中文版 | English
题名

三并金属杂环戊二烯型碳龙化合物的合成及其在催化氢转移反应中的应用

其他题名
SYNTHESIS AND APPLICATIONS IN CATALYTIC HYDROGEN TRANSFER REACTIONS OF CARBOLONG COMPLEXES WITH THREE FUSED-METALLACYCLOPENTADIENES
姓名
姓名拼音
ZHANG Shengjie
学号
12132821
学位类型
硕士
学位专业
070303 有机化学
学科门类/专业学位类别
07 理学
导师
夏海平,陈大发
导师单位
深圳格拉布斯研究院;化学系
论文答辩日期
2024-05-16
论文提交日期
2024-06-20
学位授予单位
南方科技大学
学位授予地点
深圳
摘要

金属杂环戊二烯是一类重要的金属杂环化合物,碳龙配合物是本课题组开发的一类具有新颖结构和独特性质的金属有机化合物,如果能将金属杂环戊二烯与碳龙配合物结合起来,产生的全新物质将可能具备以上两类物质的性质,对它们的研究有望进一步促进金属有机化学的发展。

首先,本论文利用含有M≡C键的金属杂戊搭炔与碳负离子亲核试剂反应,开发了一种形式上的[3+2]合成金属杂环戊二烯的新方法,以10 % ~ 84 %的产率得到了10例三并金属杂环戊二烯型碳龙化合物。它们的结构通过核磁共振波谱、X射线单晶衍射以及高分辨质谱等方法进行了详细鉴定和分析,更重要的是,反应的关键中间体结构也得到了高分辨质谱的证实,使得我们对该反应历程有了更加深刻的理解和认识。

在此基础上我们进一步探索了所得三并金属杂环戊二烯型碳龙化合物对于氢转移反应的催化效果。对于以醇和伯胺为原料制备仲胺的借氢反应,在最优条件下,可以以40 % ~ 88 %的分离收率得到一系列仲胺产物;对于无受体脱氢偶联制备喹啉衍生物的反应,在最优条件下,同样可以以57 % ~ 95 %的产率得到一系列喹啉衍生物。在反应探索中我们还揭示了催化过程中存在的特殊的“金属-配体”协同催化作用。

其他摘要

Metallacyclopentadienes are an important class of metallocyclic compounds, Carbolong complexes are a series of organometallic compounds with novel structures and unique properties developed by our research group. The amalgamation of metallacyclopentadienes with carbolong complexes could yield new materials that amalgamate the properties of both, potentially spearheading further advancements in organometallic chemistry.

Firstly, this thesis develops a novel method for the formal [3+2] synthesis of metallacyclopentadienes by reacting metallapentalkynes containing a M≡C bond with carbanion nucleophiles, achieving yields from 10% to 84% for ten carbolong complexes with three fused-metallacyclopentadienes . Their structures were detailedly characterized by nuclear magnetic resonance spectroscopy, X-ray single-crystal diffraction, and high-resolution mass spectrometry. More importantly, the structure of one critical reaction intermediate was also confirmed by high-resolution mass spectrometry, providing a deeper understanding and insight into the reaction mechanism.

We further explored the catalytic performance of the obtained carbolong complexes on hydrogen transfer reactions. For the borrowing hydrogen reactions that employ alcohols and primary amines to synthesize secondary amines, optimized conditions enabled the acquisition of a series of secondary amine products with isolated yields from 40% to 88%. Similarly, for the acceptorless dehydrogenative coupling reactions to prepare quinoline derivatives, optimized conditions also facilitated the attainment of a series of quinoline derivatives with yields from 57 % to 95 %. During our exploration of the reactions, we also uncovered the presence of "metal-ligand" cooperation effect in the catalytic process.

关键词
其他关键词
语种
中文
培养类别
独立培养
入学年份
2021
学位授予年份
2024-06
参考文献列表

[1] MA W, YU C, CHEN T, et al. Metallacyclopentadienes: Synthesis, Structure and Reactivity[J]. Chemical Society Reviews, 2017, 46(4): 1160-1192.
