[1] MAIMAN T. Stimulated Optical Radiation in Ruby[J]. Nature, 1960, 187: 493-494.
[2] Letokhov V S. Narrowing of the Doppler Width in a Standing Wave[J]. Soviet Journal of Experimental and Theoretical Physics Letters, 1968, 7: 272.
[3] CHU S, HOLLBERG L, BJORKHOLM J E, et al. Three-dimensional viscous confinement and cooling of atoms by resonance radiation pressure[J]. Phys. Rev. Lett., 1985, 55: 48-51.
[4] RAAB E L, PRENTISS M, CABLE A, et al. Trapping of Neutral Sodium Atoms with Radiation Pressure[J]. Phys. Rev. Lett., 1987, 59: 2631-2634.
[5] WYNANDS R, WEYERS S. Atomic fountain clocks[J]. Metrologia, 2005, 42(3): S64.
[6] CAMPBELL S L, HUTSON R, MARTI G, et al. A Fermi-degenerate three-dimensional optical lattice clock[J]. Science, 2017, 358(6359): 90-94.
[7] OELKER E, HUTSON R, KENNEDY C, et al. Demonstration of 4.8× 10- 17 stability at 1 s for two independent optical clocks[J]. Nature Photonics, 2019, 13(10): 714-719.
[8] LIU L, LÜ D S, CHEN W B, et al. In-orbit operation of an atomic clock based on laser-cooled 87Rb atoms[J]. Nature Communications, 2018, 9(1): 2760.
[9] CHEN S. Atomic arrays power quantum computers.[J]. Science, 2018, 361 6409: 1300-1301.
[10] DU S, WEN J, RUBIN M H. Narrowband biphoton generation near atomic resonance[J]. J. Opt. Soc. Am. B, 2008, 25(12): C98-C108.
[11] FLAMINI F, SPAGNOLO N, SCIARRINO F. Photonic quantum information processing: a review[J]. Reports on Progress in Physics, 2018, 82(1): 016001.
[12] SLUSSARENKO S, PRYDE G J. Photonic quantum information processing: A concise review[J]. Applied Physics Reviews, 2019, 6(4): 041303.
[13] YANG S J, WANG X J, BAO X H, et al. An efficient quantum light-matter interface with sub-second lifetime[J]. Nature Photonics, 2016, 10.
[14] WANG Y, LI J F, ZHANG S, et al. Efficient quantum memory for single-photon polarization qubits[J]. Nature Photonics, 2019, 13: 346 - 351.
[15] AZUMA K, ECONOMOU S E, ELKOUSS D, et al. Quantum repeaters: From quantum networks to the quantum internet[J]. Rev. Mod. Phys., 2023, 95: 045006.
[16] SHI S, XU B, ZHANG K, et al. High-fidelity photonic quantum logic gate based on near-optimal Rydberg single-photon source[J]. Nature Communications, 2022, 13(1): 4454.
[17] DING D S, LIU Z K, SHI B S, et al. Enhanced metrology at the critical point of a many-body Rydberg atomic system[J]. Nature Physics, 2022, 18(12): 1447-1452.
[18] OVSIANNIKOV V D, PALCHIKOV V G, GLUKHOV I L. Microwave field metrology based on Rydberg states of alkali-metal atoms[C]//Photonics: Vol. 9. MDPI, 2022: 635.
[19] EBADI S, WANG T T, LEVINE H, et al. Quantum phases of matter on a 256-atom programmable quantum simulator[J]. Nature, 2021, 595(7866): 227-232.
[20] EVERED S J, BLUVSTEIN D, KALINOWSKI M, et al. High-fidelity parallel entangling gates on a neutral-atom quantum computer[J]. Nature, 2023, 622(7982): 268-272.
[21] BLUVSTEIN D, EVERED S J, GEIM A A, et al. Logical quantum processor based on reconfigurable atom arrays[J]. Nature, 2024, 626(7997): 58-65.
[22] ADAMS C S, PRITCHARD J D, SHAFFER J P. Rydberg atom quantum technologies[J]. Journal of Physics B: Atomic, Molecular and Optical Physics, 2019, 53(1): 012002.
[23] SAFFMAN M, WALKER T G, MØLMER K. Quantum information with Rydberg atoms[J]. Rev. Mod. Phys., 2010, 82: 2313-2363.
