
[97] LI T, ZENG Z, FAN C, et al. Role of stress granules in tumorigenesis and cancer therapy [J]. Biochimica et biophysica acta. Reviews on cancer, 2023, 1878(6): 189006.
[98] SANES J R, ZIPURSKY S L. Synaptic Specificity, Recognition Molecules, and Assembly of Neural Circuits [J]. Cell, 2020, 181(3): 536-556.
[99] RIZALAR F S, ROOSEN D A, HAUCKE V. A Presynaptic Perspective on Transport and Assembly Mechanisms for Synapse Formation [J]. Neuron, 2021, 109(1): 27-41.
[100] EMPERADOR-MELERO J, KAESER P S. Assembly of the presynaptic active zone [J]. Current opinion in neurobiology, 2020, 63(95-103.
[101] WU X, CAI Q, SHEN Z, et al. RIM and RIM-BP Form Presynaptic Active-Zone-like Condensates via Phase Separation [J]. Molecular cell, 2019, 73(5): 971-984.e975.
[102] LI P, BANJADE S, CHENG H C, et al. Phase transitions in the assembly of multivalent signalling proteins [J]. Nature, 2012, 483(7389): 336-340.
[103] KAESER P S, DENG L, WANG Y, et al. RIM proteins tether Ca2+ channels to presynaptic active zones via a direct PDZ-domain interaction [J]. Cell, 2011, 144(2): 282-295.
[104] MCDONALD N A, FETTER R D, SHEN K. Assembly of synaptic active zones requires phase separation of scaffold molecules [J]. Nature, 2020, 588(7838): 454-458.
[105] LIANG M, JIN G, XIE X, et al. Oligomerized liprin-α promotes phase separation of ELKS for compartmentalization of presynaptic active zone proteins [J]. Cell reports, 2021, 34(12): 108901.
[106] BURKE K A, JANKE A M, RHINE C L, et al. Residue-by-Residue View of In Vitro FUS Granules that Bind the C-Terminal Domain of RNA Polymerase II [J]. Molecular cell, 2015, 60(2): 231-241.
[107] MONAHAN Z, RYAN V H, JANKE A M, et al. Phosphorylation of the FUS low-complexity domain disrupts phase separation, aggregation, and toxicity [J]. The EMBO journal, 2017, 36(20): 2951-2967.

所在学位评定分委会
生物学
国内图书分类号
Q28
来源库
人工提交
成果类型学位论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/765747
专题南方科技大学
生命科学学院_生物系
推荐引用方式
GB/T 7714
刘杨. 带状突触中RIBEYE蛋白介导的带状结构调控的分子机制研究[D]. 深圳. 南方科技大学,2024.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可 操作
12133050-刘杨-生物系.pdf(3697KB)----限制开放--请求全文
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[刘杨]的文章
百度学术
百度学术中相似的文章
[刘杨]的文章
必应学术
必应学术中相似的文章
[刘杨]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。