[1] MA W, YU C, CHEN T, et al. Metallacyclopentadienes: Synthesis, Structure and Reactivity[J]. Chemical Society Reviews, 2017, 46(4): 1160-1192.
[2] CHOI S K, GAL Y S, JIN S H, et al. Poly(1,6-heptadiyne)-Based Materials by Metathesis Polymerization[J]. Chemical Reviews, 2000, 100(4): 1645-1682.
[3] BUCHMEISER M R. Homogeneous Metathesis Polymerization by Well-Defined Group VI and Group VIII Transition-Metal Alkylidenes: Fundamentals and Applications in the Preparation of Advanced Materials[J]. Chemical Reviews, 2000, 100(4): 1565-1604.
[4] SCHROCK R R. Multiple Metal–Carbon Bonds for Catalytic Metathesis Reactions (Nobel Lecture)[J]. Angewandte Chemie International Edition, 2006, 45(23): 3748-3759.
[5] VOUGIOUKALAKIS G C, GRUBBS R H. Ruthenium-Based Heterocyclic Carbene-Coordinated Olefin Metathesis Catalysts[J]. Chemical Reviews, 2010, 110(3): 1746-1787.
[6] TRNKA T M, GRUBBS R H. The Development of L2X2RuCHR Olefin Metathesis Catalysts: An Organometallic Success Story[J]. Accounts of Chemical Research, 2001, 34(1): 18-29.
[7] TAKAHASHI T, SONG Z, SATO K, et al. 1-Chloro-4,5,6,7-tetraalkyldihydroindene Formation by Reaction of Bis(cyclopentadienyl)titanacyclopentadienes with Titanium Chloride[J]. Journal of the American Chemical Society, 2007, 129(38): 11678-11679.
[8] TAKAHASHI T, KUZUBA Y, KONG F, et al. Formation of Indene Derivatives from Bis(cyclopentadienyl)titanacyclopentadienes with Alkyl Group Migration via Carbon−Carbon Bond Cleavage[J]. Journal of the American Chemical Society, 2005, 127(49): 17188-17189.
[9] TAKAHASHI T, SONG Z, HSIEH Y F, et al. Once Cleaved C−C Bond Was Reformed: Reversible C−C Bond Cleavage of Dihydroindenyltitanium Complexes[J]. Journal of the American Chemical Society, 2008, 130(46): 15236-15237.
[10] MIZUKAMI Y, LI H, NAKAJIMA K, et al. Coupling of Titanacyclopentadienes with a Cp Ligand and Elimination of One Substituent[J]. Angewandte Chemie International Edition, 2014, 53(34): 8899-8903.
[11] SONG Z, HSIEH Y F, KANNO K ichiro, et al. Coupling Reaction of a Cyclopentadienyl Ligand with a Dienyl or Alkenyl Moiety on Titanocene[J]. Organometallics, 2011, 30(4): 844-851.
[12] ALLRED A L. Electronegativity Values from Thermochemical Data[J]. Journal of Inorganic and Nuclear Chemistry, 1961, 17(3): 215-221.
[13] CORCORAN J X W P. Tankard Handle from Puddlehill, near Dunstable, Bedfordshire[J]. Proceedings of the Prehistoric Society, 1958, 23: 233-234.
[14] YAN X, XI C. Conversion of Zirconacyclopentadienes into Metalloles: Fagan–Nugent Reaction and Beyond[J]. Accounts of Chemical Research, 2015, 48(4): 935-946.
[15] ZHU C, LI S, LUO M, et al. Stabilization of Anti-aromatic and Strained Five-membered Rings with a Transition Metal[J]. Nature Chemistry, 2013, 5(8): 698-703.
[16] ALLRED A L. Electronegativity Values from Thermochemical Data[J]. Journal of Inorganic and Nuclear Chemistry, 1961, 17(3): 215-221.
[17] FAGAN P J, NUGENT W A. Synthesis of Main Group Heterocycles by Metallacycle Transfer from Zirconium[J]. Journal of the American Chemical Society, 1988, 110(7): 2310-2312.
