[1] 李思田, 解习农, 王华, 等. 沉积盆地分析基础与应用[J]. DB 北京* 高等教育出版社, 2004.
[2] HU J, LIU L, FACCENDA M, et al. Modification of the Western Gondwana craton by plume– lithosphere interaction[J]. Nature Geoscience, 2018, 11(3): 203-210.
[3] 贾承造, 郑民, 张永峰, 等. 中国非常规油气资源与勘探开发前景[J]. 石油勘探与开发, 2012, 39(2): 129-136.
[4] 邹才能, 杨智, 朱如凯, 等. 中国非常规油气勘探开发与理论技术进展[J]. 地质学报, 2015, 89(6): 979-1007.
[5] 夏戡原, 周蒂, 苏达权, 等. 莺歌海盆地速度结构及其对油气勘探的意义[J]. 科学通报, 1998, 43(4): 361-367.
[6] 王海云, 谢礼立. 近断层地震动模拟现状[J]. 地球科学进展, 2008, 23(10): 1043.
[7] STEIN S, WYSESSION M. An introduction to seismology, earthquakes, and earth structure [M]. John Wiley & Sons, 2009.
[8] ANDERSON J, BODIN P, BRUNE J, et al. Strong ground motion from the Michoacan, Mexico, earthquake[J]. Science, 1986, 233(4768): 1043-1049.
[9] ZELT B, ELLIS R. Receiver-function studies in the Trans-Hudson orogen, Saskatchewan[J]. Canadian Journal of Earth Sciences, 1999, 36(4): 585-603.
[10] ZHENG T, ZHAO L, CHEN L. A detailed receiver function image of the sedimentary structure in the Bohai Bay Basin[J]. Physics of the Earth and Planetary Interiors, 2005, 152(3): 129-143.
[11] TAO K, LIU T, NING J, et al. Estimating sedimentary and crustal structure using wavefield continuation: theory, techniques and applications[J]. Geophysical Journal International, 2014, 197(1): 443-457.
[12] 何海清, 王兆云, 程玉群. 渤海湾盆地深层石油地质条件分析[J]. 沉积学报, 1999, 17(2): 273-279.
[13] 马永生, 田海芹. 华北盆地北部深层层序古地理与油气地质综合研究[M]. Di zhi chu ban she, 2006.
[14] 石建省, 李国敏, 梁杏, 等. 华北平原地下水演变机制与调控[J]. 地球学报, 2014, 35(5): 527-534.
[15] YIN A, YU X, SHEN Z K, et al. A possible seismic gap and high earthquake hazard in the North China Basin[J]. Geology, 2015, 43(1): 19-22.
[16] LIU D, NUTMAN A, COMPSTON W, et al. Remnants of≥ 3800 Ma crust in the Chinese part of the Sino-Korean craton[J]. Geology, 1992, 20(4): 339-342.
[17] ZHAO G, CAWOOD P A, LI S, et al. Amalgamation of the North China Craton: key issues and discussion[J]. Precambrian Research, 2012, 222: 55-76.
[18] 朱日祥, 徐义刚. 西太平洋板块俯冲与华北克拉通破坏[J]. 中国科学: 地球科学, 2019, 49 (9): 1346-1356.
[19] 朱日祥, 徐义刚, 朱光, 等. 华北克拉通破坏[J]. 中国科学: 地球科学, 2012, 42(8): 1135- 1159.
[20] 朱光, 陆元超, 苏楠, 等. 华北克拉通早白垩世地壳变形规律与动力学[J]. 中国科学: 地球科学, 2021, 51(9): 1420-1443.
[21] 侯贵廷, 钱祥麟, 蔡东升. 渤海湾盆地中, 新生代构造演化研究[J]. 北京大学学报: 自然科学版, 2001, 37(6): 845-851.
[22] 房立华, 吴建平, 吕作勇. 华北地区基于噪声的瑞利面波群速度层析成像[J]. 地球物理学报, 2009, 52(3): 663-671.
[23] 王椿镛, 张先康, 吴庆举, 等. 华北盆地滑脱构造的地震学证据[J]. 地球物理学报, 1994, 37: 613-620.
[24] 屈春燕. 最新 1/400 万中国活动构造空间数据库的建立[J]. 地震地质, 2008, 30(1): 298- 304.