[2] CHOI S K, GAL Y S, JIN S H, et al. Poly(1,6-heptadiyne)-Based Materials by Metathesis Polymerization[J]. Chemical Reviews, 2000, 100(4): 1645-1682.
[3] BUCHMEISER M R. Homogeneous Metathesis Polymerization by Well-Defined Group VI and Group VIII Transition-Metal Alkylidenes:  Fundamentals and Applications in the Preparation of Advanced Materials[J]. Chemical Reviews, 2000, 100(4): 1565-1604.
[4] SCHROCK R R. Multiple Metal–Carbon Bonds for Catalytic Metathesis Reactions (Nobel Lecture)[J]. Angewandte Chemie International Edition, 2006, 45(23): 3748-3759.
[5] VOUGIOUKALAKIS G C, GRUBBS R H. Ruthenium-Based Heterocyclic Carbene-Coordinated Olefin Metathesis Catalysts[J]. Chemical Reviews, 2010, 110(3): 1746-1787.
[6] TRNKA T M, GRUBBS R H. The Development of L2X2RuCHR Olefin Metathesis Catalysts:  An Organometallic Success Story[J]. Accounts of Chemical Research, 2001, 34(1): 18-29.
[7] TAKAHASHI T, SONG Z, SATO K, et al. 1-Chloro-4,5,6,7-tetraalkyldihydroindene Formation by Reaction of Bis(cyclopentadienyl)titanacyclopentadienes with Titanium Chloride[J]. Journal of the American Chemical Society, 2007, 129(38): 11678-11679.
[8] TAKAHASHI T, KUZUBA Y, KONG F, et al. Formation of Indene Derivatives from Bis(cyclopentadienyl)titanacyclopentadienes with Alkyl Group Migration via Carbon−Carbon Bond Cleavage[J]. Journal of the American Chemical Society, 2005, 127(49): 17188-17189.
[9] TAKAHASHI T, SONG Z, HSIEH Y F, et al. Once Cleaved C−C Bond Was Reformed: Reversible C−C Bond Cleavage of Dihydroindenyltitanium Complexes[J]. Journal of the American Chemical Society, 2008, 130(46): 15236-15237.
[10] MIZUKAMI Y, LI H, NAKAJIMA K, et al. Coupling of Titanacyclopentadienes with a Cp Ligand and Elimination of One Substituent[J]. Angewandte Chemie International Edition, 2014, 53(34): 8899-8903.
[11] SONG Z, HSIEH Y F, KANNO K ichiro, et al. Coupling Reaction of a Cyclopentadienyl Ligand with a Dienyl or Alkenyl Moiety on Titanocene[J]. Organometallics, 2011, 30(4): 844-851.
[12] ALLRED A L. Electronegativity Values from Thermochemical Data[J]. Journal of Inorganic and Nuclear Chemistry, 1961, 17(3): 215-221.
[13] CORCORAN J X W P. Tankard Handle from Puddlehill, near Dunstable, Bedfordshire[J]. Proceedings of the Prehistoric Society, 1958, 23: 233-234.
[14] YAN X, XI C. Conversion of Zirconacyclopentadienes into Metalloles: Fagan–Nugent Reaction and Beyond[J]. Accounts of Chemical Research, 2015, 48(4): 935-946.
[15] ZHU C, LI S, LUO M, et al. Stabilization of Anti-aromatic and Strained Five-membered Rings with a Transition Metal[J]. Nature Chemistry, 2013, 5(8): 698-703.
[16] ALLRED A L. Electronegativity Values from Thermochemical Data[J]. Journal of Inorganic and Nuclear Chemistry, 1961, 17(3): 215-221.
[17] FAGAN P J, NUGENT W A. Synthesis of Main Group Heterocycles by Metallacycle Transfer from Zirconium[J]. Journal of the American Chemical Society, 1988, 110(7): 2310-2312.
[18] AGOU T, WASANO T, JIN P, et al. Syntheses and Structures of an “Alumole” and Its Dianion[J]. Angewandte Chemie International Edition, 2013, 52(38): 10031-10034.