[18] AGOU T, WASANO T, JIN P, et al. Syntheses and Structures of an “Alumole” and Its Dianion[J]. Angewandte Chemie International Edition, 2013, 52(38): 10031-10034.
[19] LEYENDECKER M, SHELDRICK W S, KREITER C G. Heptacarbonyl-μ-(2,5:2–5-η-2,4-hexadien-2,5-diyl)dimangan, synthese und molekülstruktur eines zweikernigen manganacyclopentadien-komplexes[J]. Journal of Organometallic Chemistry, 1984, 270(2): C37-C40.
[20] SIELISCH T, BEHRENS U. Übergangsmetall-heteroallen-komplexe XV. Reaktionen von keteniminen mit eisencarbonylen[J]. Journal of Organometallic Chemistry, 1987, 322(2): 203-220.
[21] PERTHUISOT C, EDELBACH B L, ZUBRIS D L, et al. C−C Activation in Biphenylene. Synthesis, Structure, and Reactivity of (C5Me5)2M2(2,2‘-biphenyl) (M = Rh, Co)[J]. Organometallics, 1997, 16(10): 2016-2023.
[22] YEH W Y, HSU S C N, PENG S M, et al. C−H versus C−C Activation of Biphenylene in Its Reactions with Iron Group Carbonyl Clusters[J]. Organometallics, 1998, 17(12): 2477-2483.
[23] DETTLAF G, WEISS E. Kristallstruktur, 1H-NMR- und Massenspektrum Von tricarbonylferracyclopentadien-tricarbonyleisen, C4H4Fe2(CO)6[J]. Journal of Organometallic Chemistry, 1976, 108(2): 213-223.
[24] KALB W C, DEMIDOWICZ Z, SPECKMAN D M, et al. Reactions At the Metal Vertex of a Monometal Metallacarborane Cluster. Chemistry of [closo-3,3-(PPh3)2-3-HSO4-3,1,2-RhC2B9H11] and [closo-3-PPh3-3,3-NO3-3,1,2-RhC2B9H11][J]. Inorganic Chemistry, 1982, 21(11): 4027-4036.
[25] WINTER A, SCHUBERT U S. Synthesis and Characterization of Metallo-supramolecular Polymers[J]. Chemical Society Reviews, 2016, 45(19): 5311-5357.
[26] NGUYEN P, GÓMEZ-ELIPE P, MANNERS I. Organometallic Polymers with Transition Metals in the Main Chain[J]. Chemical Reviews, 1999, 99(6): 1515-1548.
[27] ZHU C, XIA H. Carbolong Chemistry: A Story of Carbon Chain Ligands and Transition Metals[J]. Accounts of Chemical Research, 2018, 51(7): 1691-1700.
[28] ZHU C, LUO M, ZHU Q, et al. Planar Möbius Aromatic Pentalenes Incorporating 16 and 18 Valence Electron Osmiums[J]. Nature Communications, 2014, 5(1): 3265.
[29] ZHU C, ZHOU X, XING H, et al. σ‐Aromaticity in an Unsaturated Ring: Osmapentalene Derivatives Containing a Metallacyclopropene Unit[J]. Angewandte Chemie International Edition, 2015, 54(10): 3102-3106.
[30] ZHU C, YANG Y, LUO M, et al. Stabilizing Two Classical Antiaromatic Frameworks: Demonstration of Photoacoustic Imaging and the Photothermal Effect in Metalla‐aromatics[J]. Angewandte Chemie International Edition, 2015, 54(21): 6181-6185.
[31] ZHU C, WU J, LI S, et al. Synthesis and Characterization of a Metallacyclic Framework with Three Fused Five‐membered Rings[J]. Angewandte Chemie International Edition, 2017, 56(31): 9067-9071.
[32] ZHU C, ZHU J, ZHOU X, et al. Isolation of an Eleven‐Atom Polydentate Carbon‐Chain Chelate Obtained by Cycloaddition of a Cyclic Osmium Carbyne with an Alkyne[J]. Angewandte Chemie International Edition, 2018, 57(12): 3154-3157.