[24] MORGADO M, WHITLOCK S. Quantum simulation and computing with Rydberg-interacting qubits[J]. AVS Quantum Science, 2021, 3(2).
[25] WU X, LIANG X, TIAN Y, et al. A concise review of Rydberg atom based quantum computation and quantum simulation[J]. Chinese Physics B, 2021, 30(2): 020305.
[26] JURCZAK C, SENGSTOCK K, KAISER R, et al. Observation of intensity correlations in the fluorescence from laser cooled atoms[J]. Optics Communications, 1995, 115(5): 480-484.
[27] HAUBRICH D, SCHADWINKEL H, STRAUCH F, et al. Observation of individual neutral atoms in magnetic and magneto-optical traps[J]. Europhysics Letters, 1996, 34(9): 663.
[28] KUMAR R, BARRIOS E, MACRAE A, et al. Versatile wideband balanced detector for quantum optical homodyne tomography[J]. Optics Communications, 2012, 285(24): 5259-5267.
[29] GUO Y, HU Z, ZHANG J, et al. High-speed photon correlation monitoring of amplified quantum noise by chaos using deep-learning balanced homodyne detection[J]. Applied Physics Letters, 2023, 123(5): 051101.
[30] STEFSZKY M S, MOW-LOWRY C M, CHUA S S Y, et al. Balanced homodyne detection of optical quantum states at audio-band frequencies and below[J]. Classical and Quantum Gravity, 2012, 29(14): 145015.
[31] GUERIN W, ARAÚJO M O, KAISER R. Subradiance in a Large Cloud of Cold Atoms[J]. Phys. Rev. Lett., 2016, 116: 083601.
[32] PIRO N, ROHDE F, SCHUCK C, et al. Heralded single-photon absorption by a single atom[J]. Nature Physics, 2010, 7: 17-20.
[33] HADFIELD R. Single-photon detectors for optical quantum information applications[J]. Nature Photonics, 2009, 3.
[34] LIANG Y, ZENG H. Single-photon detection and its applications[J]. Science China Physics, Mechanics & Astronomy, 2014, 57.
[35] SERRE I, PRUVOST L, DUONG H T. Fluorescence imaging efficiency of cold atoms in free fall[J]. Appl. Opt., 1998, 37(6): 1016-1021.
[36] MAGALHãES K, de Oliveira A, ZANON R, et al. Lifetime determination of high excited states of 85Rb using a sample of cold atoms[J]. Optics Communications, 2000, 184(5): 385-389.
[37] LU B, WANG D. Note: A four-pass acousto-optic modulator system for laser cooling of sodium atoms[J]. Review of Scientific Instruments, 2017, 88(7): 076105.
[38] WU B, ZHAO Y, CHENG B, et al. A Simplified Laser System for Atom Interferometry Based on a Free-Space EOM[J]. Photonics, 2022, 9(5).
[39] DEB A B, RAKONJAC A, KJÆRGAARD N. Versatile laser system for experiments with cold atomic gases[J]. J. Opt. Soc. Am. B, 2012, 29(11): 3109-3113.
[40] MCGLOIN D, SPALDING G, MELVILLE H, et al. Applications of spatial light modulators in atom optics[J]. Opt. Express, 2003, 11(2): 158-166.
[41] SCHONBRUN E, PIESTUN R, JORDAN P, et al. 3D interferometric optical tweezers using a single spatial light modulator[J]. Opt. Express, 2005, 13(10): 3777-3786.
[42] PETRICH W, ANDERSON M H, ENSHER J R, et al. Behavior of atoms in a compressed magneto-optical trap[J]. J. Opt. Soc. Am. B, 1994, 11(8): 1332-1335.
[43] CHIN C, GRIMM R, JULIENNE P, et al. Feshbach resonances in ultracold gases[J]. Rev. Mod. Phys., 2010, 82: 1225-1286.
[44] KESHET A, KETTERLE W. A distributed, graphical user interface based, computer control system for atomic physics experiments[J]. Review of Scientific Instruments, 2013, 84(1): 015105.
[45] KASPROWICZ G, KULIK P, GASKA M, et al. ARTIQ and Sinara: Open Software and Hardware Stacks for Quantum Physics[C]//OSA Quantum 2.0 Conference. Optica Publishing Group, 2020: QTu8B.14.