[19] LEYENDECKER M, SHELDRICK W S, KREITER C G. Heptacarbonyl-μ-(2,5:2–5-η-2,4-hexadien-2,5-diyl)dimangan, synthese und molekülstruktur eines zweikernigen manganacyclopentadien-komplexes[J]. Journal of Organometallic Chemistry, 1984, 270(2): C37-C40.
[20] SIELISCH T, BEHRENS U. Übergangsmetall-heteroallen-komplexe XV. Reaktionen von keteniminen mit eisencarbonylen[J]. Journal of Organometallic Chemistry, 1987, 322(2): 203-220.
[21] PERTHUISOT C, EDELBACH B L, ZUBRIS D L, et al. C−C Activation in Biphenylene. Synthesis, Structure, and Reactivity of (C5Me5)2M2(2,2‘-biphenyl) (M = Rh, Co)[J]. Organometallics, 1997, 16(10): 2016-2023.
[22] YEH W Y, HSU S C N, PENG S M, et al. C−H versus C−C Activation of Biphenylene in Its Reactions with Iron Group Carbonyl Clusters[J]. Organometallics, 1998, 17(12): 2477-2483.
[23] DETTLAF G, WEISS E. Kristallstruktur, 1H-NMR- und Massenspektrum Von tricarbonylferracyclopentadien-tricarbonyleisen, C4H4Fe2(CO)6[J]. Journal of Organometallic Chemistry, 1976, 108(2): 213-223.
[24] KALB W C, DEMIDOWICZ Z, SPECKMAN D M, et al. Reactions At the Metal Vertex of a Monometal Metallacarborane Cluster. Chemistry of [closo-3,3-(PPh3)2-3-HSO4-3,1,2-RhC2B9H11] and [closo-3-PPh3-3,3-NO3-3,1,2-RhC2B9H11][J]. Inorganic Chemistry, 1982, 21(11): 4027-4036.
[25] WINTER A, SCHUBERT U S. Synthesis and Characterization of Metallo-supramolecular Polymers[J]. Chemical Society Reviews, 2016, 45(19): 5311-5357.
[26] NGUYEN P, GÓMEZ-ELIPE P, MANNERS I. Organometallic Polymers with Transition Metals in the Main Chain[J]. Chemical Reviews, 1999, 99(6): 1515-1548.
[27] ZHU C, XIA H. Carbolong Chemistry: A Story of Carbon Chain Ligands and Transition Metals[J]. Accounts of Chemical Research, 2018, 51(7): 1691-1700.
[28] ZHU C, LUO M, ZHU Q, et al. Planar Möbius Aromatic Pentalenes Incorporating 16 and 18 Valence Electron Osmiums[J]. Nature Communications, 2014, 5(1): 3265.
[29] ZHU C, ZHOU X, XING H, et al. σ‐Aromaticity in an Unsaturated Ring: Osmapentalene Derivatives Containing a Metallacyclopropene Unit[J]. Angewandte Chemie International Edition, 2015, 54(10): 3102-3106.
[30] ZHU C, YANG Y, LUO M, et al. Stabilizing Two Classical Antiaromatic Frameworks: Demonstration of Photoacoustic Imaging and the Photothermal Effect in Metalla‐aromatics[J]. Angewandte Chemie International Edition, 2015, 54(21): 6181-6185.
[31] ZHU C, WU J, LI S, et al. Synthesis and Characterization of a Metallacyclic Framework with Three Fused Five‐membered Rings[J]. Angewandte Chemie International Edition, 2017, 56(31): 9067-9071.
[32] ZHU C, ZHU J, ZHOU X, et al. Isolation of an Eleven‐Atom Polydentate Carbon‐Chain Chelate Obtained by Cycloaddition of a Cyclic Osmium Carbyne with an Alkyne[J]. Angewandte Chemie International Edition, 2018, 57(12): 3154-3157.
[33] ZHUO Q, ZHANG H, DING L, et al. Rhodapentalenes: Pincer Complexes with Internal Aromaticity[J]. iScience, 2019, 19: 1214-1224.
[34] ZHUO Q, ZHANG H, HUA Y, et al. Constraint of a Ruthenium-Carbon Triple Bond to a Five-membered Ring[J]. Science Advances, 2018, 4(6): eaat0336.