[33] ZHUO Q, ZHANG H, DING L, et al. Rhodapentalenes: Pincer Complexes with Internal Aromaticity[J]. iScience, 2019, 19: 1214-1224.
[34] ZHUO Q, ZHANG H, HUA Y, et al. Constraint of a Ruthenium-Carbon Triple Bond to a Five-membered Ring[J]. Science Advances, 2018, 4(6): eaat0336.
[35] BHARDWAJ A, KAUR J, WUEST M, et al. In Situ Click Chemistry Generation of Cyclooxygenase-2 Inhibitors[J]. Nature Communications, 2017, 8(1): 1.
[36] LUO M, LONG L, ZHANG H, et al. Reactions of Isocyanides with Metal Carbyne Complexes: Isolation and Characterization of Metallacyclopropenimine Intermediates[J]. Journal of the American Chemical Society, 2017, 139(5): 1822-1825.
[37] TANG C, ZHAO Y, WU J, et al. Releasing Antiaromaticity in Metal-Bridgehead Naphthalene[J]. Journal of the American Chemical Society, 2021, 143(38): 15587-15592.
[38] ZHU C, WU J, LI S, et al. Synthesis and Characterization of a Metallacyclic Framework with Three Fused Five‐membered Rings[J]. Angewandte Chemie International Edition, 2017, 56(31): 9067-9071.
[39] GONG L, CHEN Z, LIN Y, et al. Osmabenzenes from Osmacycles Containing an η 2 ‐Coordinated Olefin[J]. Chemistry – A European Journal, 2009, 15(25): 6258-6266.
[40] LUO M, CHEN D, LI Q, et al. Unique Properties and Emerging Applications of Carbolong Metallaaromatics[J]. Accounts of Chemical Research, 2023, 56(8): 924-937.
[41] DENG Z, WU P, CAI Y, et al. Dioxygen Activation by Internally Aromatic Metallacycle: Crystallographic Structure and Mechanistic Investigations[J]. iScience, 2020, 23(8): 101379.
[42] GUNANATHAN C, MILSTEIN D. Metal–Ligand Cooperation by Aromatization–Dearomatization: A New Paradigm in Bond Activation and “Green” Catalysis[J]. Accounts of Chemical Research, 2011, 44(8): 588-602.
[43] GONÇALVES T P, DUTTA I, HUANG K W. Aromaticity in Catalysis: Metal Ligand Cooperation via Ligand Dearomatization and Rearomatization[J]. Chemical Communications, 2021, 57(25): 3070-3082.
[44] CUI F H, HUA Y, LIN Y M, et al. Selective Difunctionalization of Unactivated Aliphatic Alkenes Enabled by a Metal–Metallaaromatic Catalytic System[J]. Journal of the American Chemical Society, 2022, 144(5): 2301-2310.
[45] GUO L, LIU Y, YAO W, et al. Iridium-Catalyzed Selective α-Alkylation of Unactivated Amides with Primary Alcohols[J]. Organic Letters, 2013, 15(5): 1144-1147.
[46] KUWAHARA T, FUKUYAMA T, RYU I. Ruthenium hydride/nitrogen tridentate ligand-catalyzed α-alkylation of acetamides with primary alcohols[J]. RSC Advances, 2013, 3(33): 13702.
[47] FU S, SHAO Z, WANG Y, et al. Manganese-Catalyzed Upgrading of Ethanol into 1-Butanol[J]. Journal of the American Chemical Society, 2017, 139(34): 11941-11948.
[48] KAR S, MILSTEIN D. Oxidation of Organic Compounds Using Water as the Oxidant with H2 Liberation Catalyzed by Molecular Metal Complexes[J]. Accounts of Chemical Research, 2022, 55(16): 2304-2315.
[49] BAUER J O, LEITUS G, BEN-DAVID Y, et al. Direct Synthesis of Symmetrical Azines from Alcohols and Hydrazine Catalyzed by a Ruthenium Pincer Complex: Effect of Hydrogen Bonding[J]. ACS Catalysis, 2016, 6(12): 8415-8419.