[25] 温超, 朱坤静, 孟立朋, 等. 冀中坳陷东北部河西务断裂深浅构造特征[J]. 地震地磁观测与研究, 2019, 40(5): 29-35.
[26] 张欢, 徐康, 王慧, 等. 华北盆地北缘宝坻断裂晚更新世以来的活动性研究[J]. 大地测量与地球动力学, 2021, 41(11): 1169-1176.
[27] 钱刚. 唐山大地震[J]. 青年作家, 2008(6): 2.
[28] 刘庆华, 鲁来玉, 王凯明. 主动源和被动源面波浅勘方法综述[J]. 地球物理学进展, 2015, 30(6): 2906-2922.
[29] LANGSTON C A. The effect of planar dipping structure on source and receiver responses for constant ray parameter[J]. Bulletin of the Seismological Society of America, 1977, 67(4): 1029-1050.
[30] LANGSTON C A. Structure under Mount Rainier, Washington, inferred from teleseismic body waves[J]. Journal of Geophysical Research: Solid Earth, 1979, 84(B9): 4749-4762.
[31] 刘启元, 李顺成. 接收函数复谱比的最大或然性估计及非线性反演[J]. 地球物理学报, 1996, 39(4): 500-511.
[32] 吴庆举, 曾融生. 用宽频带远震接收函数研究青藏高原的地壳结构[J]. 地球物理学报, 1998, 41(5): 669-679.
[33] OWENS T J, CROSSON R S. Shallow structure effects on broadband teleseismic P waveforms [J]. Bulletin of the Seismological Society of America, 1988, 78(1): 96-108.
[34] 罗艳, 崇加军, 倪四道, 等. 首都圈地区莫霍面起伏及沉积层厚度[J]. 地球物理学报, 2008, 51(4): 1135-1145.
[35] YECK W L, SHEEHAN A F, SCHULTE-PELKUM V. Sequential H-𝜅 Stacking to Obtain Accurate Crustal Thicknesses beneath Sedimentary BasinsShort Note[J]. Bulletin of the Seis- mological Society of America, 2013, 103(3): 2142-2150.
[36] SHIBUTANI T, SAMBRIDGE M, KENNETT B. Genetic algorithm inversion for receiver functions with application to crust and uppermost mantle structure beneath eastern Australia[J]. Geophysical Research Letters, 1996, 23(14): 1829-1832.
[37] CLITHEROE G, GUDMUNDSSON O, KENNETT B. Sedimentary and upper crustal structure of Australia from receiver functions[J]. Australian Journal of Earth Sciences, 2000, 47(2): 209- 216.
[38] 武岩, 丁志峰, 朱露培. 利用接收函数研究渤海湾盆地沉积层结构[J]. 地震学报, 2014, 36 (5): 837-849.
[39] LOBKIS O I, WEAVER R L. On the emergence of the Green’s function in the correlations of a diffuse field[J]. The Journal of the Acoustical Society of America, 2001, 110(6): 3011-3017.
[40] WEAVER R, LOBKIS O. On the emergence of the Green’s function in the correlations of a diffuse field: pulse-echo using thermal phonons[J]. Ultrasonics, 2002, 40(1-8): 435-439.
[41] SHAPIRO N M, CAMPILLO M, STEHLY L, et al. High-resolution surface-wave tomography from ambient seismic noise[J]. Science, 2005, 307(5715): 1615-1618.
[42] WANG J, WU G, CHEN X. Frequency-Bessel transform method for effective imaging of higher-mode Rayleigh dispersion curves from ambient seismic noise data[J]. Journal of Geo- physical Research: Solid Earth, 2019, 124(4): 3708-3723.
[43] 李国良. 瑞雷波椭圆率的测定与在反演 S 波速度结构中的应用[D]. 北京: 中国石油大学(北京): 14–28, 2016.
[44] JULIA J, AMMON C, HERRMANN R, et al. Joint inversion of receiver function and surface wave dispersion observations[J]. Geophysical Journal International, 2000, 143(1): 99-112.
[45] 刘洁, 张建中. 重震联合反演框架及应用新进展[J]. 地球物理学进展, 2020, 35(2): 743-752.