[35] BHARDWAJ A, KAUR J, WUEST M, et al. In Situ Click Chemistry Generation of Cyclooxygenase-2 Inhibitors[J]. Nature Communications, 2017, 8(1): 1.
[36] LUO M, LONG L, ZHANG H, et al. Reactions of Isocyanides with Metal Carbyne Complexes: Isolation and Characterization of Metallacyclopropenimine Intermediates[J]. Journal of the American Chemical Society, 2017, 139(5): 1822-1825.
[37] TANG C, ZHAO Y, WU J, et al. Releasing Antiaromaticity in Metal-Bridgehead Naphthalene[J]. Journal of the American Chemical Society, 2021, 143(38): 15587-15592.
[38] ZHU C, WU J, LI S, et al. Synthesis and Characterization of a Metallacyclic Framework with Three Fused Five‐membered Rings[J]. Angewandte Chemie International Edition, 2017, 56(31): 9067-9071.
[39] GONG L, CHEN Z, LIN Y, et al. Osmabenzenes from Osmacycles Containing an η 2 ‐Coordinated Olefin[J]. Chemistry – A European Journal, 2009, 15(25): 6258-6266.
[40] LUO M, CHEN D, LI Q, et al. Unique Properties and Emerging Applications of Carbolong Metallaaromatics[J]. Accounts of Chemical Research, 2023, 56(8): 924-937.
[41] DENG Z, WU P, CAI Y, et al. Dioxygen Activation by Internally Aromatic Metallacycle: Crystallographic Structure and Mechanistic Investigations[J]. iScience, 2020, 23(8): 101379.
[42] GUNANATHAN C, MILSTEIN D. Metal–Ligand Cooperation by Aromatization–Dearomatization: A New Paradigm in Bond Activation and “Green” Catalysis[J]. Accounts of Chemical Research, 2011, 44(8): 588-602.
[43] GONÇALVES T P, DUTTA I, HUANG K W. Aromaticity in Catalysis: Metal Ligand Cooperation via Ligand Dearomatization and Rearomatization[J]. Chemical Communications, 2021, 57(25): 3070-3082.
[44] CUI F H, HUA Y, LIN Y M, et al. Selective Difunctionalization of Unactivated Aliphatic Alkenes Enabled by a Metal–Metallaaromatic Catalytic System[J]. Journal of the American Chemical Society, 2022, 144(5): 2301-2310.
[45] GUO L, LIU Y, YAO W, et al. Iridium-Catalyzed Selective α-Alkylation of Unactivated Amides with Primary Alcohols[J]. Organic Letters, 2013, 15(5): 1144-1147.
[46] KUWAHARA T, FUKUYAMA T, RYU I. Ruthenium hydride/nitrogen tridentate ligand-catalyzed α-alkylation of acetamides with primary alcohols[J]. RSC Advances, 2013, 3(33): 13702.
[47] FU S, SHAO Z, WANG Y, et al. Manganese-Catalyzed Upgrading of Ethanol into 1-Butanol[J]. Journal of the American Chemical Society, 2017, 139(34): 11941-11948.
[48] KAR S, MILSTEIN D. Oxidation of Organic Compounds Using Water as the Oxidant with H2 Liberation Catalyzed by Molecular Metal Complexes[J]. Accounts of Chemical Research, 2022, 55(16): 2304-2315.
[49] BAUER J O, LEITUS G, BEN-DAVID Y, et al. Direct Synthesis of Symmetrical Azines from Alcohols and Hydrazine Catalyzed by a Ruthenium Pincer Complex: Effect of Hydrogen Bonding[J]. ACS Catalysis, 2016, 6(12): 8415-8419.
[50] DAS U K, BEN-DAVID Y, DISKIN-POSNER Y, et al. N-Substituted Hydrazones by Manganese-Catalyzed Coupling of Alcohols with Hydrazine: Borrowing Hydrogen and Acceptorless Dehydrogenation in One System[J]. Angewandte Chemie International Edition, 2018, 57(8): 2179-2182.