[50] DAS U K, BEN-DAVID Y, DISKIN-POSNER Y, et al. N-Substituted Hydrazones by Manganese-Catalyzed Coupling of Alcohols with Hydrazine: Borrowing Hydrogen and Acceptorless Dehydrogenation in One System[J]. Angewandte Chemie International Edition, 2018, 57(8): 2179-2182.
[51] DAS U K, BEN-DAVID Y, LEITUS G, et al. Dehydrogenative Cross-Coupling of Primary Alcohols To Form Cross-Esters Catalyzed by a Manganese Pincer Complex[J]. ACS Catalysis, 2019, 9(1): 479-484.
[52] ZHU C, ZHU Q, FAN J, et al. A Metal‐Bridged Tricyclic Aromatic System: Synthesis of Osmium Polycyclic Aromatic Complexes[J]. Angewandte Chemie International Edition, 2014, 53(24): 6232-6236.
[53] SUN Y, TAN F, HU R, et al. Visible-Light Photoredox-Catalyzed Hydrodecarboxylation and Deuterodecarboxylation of Fatty Acids[J]. Chinese Journal of Chemistry, 2022, 40(16): 1903-1908.
[54] RÖSSLER S L, JELIER B J, MAGNIER E, et al. Pyridinium Salts as Redox‐Active Functional Group Transfer Reagents[J]. Angewandte Chemie International Edition, 2020, 59(24): 9264-9280.
[55] KIM M, KOO Y, HONG S. N-Functionalized Pyridinium Salts: A New Chapter for Site-Selective Pyridine C–H Functionalization via Radical-Based Processes under Visible Light Irradiation[J]. Accounts of Chemical Research, 2022, 55(20): 3043-3056.
[56] LEE C, YANG W, PARR R G. Development of the Colle-Salvetti Correlation-energy Formula into a Functional of the Electron Density[J]. Physical Review B, 1988, 37(2): 785-789.
[57] HAY P J, WADT W R. Ab Initio Effective Core Potentials for Molecular Calculations. Potentials for K to Au Including the Outermost Core Orbitals[J]. The Journal of Chemical Physics, 1985, 82(1): 299-310.
[58] MIEHLICH B, SAVIN A, STOLL H, et al. Results Obtained with the Correlation Energy Density Functionals of Becke and Lee, Yang and Parr[J]. Chemical Physics Letters, 1989, 157(3): 200-206.
[59] BECKE A D. Density-functional thermochemistry. III. The Role of Exact Exchange[J]. The Journal of Chemical Physics, 1993, 98(7): 5648-5652.
[60] ANDRAE D, HÄUSSERMANN U, DOLG M, et al. Energy-Adjustedab Initio Pseudopotentials for the Second and Third Row Transition Elements[J]. Theoretica chimica acta, 1990, 77(2): 123-141.
[61] ADAMO C, JACQUEMIN D. The Calculations of Excited-State Properties with Time-Dependent Density Functional Theory[J]. Chemical Society Reviews, 2013, 42(3): 845-856.
[62] DOLOMANOV O V, BOURHIS L J, GILDEA R J, et al. OLEX2: A Complete Structure Solution, Refinement and Analysis Program[J]. Journal of Applied Crystallography, 2009, 42(2): 339-341.
[63] SHELDRICK G M. SHELXT – Integrated Space-Group and Rrystal-Structure Determination[J]. Acta Crystallographica Section A Foundations and Advances, 2015, 71(1): 3-8.
[64] SHELDRICK G M. Crystal Structure Refinement with SHELXL[J]. Acta Crystallographica Section C Structural Chemistry, 2015, 71(1): 3-8.
[65] LIN S K. Pharmaceuticals: Classes, Therapeutic Agents, Areas of Application. By McGuire, John L.[J]. Molecules, 2000, 5(12): 1524-1525.
[66] RAPPOPORT Z. The chemistry of anilines[M]. Chichester: Wiley, 2007.
[67] KRAMER S. Synthesis of α-Substituted Primary Benzylamines through Copper-Catalyzed Cross-Dehydrogenative Coupling[J]. Organic Letters, 2019, 21(1): 65-69.