[46] DEBS J, ROBINS N, LANCE A, et al. Piezo-locking a diode laser with saturated absorption spectroscopy[J]. Applied optics, 2008, 47: 5163-6.
[47] Le Gouët J, KIM J, BOURASSIN-BOUCHET C, et al. Wide bandwidth phase-locked diode laser with an intra-cavity electro-optic modulator[J]. Optics Communications, 2009, 282(5): 977-980.
[48] SCHREIBER K U, GEBAUER A, WELLS J P R. Closed-loop locking of an optical frequency comb to a large ring laser[J]. Opt. Lett., 2013, 38(18): 3574-3577.
[49] BLACK E D. An introduction to Pound–Drever–Hall laser frequency stabilization[J]. American Journal of Physics, 2001, 69(1): 79-87.
[50] JERALD G. 光电二极管及其放大电路设计[M]. 赖康生, 许祖茂, 王晓旭, 译. 北京: 科学出版社, 2012: 8-10.
[51] NAVILIPURI L. Design and Layout of a Transimpedance Amplifier (tia) at 50 GHz for Optical Receivers in ihp 130nm SiGe BiCMOS Technology[D]. 2022.
[52] PHOTODIODE P D S. Photodiode Characteristics and Applications[M]. unpublished.
[53] 胡涛; 司汉英. 光电探测器前置放大电路设计与研究[J]. 光电技术应用, 2010, 25(01):52-55.
[54] HOOMAN H. Transimpedance Amplifiers (TIA): Choosing the Best Amplifier for the Job [EB/OL]. 2017. https://www.ti.com/jp/lit/an/snoa942a/snoa942a.pdf.
[55] LINEAR T. 4GHz Ultra-Low Bias Current FET Input Op Amp[EB/OL]. https://www.analog.com/media/en/technical-documentation/data-sheets/626810f.pdf.
[56] GORDON E I. A Review of Acoustooptical Deflection and Modulation Devices[J]. Appl. Opt.,1966, 5(10): 1629-1639.
[57] BRICE R. 7 - Pet Sounds–Electronic synthesis[M]//BRICE R. Music Engineering (Second Edition). Second edition ed. Oxford: Newnes, 2001: 155-183.
[58] TERRELL D L. CHAPTER FOUR - Oscillators[M]//TERRELL D L. Op Amps (Second Edition). Second edition ed. Burlington: Newnes, 1996: 173-211.
[59] CHRISTIANO M. Everything You Need to Know About Direct Digital Synthesis[EB/OL].2015. https://www.allaboutcircuits.com/technical-articles/direct-digital-synthesis/.
[60] 张明友. 国防电子信息技术丛书: 数字阵列雷达和软件化雷达[M]. 北京: 电子工业出版社, 2008.
[61] Fundamentals of Direct Digital Synthesis (DDS)[EB/OL]. https://www.analog.com/media/en/training-seminars/tutorials/MT-085.pdf.
[62] NYQUIST H. Certain topics in telegraph transmission theory[J]. Transactions of the American Institute of Electrical Engineers, 1928, 47(2): 617-644.
[63] SHANNON C E. A mathematical theory of communication[J]. The Bell System Technical Journal, 1948, 27(3): 379-423.
[64] CBM99D10BQ 产品手册[EB/OL]. https://corebai.com/Data/corebai/upload/file/20231208/CBM99D10BQ.pdf.
[65] 张涛, 陈亮. 电荷泵锁相环环路滤波器参数设计与分析[J]. 现代电子技术, 2008, 31(9): 87-90.
[66] 李子金. 基于 DDS 的声光调制器驱动电路研制[J]. 电子技术与软件工程, 2020(19): 74-77.
[67] 森荣二. LC 滤波器设计与制作[M]. 薛培鼎, 译. 北京: 科学出版社, 2006: 6-9.
[68] HUEGLER E, HILL J C, MEYER D H. An agile radio-frequency source using internal linear sweeps of a direct digital synthesizer[J]. Review of Scientific Instruments, 2023, 94(9): 094705.
[69] PRUTTIVARASIN T. Spectroscopy, fundamental symmetry tests and quantum simulation with trapped ions[Z].