[46] ÖZALAYBEY S, SAVAGE M K, SHEEHAN A F, et al. Shear-wave velocity structure in the northern Basin and Range province from the combined analysis of receiver functions and surface waves[J]. Bulletin of the Seismological Society of America, 1997, 87(1): 183-199.
[47] BAILEY I W, MILLER M S, LIU K, et al. VS and density structure beneath the Colorado Plateau constrained by gravity anomalies and joint inversions of receiver function and phase velocity data[J]. Journal of Geophysical Research: Solid Earth, 2012, 117(B2).
[48] ENDRUN B, MEIER T, BISCHOFF M, et al. Lithospheric structure in the area of Crete con- strained by receiver functions and dispersion analysis of Rayleigh phase velocities[J]. Geophys- ical Journal International, 2004, 158(2): 592-608.
[49] YOO H, HERRMANN R, CHO K, et al. Imaging the three-dimensional crust of the Korean Peninsula by joint inversion of surface-wave dispersion and teleseismic receiver functions[J]. Bulletin of the Seismological Society of America, 2007, 97(3): 1002-1011.
[50] 王未来, 蔡光耀, 来贵娟, 等. 基于接收函数和面波联合反演的银川盆地下方正断层系统三维壳幔 S 波速度结构[J]. 中国科学: 地球科学, 2023, 53(5): 988-1005.
[51] BODIN T, SAMBRIDGE M, TKALČIĆ H, et al. Transdimensional inversion of receiver func- tions and surface wave dispersion[J]. Journal of geophysical research: solid earth, 2012, 117 (B2).
[52] DREILING J, TILMANN F, YUAN X, et al. Crustal structure of Sri Lanka derived from joint inversion of surface wave dispersion and receiver functions using a Bayesian approach[J]. Jour- nal of Geophysical Research: Solid Earth, 2020, 125(5): e2019JB018688.
[53] LI G. Joint Inversion of Basin-Wide 3D Sedimentary Structure With Passive Seismic Data[J]. Beijing: China University of Petroleum (Beijing), 2019: 47-69.
[54] SHEN W, RITZWOLLER M H, SCHULTE-PELKUM V, et al. Joint inversion of surface wave dispersion and receiver functions: a Bayesian Monte-Carlo approach[J]. Geophysical Journal International, 2013, 192(2): 807-836.
[55] SHEN W, RITZWOLLER M H, SCHULTE-PELKUM V. A 3-D model of the crust and up- permost mantle beneath the Central and Western US by joint inversion of receiver functions and surface wave dispersion[J]. Journal of Geophysical Research: Solid Earth, 2013, 118(1): 262-276.
[56] LI J, SONG X, ZHU L, et al. Joint inversion of surface wave dispersions and receiver func- tions with P velocity constraints: Application to Southeastern Tibet[J]. Journal of Geophysical Research: Solid Earth, 2017, 122(9): 7291-7310.
[57] KUROSE T, YAMANAKA H. Joint inversion of receiver function and surface-wave phase ve- locity for estimation of shear-wave velocity of sedimentary layers[J]. Exploration Geophysics, 2006, 37(1): 93-101.
[58] LAWRENCE J F, WIENS D A. Combined receiver-function and surface wave phase-velocity inversion using a niching genetic algorithm: application to Patagonia[J]. Bulletin of the Seis- mological Society of America, 2004, 94(3): 977-987.
[59] VINNIK L P, REIGBER C, ALESHIN I M, et al. Receiver function tomography of the central Tien Shan[J]. Earth and Planetary Science Letters, 2004, 225(1-2): 131-146.
[60] 嘉世旭, 齐诚, 王夫运, 等. 首都圈地壳网格化三维结构[J]. 地球物理学报, 2005, 48(6): 1316-1324.
[61] 段永红, 王夫运, 张先康, 等. 华北克拉通中东部地壳三维速度结构模型 (HBCrust1. 0)[J].中国科学: 地球科学, 2016(6): 845-856.
[62] 陈宇坤. 天津市活动断层探测与地震危险性评价[M]. 科学出版社, 2013.
[63] 姜磊, 丁志峰, 高天扬, 等. 利用背景噪声和接收函数研究华北克拉通地壳结构[J]. 地球物理学报, 2021, 64(5): 1585-1596.