[68] KAN T, FUKUYAMA T. Ns Strategies: A Highly Versatile Synthetic Method for Amines[J]. Chemical Communications, 2004(4): 353-359.
[69] SALVATORE R N, NAGLE A S, JUNG K W. Cesium Effect: High Chemoselectivity in Direct N-Alkylation of Amines[J]. The Journal of Organic Chemistry, 2002, 67(3): 674-683.
[70] SINGH C B, KAVALA V, SAMAL A K, et al. Aqueous-Mediated N-Alkylation of Amines[J]. European Journal of Organic Chemistry, 2007, 2007(8): 1369-1377.
[71] HOMBERG L, ROLLER A, HULTZSCH K C. A Highly Active PN3 Manganese Pincer Complex Performing N-Alkylation of Amines under Mild Conditions[J]. Organic Letters, 2019, 21(9): 3142-3147.
[72] LIN S K. Pharmaceuticals: Classes, Therapeutic Agents, Areas of Application. By McGuire, John L.[J]. Molecules, 2000, 5(12): 1524-1525.
[73] XIE X, HUYNH H V. Tunable Dehydrogenative Amidation versus Amination Using a Single Ruthenium-NHC Catalyst[J]. ACS Catalysis, 2015, 5(7): 4143-4151.
[74] GUNANATHAN C, MILSTEIN D. Metal–Ligand Cooperation by Aromatization–Dearomatization: A New Paradigm in Bond Activation and “Green” Catalysis[J]. Accounts of Chemical Research, 2011, 44(8): 588-602.
[75] MONDAL S, PAL S, KHANRA S, et al. Co-Catalyzed Metal-Ligand Cooperative Approach for N-alkylation of Amines and Synthesis of Quinolines via Dehydrogenative Alcohol Functionalization[J]. European Journal of Inorganic Chemistry, 2023, 26(29): e202300263.
[76] P H, TOMASINI M, M V, et al. Access to Secondary Amines through Hydrogen Autotransfer Reaction Mediated by KOtBu[J]. European Journal of Organic Chemistry, 2024, 27(11): e202301213.
[77] CHAKRABORTY S, MONDAL R, PAL S, et al. Zn(II)-Catalyzed Selective N-Alkylation of Amines with Alcohols Using Redox Noninnocent Azo-Aromatic Ligand as Electron and Hydrogen Reservoir[J]. The Journal of Organic Chemistry, 2023, 88(2): 771-787.
[78] UPADHYAY R, MAURYA S K. Titanium-Catalyzed Selective N-Alkylation of Amines with Alcohols via Borrowing Hydrogen Methodology[J]. The Journal of Organic Chemistry, 2023, 88(24): 16960-16966.
[79] MICHAEL J P. Quinoline, Quinazoline and Acridone Alkaloids[J]. Natural Product Reports, 2002, 19(6): 742-760.
[80] JOSHI A A, VISWANATHAN C L. Docking Studies and Development of Novel 5-heteroarylamino-2,4-diamino-8-chloropyrimido-
[4,5-b]quinolines as Potential Antimalarials[J]. Bioorganic & Medicinal Chemistry Letters, 2006, 16(10): 2613-2617.
[81] AFZAL O, KUMAR S, HAIDER M R, et al. A Review on Anticancer Potential of Bioactive Heterocycle Quinoline[J]. European Journal of Medicinal Chemistry, 2015, 97: 871-910.
[82] CHEN Y L, FANG K C, SHEU J Y, et al. Synthesis and Antibacterial Evaluation of Certain Quinolone Derivatives[J]. Journal of Medicinal Chemistry, 2001, 44(14): 2374-2377.
[83] CAMPS P, GÓMEZ E, MUÑOZ-TORRERO D, et al. Synthesis, in Vitro Pharmacology, and Molecular Modeling of syn -Huprines as Acetylcholinesterase Inhibitors[J]. Journal of Medicinal Chemistry, 2001, 44(26): 4733-4736.
