中文版 | English
题名

冷原子量子光学系统中的光电控制

其他题名
OPTO-ELECTRONIC CONTROL OF QUANTUM SYSTEM BASED ON COLD ATOMS
姓名
姓名拼音
HUANG Jinshuai
学号
11930039
学位类型
硕士
学位专业
0702 物理学
学科门类/专业学位类别
07 理学
导师
陈洁菲
导师单位
量子科学与工程研究院
论文答辩日期
2024-05-09
论文提交日期
2024-06-20
学位授予单位
南方科技大学
学位授予地点
深圳
摘要

结合激光冷却囚禁与量子光学实验技术的冷原子量子光学是物理学的一个前沿研究热点,在短短几十年内已在量子信息、量子计算、精密测量等领域取得显著成果。随着冷原子系统的复杂性增加以及对原子的操控精度的提高,实验中的光电控制技术也需要满足更高的要求。本文致力于开发一套用于冷原子量子光学实验研究的光电控制系统,以提高对冷原子的操控及其在量子信息等领域的应用。随着量子信息科学的发展,精确控制光场和磁场成为实现高效量子操作的必要条件。本论文通过设计和实验验证,提出了一系列具体光电控制和探测方案,包括高灵敏度光电探测器的研发、精准光场调制技术的实现以及磁场快速调控系统的优化。最后以冷原子的里德堡态激发及单光子制备实验作为例子,本论文展示了光电控制系统的整体设计方案。

论文首先针对光电探测技术进行设计及优化,成功开发了体积紧凑的一英寸光电探测器以及专门为Pound-Drever-Hall(PDH)激光锁频技术设计的高增益探测器。这些探测器充分考虑了实验平台的空间限制和冷原子实验对光信号探测的高精度及高灵敏度需求,不仅大幅提升了信号检测的效率和稳定性,也提高了平台的空间利用率。在光场控制方面,本论文设计的基于国产直接数字频率合成(Direct digital synthesis, DDS)芯片射频信号源,实现了对声光调制器和电光调制器的精确驱动,为激光的移频、调幅及精确开关等操作提供了强有力的技术支撑。同时,对于磁场控制则设计了高性能电流调控装置,该装置满足了对磁场快速关断及动态调制的需求,显著增强了冷原子实验的可控性和灵活性。

最后,通过时序控制将这些技术应用于实际的冷原子量子光学实验,所开发的光电控制技术在提升实验精度和重复性方面取得了显著效果。特别是在激发里德堡原子的前期准备实验中,这些技术极大地增强了对碱金属铷原子团的精确操控能力,为研究冷原子系综的原子间相互作用、光和原子相互作用提供了可靠的光电控制技术基础。

其他摘要

Cold atom quantum optics is a frontier research area in physics, which has achieved significant advances in quantum information, quantum computing, and precision measurements in just a few decades. As the complexity of cold atom systems increases and the precision of atom manipulation improves, the opto-electronic control techniques in experiments must also meet higher requirements. This thesis aims to develop a versatile control system for cold atom quantum optical experiments to enhance the manipulation of cold atoms for their application in quantum information and communication. With the development of quantum information science, precise control of optical and magnetic fields has become a necessary condition for efficient quantum operations. Through design and experimental verification, this thesis proposes a series of specific opto-electronic control and detection schemes, including developing high-sensitivity photodetectors, implementing precise optical field modulation techniques, and optimizing devices for rapid control of magnetic fields. Finally, using Rydberg state excitation of cold atoms and single-photon preparation experiments as examples, this thesis demonstrates the overall design of the developed opto-electronic control system.
 
This thesis first focuses on designing and optimizing photodetection technology, specifically developing compact photodetectors for optical spectroscopy, and high-gain detectors  for Pound-Drever-Hall (PDH) laser locking. These detectors take into consideration the spatial limitations of the experimental platform and the high precision and sensitivity requirements of light signal detection in cold atom experiments, significantly improving the efficiency and stability of signal detection and increasing the platform's spatial utilization. In terms of optical field control, the paper designs a radio frequency signal source based on domestically produced Direct Digital Synthesis (DDS) chips, achieving precise driving of acousto-optic modulators and electro-optic modulators, providing strong technical support for laser frequency shifting, amplitude modulation, and precise switching operations. Meanwhile, research on magnetic field control satisfies the demand for rapid shutdown and dynamic modulation of the magnetic field by designing high-performance current control devices, significantly enhancing the controllability and flexibility of cold atom experiments.
 