[51] DAS U K, BEN-DAVID Y, LEITUS G, et al. Dehydrogenative Cross-Coupling of Primary Alcohols To Form Cross-Esters Catalyzed by a Manganese Pincer Complex[J]. ACS Catalysis, 2019, 9(1): 479-484.
[52] ZHU C, ZHU Q, FAN J, et al. A Metal‐Bridged Tricyclic Aromatic System: Synthesis of Osmium Polycyclic Aromatic Complexes[J]. Angewandte Chemie International Edition, 2014, 53(24): 6232-6236.
[53] SUN Y, TAN F, HU R, et al. Visible-Light Photoredox-Catalyzed Hydrodecarboxylation and Deuterodecarboxylation of Fatty Acids[J]. Chinese Journal of Chemistry, 2022, 40(16): 1903-1908.
[54] RÖSSLER S L, JELIER B J, MAGNIER E, et al. Pyridinium Salts as Redox‐Active Functional Group Transfer Reagents[J]. Angewandte Chemie International Edition, 2020, 59(24): 9264-9280.
[55] KIM M, KOO Y, HONG S. N-Functionalized Pyridinium Salts: A New Chapter for Site-Selective Pyridine C–H Functionalization via Radical-Based Processes under Visible Light Irradiation[J]. Accounts of Chemical Research, 2022, 55(20): 3043-3056.
[56] LEE C, YANG W, PARR R G. Development of the Colle-Salvetti Correlation-energy Formula into a Functional of the Electron Density[J]. Physical Review B, 1988, 37(2): 785-789.
[57] HAY P J, WADT W R. Ab Initio Effective Core Potentials for Molecular Calculations. Potentials for K to Au Including the Outermost Core Orbitals[J]. The Journal of Chemical Physics, 1985, 82(1): 299-310.
[58] MIEHLICH B, SAVIN A, STOLL H, et al. Results Obtained with the Correlation Energy Density Functionals of Becke and Lee, Yang and Parr[J]. Chemical Physics Letters, 1989, 157(3): 200-206.
[59] BECKE A D. Density-functional thermochemistry. III. The Role of Exact Exchange[J]. The Journal of Chemical Physics, 1993, 98(7): 5648-5652.
[60] ANDRAE D, HÄUSSERMANN U, DOLG M, et al. Energy-Adjustedab Initio Pseudopotentials for the Second and Third Row Transition Elements[J]. Theoretica chimica acta, 1990, 77(2): 123-141.
[61] ADAMO C, JACQUEMIN D. The Calculations of Excited-State Properties with Time-Dependent Density Functional Theory[J]. Chemical Society Reviews, 2013, 42(3): 845-856.
[62] DOLOMANOV O V, BOURHIS L J, GILDEA R J, et al. OLEX2: A Complete Structure Solution, Refinement and Analysis Program[J]. Journal of Applied Crystallography, 2009, 42(2): 339-341.
[63] SHELDRICK G M. SHELXT – Integrated Space-Group and Rrystal-Structure Determination[J]. Acta Crystallographica Section A Foundations and Advances, 2015, 71(1): 3-8.
[64] SHELDRICK G M. Crystal Structure Refinement with SHELXL[J]. Acta Crystallographica Section C Structural Chemistry, 2015, 71(1): 3-8.
[65] LIN S K. Pharmaceuticals: Classes, Therapeutic Agents, Areas of Application. By McGuire, John L.[J]. Molecules, 2000, 5(12): 1524-1525.
[66] RAPPOPORT Z. The chemistry of anilines[M]. Chichester: Wiley, 2007.
[67] KRAMER S. Synthesis of α-Substituted Primary Benzylamines through Copper-Catalyzed Cross-Dehydrogenative Coupling[J]. Organic Letters, 2019, 21(1): 65-69.
[68] KAN T, FUKUYAMA T. Ns Strategies: A Highly Versatile Synthetic Method for Amines[J]. Chemical Communications, 2004(4): 353-359.
[69] SALVATORE R N, NAGLE A S, JUNG K W. Cesium Effect:  High Chemoselectivity in Direct N-Alkylation of Amines[J]. The Journal of Organic Chemistry, 2002, 67(3): 674-683.