[84] DUBÉ D, BLOUIN M, BRIDEAU C, et al. Quinolines as Potent 5-lipoxygenase Inhibitors: Synthesis and Biological Profile of L-746,530[J]. Bioorganic & Medicinal Chemistry Letters, 1998, 8(10): 1255-1260.
[85] MURUGANANTHAM N, SIVAKUMAR R, ANBALAGAN N, et al. Synthesis, Anticonvulsant and Antihypertensive Activities of 8-Substituted Quinoline Derivatives[J]. Biological and Pharmaceutical Bulletin, 2004, 27(10): 1683-1687.
[86] ROMA G, DI BRACCIO M, GROSSI G, et al. 1,8-Naphthyridines IV. 9-Substituted N,N-dialkyl-5-(alkylamino or cycloalkylamino)
[1,2,4]triazolo
[4,3-a]
[1,8]naphthyridine-6-carboxamides, New Compounds with Anti-aggressive and Potent Anti-inflammatory Activities[J]. European Journal of Medicinal Chemistry, 2000, 35(11): 1021-1035.
[87] ENDERS D, GRONDAL C, HÜTTL M R M. Asymmetrische Organokatalytische Dominoreaktionen[J]. Angewandte Chemie, 2007, 119(10): 1590-1601.
[88] BIDDLE M M, LIN M, SCHEIDT K A. Catalytic Enantioselective Synthesis of Flavanones and Chromanones[J]. Journal of the American Chemical Society, 2007, 129(13): 3830-3831.
[89] ENDERS D, GRONDAL C, HÜTTL M R M. Asymmetric Organocatalytic Domino Reactions[J]. Angewandte Chemie International Edition, 2007, 46(10): 1570-1581.
[90] ZUCCA A, CORDESCHI D, MAIDICH L, et al. Rollover Cyclometalation with 2-(2′-Pyridyl)quinoline[J]. Inorganic Chemistry, 2013, 52(13): 7717-7731.
[91] MA Z, DING J, ZHANG B, et al. Red-Emitting Polyfluorenes Grafted with Quinoline-Based Iridium Complex: “Simple Polymeric Chain, Unexpected High Efficiency”[J]. Advanced Functional Materials, 2010, 20(1): 138-146.
[92] CRABTREE R H. Homogeneous Transition Metal Catalysis of Acceptorless Dehydrogenative Alcohol Oxidation: Applications in Hydrogen Storage and to Heterocycle Synthesis[J]. Chemical Reviews, 2017, 117(13): 9228-9246.
[93] LAVRARD H, LARINI P, POPOWYCZ F. Superacidic Cyclization of Activated Anthranilonitriles into 2-Unsubstituted-4-aminoquinolines[J]. Organic Letters, 2017, 19(16): 4203-4206.
[94] DAI H, LI C X, YU C, et al. Copper(II) Catalyzed Domino Synthesis of Quinoline Derivatives from Arylamines and Alkynes[J]. Organic Chemistry Frontiers, 2017, 4(10): 2008-2011.
[95] LI C, LI J, AN Y, et al. Palladium-Catalyzed Allylic C–H Oxidative Annulation for Assembly of Functionalized 2-Substituted Quinoline Derivatives[J]. The Journal of Organic Chemistry, 2016, 81(24): 12189-12196.
[96] EVONIUK C J, LY M, ALABUGIN I V. Coupling Cyclizations with Fragmentations for the Preparation of Heteroaromatics: Quinolines from O-alkenyl Arylisocyanides and Boronic Acids[J]. Chemical Communications, 2015, 51(64): 12831-12834.
[97] JI X, HUANG H, LI Y, et al. Palladium-Catalyzed Sequential Formation of CC Bonds: Efficient Assembly of 2-Substituted and 2,3-Disubstituted Quinolines[J]. Angewandte Chemie International Edition, 2012, 51(29): 7292-7296.
[98] HUO Z, GRIDNEV I D, YAMAMOTO Y. A Method for the Synthesis of Substituted Quinolines via Electrophilic Cyclization of 1-Azido-2-(2-propynyl)benzene[J]. The Journal of Organic Chemistry, 2010, 75(4): 1266-1270.