Finally, by applying these technologies to actual cold atom quantum optical experiments through timing control, the in-house developed opto-electronic control system has significantly improved experimental accuracy and repeatability. Particularly in the preliminary preparation experiments for exciting Rydberg atoms, the developed devices and the overall control system greatly enhance the ability to precisely prepare atomic ensembles of rubidium, providing a reliable opto-electronic infrastructure for studying the interaction between atoms in cold atomic gases , as well as the coherent interactions between light and atoms.

关键词
其他关键词
语种
中文
培养类别
独立培养
入学年份
2019
学位授予年份
2024-07
参考文献列表

[1] MAIMAN T. Stimulated Optical Radiation in Ruby[J]. Nature, 1960, 187: 493-494.
[2] Letokhov V S. Narrowing of the Doppler Width in a Standing Wave[J]. Soviet Journal of Experimental and Theoretical Physics Letters, 1968, 7: 272.
[3] CHU S, HOLLBERG L, BJORKHOLM J E, et al. Three-dimensional viscous confinement and cooling of atoms by resonance radiation pressure[J]. Phys. Rev. Lett., 1985, 55: 48-51.
[4] RAAB E L, PRENTISS M, CABLE A, et al. Trapping of Neutral Sodium Atoms with Radiation Pressure[J]. Phys. Rev. Lett., 1987, 59: 2631-2634.
[5] WYNANDS R, WEYERS S. Atomic fountain clocks[J]. Metrologia, 2005, 42(3): S64.
[6] CAMPBELL S L, HUTSON R, MARTI G, et al. A Fermi-degenerate three-dimensional optical lattice clock[J]. Science, 2017, 358(6359): 90-94.
[7] OELKER E, HUTSON R, KENNEDY C, et al. Demonstration of 4.8× 10- 17 stability at 1 s for two independent optical clocks[J]. Nature Photonics, 2019, 13(10): 714-719.
[8] LIU L, LÜ D S, CHEN W B, et al. In-orbit operation of an atomic clock based on laser-cooled 87Rb atoms[J]. Nature Communications, 2018, 9(1): 2760.
[9] CHEN S. Atomic arrays power quantum computers.[J]. Science, 2018, 361 6409: 1300-1301.
[10] DU S, WEN J, RUBIN M H. Narrowband biphoton generation near atomic resonance[J]. J. Opt. Soc. Am. B, 2008, 25(12): C98-C108.
[11] FLAMINI F, SPAGNOLO N, SCIARRINO F. Photonic quantum information processing: a review[J]. Reports on Progress in Physics, 2018, 82(1): 016001.
[12] SLUSSARENKO S, PRYDE G J. Photonic quantum information processing: A concise review[J]. Applied Physics Reviews, 2019, 6(4): 041303.
[13] YANG S J, WANG X J, BAO X H, et al. An efficient quantum light-matter interface with sub-second lifetime[J]. Nature Photonics, 2016, 10.
[14] WANG Y, LI J F, ZHANG S, et al. Efficient quantum memory for single-photon polarization qubits[J]. Nature Photonics, 2019, 13: 346 - 351.
[15] AZUMA K, ECONOMOU S E, ELKOUSS D, et al. Quantum repeaters: From quantum networks to the quantum internet[J]. Rev. Mod. Phys., 2023, 95: 045006.
[16] SHI S, XU B, ZHANG K, et al. High-fidelity photonic quantum logic gate based on near-optimal Rydberg single-photon source[J]. Nature Communications, 2022, 13(1): 4454.
[17] DING D S, LIU Z K, SHI B S, et al. Enhanced metrology at the critical point of a many-body Rydberg atomic system[J]. Nature Physics, 2022, 18(12): 1447-1452.
[18] OVSIANNIKOV V D, PALCHIKOV V G, GLUKHOV I L. Microwave field metrology based on Rydberg states of alkali-metal atoms[C]//Photonics: Vol. 9. MDPI, 2022: 635.
[19] EBADI S, WANG T T, LEVINE H, et al. Quantum phases of matter on a 256-atom programmable quantum simulator[J]. Nature, 2021, 595(7866): 227-232.
[20] EVERED S J, BLUVSTEIN D, KALINOWSKI M, et al. High-fidelity parallel entangling gates on a neutral-atom quantum computer[J]. Nature, 2023, 622(7982): 268-272.