[70] SINGH C B, KAVALA V, SAMAL A K, et al. Aqueous-Mediated N-Alkylation of Amines[J]. European Journal of Organic Chemistry, 2007, 2007(8): 1369-1377.
[71] HOMBERG L, ROLLER A, HULTZSCH K C. A Highly Active PN3 Manganese Pincer Complex Performing N-Alkylation of Amines under Mild Conditions[J]. Organic Letters, 2019, 21(9): 3142-3147.
[72] LIN S K. Pharmaceuticals: Classes, Therapeutic Agents, Areas of Application. By McGuire, John L.[J]. Molecules, 2000, 5(12): 1524-1525.
[73] XIE X, HUYNH H V. Tunable Dehydrogenative Amidation versus Amination Using a Single Ruthenium-NHC Catalyst[J]. ACS Catalysis, 2015, 5(7): 4143-4151.
[74] GUNANATHAN C, MILSTEIN D. Metal–Ligand Cooperation by Aromatization–Dearomatization: A New Paradigm in Bond Activation and “Green” Catalysis[J]. Accounts of Chemical Research, 2011, 44(8): 588-602.
[75] MONDAL S, PAL S, KHANRA S, et al. Co-Catalyzed Metal-Ligand Cooperative Approach for N-alkylation of Amines and Synthesis of Quinolines via Dehydrogenative Alcohol Functionalization[J]. European Journal of Inorganic Chemistry, 2023, 26(29): e202300263.
[76] P H, TOMASINI M, M V, et al. Access to Secondary Amines through Hydrogen Autotransfer Reaction Mediated by KOtBu[J]. European Journal of Organic Chemistry, 2024, 27(11): e202301213.
[77] CHAKRABORTY S, MONDAL R, PAL S, et al. Zn(II)-Catalyzed Selective N-Alkylation of Amines with Alcohols Using Redox Noninnocent Azo-Aromatic Ligand as Electron and Hydrogen Reservoir[J]. The Journal of Organic Chemistry, 2023, 88(2): 771-787.
[78] UPADHYAY R, MAURYA S K. Titanium-Catalyzed Selective N-Alkylation of Amines with Alcohols via Borrowing Hydrogen Methodology[J]. The Journal of Organic Chemistry, 2023, 88(24): 16960-16966.
[79] MICHAEL J P. Quinoline, Quinazoline and Acridone Alkaloids[J]. Natural Product Reports, 2002, 19(6): 742-760.
[80] JOSHI A A, VISWANATHAN C L. Docking Studies and Development of Novel 5-heteroarylamino-2,4-diamino-8-chloropyrimido-
[4,5-b]quinolines as Potential Antimalarials[J]. Bioorganic & Medicinal Chemistry Letters, 2006, 16(10): 2613-2617.
[81] AFZAL O, KUMAR S, HAIDER M R, et al. A Review on Anticancer Potential of Bioactive Heterocycle Quinoline[J]. European Journal of Medicinal Chemistry, 2015, 97: 871-910.
[82] CHEN Y L, FANG K C, SHEU J Y, et al. Synthesis and Antibacterial Evaluation of Certain Quinolone Derivatives[J]. Journal of Medicinal Chemistry, 2001, 44(14): 2374-2377.
[83] CAMPS P, GÓMEZ E, MUÑOZ-TORRERO D, et al. Synthesis, in Vitro Pharmacology, and Molecular Modeling of syn -Huprines as Acetylcholinesterase Inhibitors[J]. Journal of Medicinal Chemistry, 2001, 44(26): 4733-4736.
[84] DUBÉ D, BLOUIN M, BRIDEAU C, et al. Quinolines as Potent 5-lipoxygenase Inhibitors: Synthesis and Biological Profile of L-746,530[J]. Bioorganic & Medicinal Chemistry Letters, 1998, 8(10): 1255-1260.
[85] MURUGANANTHAM N, SIVAKUMAR R, ANBALAGAN N, et al. Synthesis, Anticonvulsant and Antihypertensive Activities of 8-Substituted Quinoline Derivatives[J]. Biological and Pharmaceutical Bulletin, 2004, 27(10): 1683-1687.