[99] SUDHAPRIYA N, NANDAKUMAR A, PERUMAL P T. Facile Synthesis of 2-substituted Quinolines and 3-alkynyl-2-aryl-2H-Indazole via SnCl2-mediated Reductive Cyclization[J]. RSC Advances, 2014, 4(102): 58476-58480.
[100] ELAVARASAN S, BHAUMIK A, SASIDHARAN M. An Efficient Mesoporous Cu‐Organic Nanorod for Friedländer Synthesis of Quinoline and Click Reactions[J]. ChemCatChem, 2019, 11(17): 4340-4350.
[101] GUILLENA G, RAMÓN D J, YUS M. Hydrogen Autotransfer in the N-Alkylation of Amines and Related Compounds using Alcohols and Amines as Electrophiles[J]. Chemical Reviews, 2010, 110(3): 1611-1641.
[102] IRRGANG T, KEMPE R. 3d-Metal Catalyzed N- and C-Alkylation Reactions via Borrowing Hydrogen or Hydrogen Autotransfer[J]. Chemical Reviews, 2019, 119(4): 2524-2549.
[103] HAMID M H S A, ALLEN C L, LAMB G W, et al. Ruthenium-Catalyzed N-Alkylation of Amines and Sulfonamides Using Borrowing Hydrogen Methodology[J]. Journal of the American Chemical Society, 2009, 131(5): 1766-1774.
[104] CHO C S, KIM B T, KIM T J, et al. Ruthenium-Catalysed Oxidative Cyclisation of 2-aminobenzyl Alcohol with Ketones: Modified Friedlaender Quinoline Synthesis[J]. Chemical Communications, 2001(24): 2576-2577.
[105] MIERDE H V, LEDOUX N, ALLAERT B, et al. Improved Ruthenium Catalysts for the Modified Friedlaender Quinoline Synthesis[J]. New Journal of Chemistry, 2007, 31(9): 1572-1574.
[106] VANDER MIERDE H, VAN DER VOORT P, DE VOS D, et al. A Ruthenium-Catalyzed Approach to the Friedländer Quinoline Synthesis[J]. European Journal of Organic Chemistry, 2008, 2008(9): 1625-1631.
[107] TUAN HA M, THI NGUYEN N, HUYEN TRAN N, et al. Cu-catalyzed Synthesis of Quinolines by Dehydrogenative Reaction of 2-Aminobenzyl Alcohol and Ketones: A Combined Experimental and Computational Study[J]. Chemistry – An Asian Journal, 2022, 17(22): e202200909.
[108] MARTÍNEZ R, RAMÓN D J, YUS M. RuCl2(dmso)4 Catalyzes the Solvent‐Free Indirect Friedländer Synthesis of Polysubstituted Quinolines from Alcohols[J]. European Journal of Organic Chemistry, 2007, 2007(10): 1599-1605.
[109] WEI D, DORCET V, DARCEL C, et al. Synthesis of Quinolines Through Acceptorless Dehydrogenative Coupling Catalyzed by Rhenium PN(H)P Complexes[J]. ChemSusChem, 2019, 12(13): 3078-3082.
[110] MISHRA S, PRAKASH C, TRIPATHI B P. Role of Aurone ligands in Microwave Enhanced Mn (II) and Co (II) Catalyzed Dehydrogenative Coupling Reaction: An Efficient Ligand for the Synthesis of Quinoline, Pyridine, and Pyrrole[J]. Journal of Heterocyclic Chemistry, 2024, 61(3): 407-420.
[111] PATRA K, BHATTACHERYA A, LI C, et al. Understanding the Visible-Light-Initiated Manganese-Catalyzed Synthesis of Quinolines and Naphthyridines under Ambient and Aerobic Conditions[J]. ACS Catalysis, 2022, 12(24): 15168-15180.
[112] GAUTAM D, GAHLAUT P S, PATHAK S, et al. K2S2O8 Promoted Metal-Free Direct C-alkylation of Acetophenones with Alcohols[J]. Organic & Biomolecular Chemistry, 2023, 21(48): 9519-9523.
修改评论