[21] BLUVSTEIN D, EVERED S J, GEIM A A, et al. Logical quantum processor based on reconfigurable atom arrays[J]. Nature, 2024, 626(7997): 58-65.
[22] ADAMS C S, PRITCHARD J D, SHAFFER J P. Rydberg atom quantum technologies[J]. Journal of Physics B: Atomic, Molecular and Optical Physics, 2019, 53(1): 012002.
[23] SAFFMAN M, WALKER T G, MØLMER K. Quantum information with Rydberg atoms[J]. Rev. Mod. Phys., 2010, 82: 2313-2363.
[24] MORGADO M, WHITLOCK S. Quantum simulation and computing with Rydberg-interacting qubits[J]. AVS Quantum Science, 2021, 3(2).
[25] WU X, LIANG X, TIAN Y, et al. A concise review of Rydberg atom based quantum computation and quantum simulation[J]. Chinese Physics B, 2021, 30(2): 020305.
[26] JURCZAK C, SENGSTOCK K, KAISER R, et al. Observation of intensity correlations in the fluorescence from laser cooled atoms[J]. Optics Communications, 1995, 115(5): 480-484.
[27] HAUBRICH D, SCHADWINKEL H, STRAUCH F, et al. Observation of individual neutral atoms in magnetic and magneto-optical traps[J]. Europhysics Letters, 1996, 34(9): 663.
[28] KUMAR R, BARRIOS E, MACRAE A, et al. Versatile wideband balanced detector for quantum optical homodyne tomography[J]. Optics Communications, 2012, 285(24): 5259-5267.
[29] GUO Y, HU Z, ZHANG J, et al. High-speed photon correlation monitoring of amplified quantum noise by chaos using deep-learning balanced homodyne detection[J]. Applied Physics Letters, 2023, 123(5): 051101.
[30] STEFSZKY M S, MOW-LOWRY C M, CHUA S S Y, et al. Balanced homodyne detection of optical quantum states at audio-band frequencies and below[J]. Classical and Quantum Gravity, 2012, 29(14): 145015.
[31] GUERIN W, ARAÚJO M O, KAISER R. Subradiance in a Large Cloud of Cold Atoms[J]. Phys. Rev. Lett., 2016, 116: 083601.
[32] PIRO N, ROHDE F, SCHUCK C, et al. Heralded single-photon absorption by a single atom[J]. Nature Physics, 2010, 7: 17-20.
[33] HADFIELD R. Single-photon detectors for optical quantum information applications[J]. Nature Photonics, 2009, 3.
[34] LIANG Y, ZENG H. Single-photon detection and its applications[J]. Science China Physics, Mechanics & Astronomy, 2014, 57.
[35] SERRE I, PRUVOST L, DUONG H T. Fluorescence imaging efficiency of cold atoms in free fall[J]. Appl. Opt., 1998, 37(6): 1016-1021.
[36] MAGALHãES K, de Oliveira A, ZANON R, et al. Lifetime determination of high excited states of 85Rb using a sample of cold atoms[J]. Optics Communications, 2000, 184(5): 385-389.
[37] LU B, WANG D. Note: A four-pass acousto-optic modulator system for laser cooling of sodium atoms[J]. Review of Scientific Instruments, 2017, 88(7): 076105.
[38] WU B, ZHAO Y, CHENG B, et al. A Simplified Laser System for Atom Interferometry Based on a Free-Space EOM[J]. Photonics, 2022, 9(5).
[39] DEB A B, RAKONJAC A, KJÆRGAARD N. Versatile laser system for experiments with cold atomic gases[J]. J. Opt. Soc. Am. B, 2012, 29(11): 3109-3113.
[40] MCGLOIN D, SPALDING G, MELVILLE H, et al. Applications of spatial light modulators in atom optics[J]. Opt. Express, 2003, 11(2): 158-166.
[41] SCHONBRUN E, PIESTUN R, JORDAN P, et al. 3D interferometric optical tweezers using a single spatial light modulator[J]. Opt. Express, 2005, 13(10): 3777-3786.
[42] PETRICH W, ANDERSON M H, ENSHER J R, et al. Behavior of atoms in a compressed magneto-optical trap[J]. J. Opt. Soc. Am. B, 1994, 11(8): 1332-1335.
[43] CHIN C, GRIMM R, JULIENNE P, et al. Feshbach resonances in ultracold gases[J]. Rev. Mod. Phys., 2010, 82: 1225-1286.
[44] KESHET A, KETTERLE W. A distributed, graphical user interface based, computer control system for atomic physics experiments[J]. Review of Scientific Instruments, 2013, 84(1): 015105.