[86] ROMA G, DI BRACCIO M, GROSSI G, et al. 1,8-Naphthyridines IV. 9-Substituted N,N-dialkyl-5-(alkylamino or cycloalkylamino)
[1,2,4]triazolo
[4,3-a]
[1,8]naphthyridine-6-carboxamides, New Compounds with Anti-aggressive and Potent Anti-inflammatory Activities[J]. European Journal of Medicinal Chemistry, 2000, 35(11): 1021-1035.
[87] ENDERS D, GRONDAL C, HÜTTL M R M. Asymmetrische Organokatalytische Dominoreaktionen[J]. Angewandte Chemie, 2007, 119(10): 1590-1601.
[88] BIDDLE M M, LIN M, SCHEIDT K A. Catalytic Enantioselective Synthesis of Flavanones and Chromanones[J]. Journal of the American Chemical Society, 2007, 129(13): 3830-3831.
[89] ENDERS D, GRONDAL C, HÜTTL M R M. Asymmetric Organocatalytic Domino Reactions[J]. Angewandte Chemie International Edition, 2007, 46(10): 1570-1581.
[90] ZUCCA A, CORDESCHI D, MAIDICH L, et al. Rollover Cyclometalation with 2-(2′-Pyridyl)quinoline[J]. Inorganic Chemistry, 2013, 52(13): 7717-7731.
[91] MA Z, DING J, ZHANG B, et al. Red-Emitting Polyfluorenes Grafted with Quinoline-Based Iridium Complex: “Simple Polymeric Chain, Unexpected High Efficiency”[J]. Advanced Functional Materials, 2010, 20(1): 138-146.
[92] CRABTREE R H. Homogeneous Transition Metal Catalysis of Acceptorless Dehydrogenative Alcohol Oxidation: Applications in Hydrogen Storage and to Heterocycle Synthesis[J]. Chemical Reviews, 2017, 117(13): 9228-9246.
[93] LAVRARD H, LARINI P, POPOWYCZ F. Superacidic Cyclization of Activated Anthranilonitriles into 2-Unsubstituted-4-aminoquinolines[J]. Organic Letters, 2017, 19(16): 4203-4206.
[94] DAI H, LI C X, YU C, et al. Copper(II) Catalyzed Domino Synthesis of Quinoline Derivatives from Arylamines and Alkynes[J]. Organic Chemistry Frontiers, 2017, 4(10): 2008-2011.
[95] LI C, LI J, AN Y, et al. Palladium-Catalyzed Allylic C–H Oxidative Annulation for Assembly of Functionalized 2-Substituted Quinoline Derivatives[J]. The Journal of Organic Chemistry, 2016, 81(24): 12189-12196.
[96] EVONIUK C J, LY M, ALABUGIN I V. Coupling Cyclizations with Fragmentations for the Preparation of Heteroaromatics: Quinolines from O-alkenyl Arylisocyanides and Boronic Acids[J]. Chemical Communications, 2015, 51(64): 12831-12834.
[97] JI X, HUANG H, LI Y, et al. Palladium-Catalyzed Sequential Formation of CC Bonds: Efficient Assembly of 2-Substituted and 2,3-Disubstituted Quinolines[J]. Angewandte Chemie International Edition, 2012, 51(29): 7292-7296.
[98] HUO Z, GRIDNEV I D, YAMAMOTO Y. A Method for the Synthesis of Substituted Quinolines via Electrophilic Cyclization of 1-Azido-2-(2-propynyl)benzene[J]. The Journal of Organic Chemistry, 2010, 75(4): 1266-1270.
[99] SUDHAPRIYA N, NANDAKUMAR A, PERUMAL P T. Facile Synthesis of 2-substituted Quinolines and 3-alkynyl-2-aryl-2H-Indazole via SnCl2-mediated Reductive Cyclization[J]. RSC Advances, 2014, 4(102): 58476-58480.
[100] ELAVARASAN S, BHAUMIK A, SASIDHARAN M. An Efficient Mesoporous Cu‐Organic Nanorod for Friedländer Synthesis of Quinoline and Click Reactions[J]. ChemCatChem, 2019, 11(17): 4340-4350.