[70] MEYER B, IDEL A, ANDERS F, et al. Dynamical low-noise microwave source for cold atom experiments[M]. arXiv, 2020.
[71] ADAMS C S. A mechanical shutter for light using piezoelectric actuators[J]. Review of Scientific Instruments, 2000, 71(1): 59-60.
[72] BOWDEN W, HILL I R, BAIRD P E G, et al. Note: A high-performance, low-cost laser shutter using a piezoelectric cantilever actuator[J]. Review of Scientific Instruments, 2017, 88(1): 016102.
[73] BAUER M, FRANZREB P P, SPETHMANN N, et al. Note: Reliable low-vibration piezomechanical shutter[J]. Review of Scientific Instruments, 2014, 85(9): 096101.
[74] MAGUIRE L P, SZILAGYI S, SCHOLTEN R E. High performance laser shutter using a hard disk drive voice-coil actuator[J]. Review of Scientific Instruments, 2004, 75(9): 3077-3079.
[75] SINGER K, JOCHIM S, MUDRICH M, et al. Low-cost mechanical shutter for light beams[J]. Review of Scientific Instruments, 2002, 73(12): 4402-4404.
[76] High performance optical shutter design with scalable aperture[J]. Bulletin of the Polish Academy of Sciences Technical Sciences, 2023.
[77] ZHANG G H, BRAVERMAN B, KAWASAKI A, et al. Fast Compact Laser Shutter Using a Direct Current Motor and 3D Printing[J]. Review of Scientific Instruments, 2015, 86(12):126105.
[78] HUANG P W, TANG B, XIONG Z Y, et al. Note: A compact low-vibration high-performance optical shutter for precision measurement experiments[J]. Review of Scientific Instruments, 2018, 89(9): 096111.
[79] MITCHELL D, LEBEL P. Ultrafast Mechanical Shutters for Laser Cooling Applications: The iShutter System[Z].
[80] FOOT C J. Atomic Physics[M]. Oxford University Press, 2004: 218-219.
[81] 王义道. 原子的激光冷却与陷俘[M]. 北京大学出版社, 2007: 291-297.
[82] MISAKIAN M. Equations for the Magnetic Field Produced by One or More Rectangular Loops of Wire in the Same Plane[J]. Journal of Research of the National Institute of Standards and Technology, 2000, 105.
[83] BALIC V. Generation of narrow-bandwidth paired photons with electronically controllable waveforms[D]. 2005.
[84] DEDMAN C J, BALDWIN K G H, COLLA M. Fast switching of magnetic fields in a magnetooptic trap[J]. Review of Scientific Instruments, 2001, 72(11): 4055-4058.
[85] JADHAV V, ZHOU Y, JANSEN U. Analysis of different IGBT gate driver strategies influencing dynamic paralleling performance[C]//PCIM Asia 2016; International Exhibition and Conference for Power Electronics, Intelligent Motion, Renewable Energy and Energy Management. 2016: 1-9.
[86] TANG Y, MA H. Dynamic Electrothermal Model of Paralleled IGBT Modules With Unbalanced Stray Parameters[J]. IEEE Transactions on Power Electronics, 2017, 32(2): 1385-1399.
[87] XU Y. Electromagnetically induced transparency and slow light in rubidium 85 cold atoms[D]. 2020.
[88] ALZAR C L G, PETROV P G, OBLAK D, et al. Compensation of eddy-current-induced magnetic field transients in a MOT[A]. 2007.
[89] PRITCHARD J D. Progress Towards a Single Blockade Sphere[M]. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012: 135-144.
[90] ZENG Y, XU P, HE X, et al. Entangling Two Individual Atoms of Different Isotopes via Rydberg Blockade[J]. Phys. Rev. Lett., 2017, 119: 160502.
[91] FAN H, KUMAR S, SEDLACEK J, et al. Atom based RF electric field sensing[J]. Journal of Physics B: Atomic, Molecular and Optical Physics, 2015, 48(20): 202001.
[92] SEDLACEK J A, SCHWETTMANN A, KÜBLER H, et al. Microwave electrometry with Rydberg atoms in a vapour cell using bright atomic resonances[J]. Nature physics, 2012, 8(11): 819-824.
[93] LEGAIE R. Coherent control of Rydberg atoms using sub-kHz linewidth excitation lasers[D]. 2020.
修改评论