[45] KASPROWICZ G, KULIK P, GASKA M, et al. ARTIQ and Sinara: Open Software and Hardware Stacks for Quantum Physics[C]//OSA Quantum 2.0 Conference. Optica Publishing Group, 2020: QTu8B.14.
[46] DEBS J, ROBINS N, LANCE A, et al. Piezo-locking a diode laser with saturated absorption spectroscopy[J]. Applied optics, 2008, 47: 5163-6.
[47] Le Gouët J, KIM J, BOURASSIN-BOUCHET C, et al. Wide bandwidth phase-locked diode laser with an intra-cavity electro-optic modulator[J]. Optics Communications, 2009, 282(5): 977-980.
[48] SCHREIBER K U, GEBAUER A, WELLS J P R. Closed-loop locking of an optical frequency comb to a large ring laser[J]. Opt. Lett., 2013, 38(18): 3574-3577.
[49] BLACK E D. An introduction to Pound–Drever–Hall laser frequency stabilization[J]. American Journal of Physics, 2001, 69(1): 79-87.
[50] JERALD G. 光电二极管及其放大电路设计[M]. 赖康生, 许祖茂, 王晓旭, 译. 北京: 科学出版社, 2012: 8-10.
[51] NAVILIPURI L. Design and Layout of a Transimpedance Amplifier (tia) at 50 GHz for Optical Receivers in ihp 130nm SiGe BiCMOS Technology[D]. 2022.
[52] PHOTODIODE P D S. Photodiode Characteristics and Applications[M]. unpublished.
[53] 胡涛; 司汉英. 光电探测器前置放大电路设计与研究[J]. 光电技术应用, 2010, 25(01):52-55.
[54] HOOMAN H. Transimpedance Amplifiers (TIA): Choosing the Best Amplifier for the Job [EB/OL]. 2017. https://www.ti.com/jp/lit/an/snoa942a/snoa942a.pdf.
[55] LINEAR T. 4GHz Ultra-Low Bias Current FET Input Op Amp[EB/OL]. https://www.analog.com/media/en/technical-documentation/data-sheets/626810f.pdf.
[56] GORDON E I. A Review of Acoustooptical Deflection and Modulation Devices[J]. Appl. Opt.,1966, 5(10): 1629-1639.
[57] BRICE R. 7 - Pet Sounds–Electronic synthesis[M]//BRICE R. Music Engineering (Second Edition). Second edition ed. Oxford: Newnes, 2001: 155-183.
[58] TERRELL D L. CHAPTER FOUR - Oscillators[M]//TERRELL D L. Op Amps (Second Edition). Second edition ed. Burlington: Newnes, 1996: 173-211.
[59] CHRISTIANO M. Everything You Need to Know About Direct Digital Synthesis[EB/OL].2015. https://www.allaboutcircuits.com/technical-articles/direct-digital-synthesis/.
[60] 张明友. 国防电子信息技术丛书: 数字阵列雷达和软件化雷达[M]. 北京: 电子工业出版社, 2008.
[61] Fundamentals of Direct Digital Synthesis (DDS)[EB/OL]. https://www.analog.com/media/en/training-seminars/tutorials/MT-085.pdf.
[62] NYQUIST H. Certain topics in telegraph transmission theory[J]. Transactions of the American Institute of Electrical Engineers, 1928, 47(2): 617-644.
[63] SHANNON C E. A mathematical theory of communication[J]. The Bell System Technical Journal, 1948, 27(3): 379-423.
[64] CBM99D10BQ 产品手册[EB/OL]. https://corebai.com/Data/corebai/upload/file/20231208/CBM99D10BQ.pdf.
[65] 张涛, 陈亮. 电荷泵锁相环环路滤波器参数设计与分析[J]. 现代电子技术, 2008, 31(9): 87-90.
[66] 李子金. 基于 DDS 的声光调制器驱动电路研制[J]. 电子技术与软件工程, 2020(19): 74-77.
[67] 森荣二. LC 滤波器设计与制作[M]. 薛培鼎, 译. 北京: 科学出版社, 2006: 6-9.
[68] HUEGLER E, HILL J C, MEYER D H. An agile radio-frequency source using internal linear sweeps of a direct digital synthesizer[J]. Review of Scientific Instruments, 2023, 94(9): 094705.
[69] PRUTTIVARASIN T. Spectroscopy, fundamental symmetry tests and quantum simulation with trapped ions[Z].
[70] MEYER B, IDEL A, ANDERS F, et al. Dynamical low-noise microwave source for cold atom experiments[M]. arXiv, 2020.
[71] ADAMS C S. A mechanical shutter for light using piezoelectric actuators[J]. Review of Scientific Instruments, 2000, 71(1): 59-60.
[72] BOWDEN W, HILL I R, BAIRD P E G, et al. Note: A high-performance, low-cost laser shutter using a piezoelectric cantilever actuator[J]. Review of Scientific Instruments, 2017, 88(1): 016102.