[101] GUILLENA G, RAMÓN D J, YUS M. Hydrogen Autotransfer in the N-Alkylation of Amines and Related Compounds using Alcohols and Amines as Electrophiles[J]. Chemical Reviews, 2010, 110(3): 1611-1641.
[102] IRRGANG T, KEMPE R. 3d-Metal Catalyzed N- and C-Alkylation Reactions via Borrowing Hydrogen or Hydrogen Autotransfer[J]. Chemical Reviews, 2019, 119(4): 2524-2549.
[103] HAMID M H S A, ALLEN C L, LAMB G W, et al. Ruthenium-Catalyzed N-Alkylation of Amines and Sulfonamides Using Borrowing Hydrogen Methodology[J]. Journal of the American Chemical Society, 2009, 131(5): 1766-1774.
[104] CHO C S, KIM B T, KIM T J, et al. Ruthenium-Catalysed Oxidative Cyclisation of 2-aminobenzyl Alcohol with Ketones: Modified Friedlaender Quinoline Synthesis[J]. Chemical Communications, 2001(24): 2576-2577.
[105] MIERDE H V, LEDOUX N, ALLAERT B, et al. Improved Ruthenium Catalysts for the Modified Friedlaender Quinoline Synthesis[J]. New Journal of Chemistry, 2007, 31(9): 1572-1574.
[106] VANDER MIERDE H, VAN DER VOORT P, DE VOS D, et al. A Ruthenium-Catalyzed Approach to the Friedländer Quinoline Synthesis[J]. European Journal of Organic Chemistry, 2008, 2008(9): 1625-1631.
[107] TUAN HA M, THI NGUYEN N, HUYEN TRAN N, et al. Cu-catalyzed Synthesis of Quinolines by Dehydrogenative Reaction of 2-Aminobenzyl Alcohol and Ketones: A Combined Experimental and Computational Study[J]. Chemistry – An Asian Journal, 2022, 17(22): e202200909.
[108] MARTÍNEZ R, RAMÓN D J, YUS M. RuCl2(dmso)4 Catalyzes the Solvent‐Free Indirect Friedländer Synthesis of Polysubstituted Quinolines from Alcohols[J]. European Journal of Organic Chemistry, 2007, 2007(10): 1599-1605.
[109] WEI D, DORCET V, DARCEL C, et al. Synthesis of Quinolines Through Acceptorless Dehydrogenative Coupling Catalyzed by Rhenium PN(H)P Complexes[J]. ChemSusChem, 2019, 12(13): 3078-3082.
[110] MISHRA S, PRAKASH C, TRIPATHI B P. Role of Aurone ligands in Microwave Enhanced Mn (II) and Co (II) Catalyzed Dehydrogenative Coupling Reaction: An Efficient Ligand for the Synthesis of Quinoline, Pyridine, and Pyrrole[J]. Journal of Heterocyclic Chemistry, 2024, 61(3): 407-420.
[111] PATRA K, BHATTACHERYA A, LI C, et al. Understanding the Visible-Light-Initiated Manganese-Catalyzed Synthesis of Quinolines and Naphthyridines under Ambient and Aerobic Conditions[J]. ACS Catalysis, 2022, 12(24): 15168-15180.
[112] GAUTAM D, GAHLAUT P S, PATHAK S, et al. K2S2O8 Promoted Metal-Free Direct C-alkylation of Acetophenones with Alcohols[J]. Organic & Biomolecular Chemistry, 2023, 21(48): 9519-9523.

所在学位评定分委会
化学
国内图书分类号
O62
来源库
人工提交
成果类型学位论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/765756
专题南方科技大学
理学院_化学系
推荐引用方式
GB/T 7714
张圣杰. 三并金属杂环戊二烯型碳龙化合物的合成及其在催化氢转移反应中的应用[D]. 深圳. 南方科技大学,2024.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可 操作
12132821-张圣杰-化学系.pdf(14195KB)----限制开放--请求全文
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[张圣杰]的文章
百度学术
百度学术中相似的文章
[张圣杰]的文章
必应学术
必应学术中相似的文章
[张圣杰]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。