[73] BAUER M, FRANZREB P P, SPETHMANN N, et al. Note: Reliable low-vibration piezomechanical shutter[J]. Review of Scientific Instruments, 2014, 85(9): 096101.
[74] MAGUIRE L P, SZILAGYI S, SCHOLTEN R E. High performance laser shutter using a hard disk drive voice-coil actuator[J]. Review of Scientific Instruments, 2004, 75(9): 3077-3079.
[75] SINGER K, JOCHIM S, MUDRICH M, et al. Low-cost mechanical shutter for light beams[J]. Review of Scientific Instruments, 2002, 73(12): 4402-4404.
[76] High performance optical shutter design with scalable aperture[J]. Bulletin of the Polish Academy of Sciences Technical Sciences, 2023.
[77] ZHANG G H, BRAVERMAN B, KAWASAKI A, et al. Fast Compact Laser Shutter Using a Direct Current Motor and 3D Printing[J]. Review of Scientific Instruments, 2015, 86(12):126105.
[78] HUANG P W, TANG B, XIONG Z Y, et al. Note: A compact low-vibration high-performance optical shutter for precision measurement experiments[J]. Review of Scientific Instruments, 2018, 89(9): 096111.
[79] MITCHELL D, LEBEL P. Ultrafast Mechanical Shutters for Laser Cooling Applications: The iShutter System[Z].
[80] FOOT C J. Atomic Physics[M]. Oxford University Press, 2004: 218-219.
[81] 王义道. 原子的激光冷却与陷俘[M]. 北京大学出版社, 2007: 291-297.
[82] MISAKIAN M. Equations for the Magnetic Field Produced by One or More Rectangular Loops of Wire in the Same Plane[J]. Journal of Research of the National Institute of Standards and Technology, 2000, 105.
[83] BALIC V. Generation of narrow-bandwidth paired photons with electronically controllable waveforms[D]. 2005.
[84] DEDMAN C J, BALDWIN K G H, COLLA M. Fast switching of magnetic fields in a magnetooptic trap[J]. Review of Scientific Instruments, 2001, 72(11): 4055-4058.
[85] JADHAV V, ZHOU Y, JANSEN U. Analysis of different IGBT gate driver strategies influencing dynamic paralleling performance[C]//PCIM Asia 2016; International Exhibition and Conference for Power Electronics, Intelligent Motion, Renewable Energy and Energy Management. 2016: 1-9.
[86] TANG Y, MA H. Dynamic Electrothermal Model of Paralleled IGBT Modules With Unbalanced Stray Parameters[J]. IEEE Transactions on Power Electronics, 2017, 32(2): 1385-1399.
[87] XU Y. Electromagnetically induced transparency and slow light in rubidium 85 cold atoms[D]. 2020.
[88] ALZAR C L G, PETROV P G, OBLAK D, et al. Compensation of eddy-current-induced magnetic field transients in a MOT[A]. 2007.
[89] PRITCHARD J D. Progress Towards a Single Blockade Sphere[M]. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012: 135-144.
[90] ZENG Y, XU P, HE X, et al. Entangling Two Individual Atoms of Different Isotopes via Rydberg Blockade[J]. Phys. Rev. Lett., 2017, 119: 160502.
[91] FAN H, KUMAR S, SEDLACEK J, et al. Atom based RF electric field sensing[J]. Journal of Physics B: Atomic, Molecular and Optical Physics, 2015, 48(20): 202001.
[92] SEDLACEK J A, SCHWETTMANN A, KÜBLER H, et al. Microwave electrometry with Rydberg atoms in a vapour cell using bright atomic resonances[J]. Nature physics, 2012, 8(11): 819-824.
[93] LEGAIE R. Coherent control of Rydberg atoms using sub-kHz linewidth excitation lasers[D]. 2020.

所在学位评定分委会
物理学
国内图书分类号
O431.2
来源库
人工提交
成果类型学位论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/765755
专题南方科技大学
理学院_物理系
推荐引用方式
GB/T 7714
黄金帅. 冷原子量子光学系统中的光电控制[D]. 深圳. 南方科技大学,2024.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可 操作
11930039-黄金帅-物理系.pdf(14241KB)学位论文--限制开放CC BY-NC-SA请求全文
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[黄金帅]的文章
百度学术
百度学术中相似的文章
[黄金帅]的文章
必应学术
必应学术中相似的文章
[黄金帅]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。