[64] ZHANG Y, HUANG J. Structure of the sediment and crust in the northeast North China Craton from improved sequential Hk stacking method[J]. Open Geosciences, 2019, 11(1): 682-696.
[65] 张瑞青, 况春利, 张笑晗, 等. 沉积层结构被动源探测方法及其在典型盆地的应用[J]. 地球与行星物理论评, 2023, 54(1): 12-26.
[66] 张明辉, 武振波, 马立雪, 等. 短周期密集台阵被动源地震探测技术研究进展[J]. 地球物理学进展, 2020, 35(2): 495-511.
[67] AMMON C J. The isolation of receiver effects from teleseismic P waveforms[J]. Bulletin- Seismological Society of America, 1991, 81(6): 2504-2510.
[68] LIGORRÍA J P, AMMON C J. Iterative deconvolution and receiver-function estimation[J]. Bulletin of the seismological Society of America, 1999, 89(5): 1395-1400.
[69] 吴庆举, 田小波, 张乃铃, 等. 计算台站接收函数的最大熵谱反褶积方法[J]. 地震学报, 2003, 25(4): 382-389.
[70] AKI K. Space and time spectra of stationary stochastic waves, with special reference to mi- crotremors[J]. Bulletin of the Earthquake Research Institute, 1957, 35: 415-456.
[71] SHAPIRO N M, CAMPILLO M. Emergence of broadband Rayleigh waves from correlations of the ambient seismic noise[J]. Geophysical Research Letters, 2004, 31(7).
[72] BENSEN G, RITZWOLLER M, BARMIN M, et al. Processing seismic ambient noise data to obtain reliable broad-band surface wave dispersion measurements[J]. Geophysical journal international, 2007, 169(3): 1239-1260.
[73] XI C, XIA J, MI B, et al. Modified frequency–Bessel transform method for dispersion imaging of Rayleigh waves from ambient seismic noise[J]. Geophysical Journal International, 2021, 225 (2): 1271-1280.
[74] FORBRIGER T. Inversion of shallow-seismic wavefields: I. Wavefield transformation[J]. Geo- physical Journal International, 2003, 153(3): 719-734.
[75] ZHOU J, CHEN X. Removal of crossed artifacts from multimodal dispersion curves with mod- ified frequency–Bessel method[J]. Bulletin of the Seismological Society of America, 2022, 112 (1): 143-152.
[76] 张功恒. 背景噪声多分量多阶频散曲线的提取与应用——以青藏高原东北缘及其邻区为例. 深圳: 南方科技大学[D]. 2023.
[77] PAN L, CHEN X, WANG J, et al. Sensitivity analysis of dispersion curves of Rayleigh waves with fundamental and higher modes[J]. Geophysical Journal International, 2019, 216(2): 1276- 1303.
[78] HEAD J D, ZERNER M C. A Broyden—Fletcher—Goldfarb—Shanno optimization procedure for molecular geometries[J]. Chemical physics letters, 1985, 122(3): 264-270.
[79] JULIÀ J, AMMON C J, HERRMANN R B. Lithospheric structure of the Arabian Shield from the joint inversion of receiver functions and surface-wave group velocities[J]. Tectonophysics, 2003, 371(1-4): 1-21.
[80] GREEN P J. Reversible jump Markov chain Monte Carlo computation and Bayesian model determination[J]. Biometrika, 1995, 82(4): 711-732.
[81] KIM S, TKALČIĆ H, RHIE J. Seismic constraints on magma evolution beneath Mount Baekdu (Changbai) volcano from transdimensional Bayesian inversion of ambient noise data[J]. Journal of Geophysical Research: Solid Earth, 2017, 122(7): 5452-5473.
[82] SAMBRIDGE M. Geophysical inversion with a neighbourhood algorithm—I. Searching a pa- rameter space[J]. Geophysical journal international, 1999, 138(2): 479-494.
[83] ZHAO L S, SEN M K, STOFFA P, et al. Application of very fast simulated annealing to the determination of the crustal structure beneath Tibet[J]. Geophysical Journal International, 1996, 125(2): 355-370.
[84] KENNETT B L, ENGDAHL E, BULAND R. Constraints on seismic velocities in the Earth from traveltimes[J]. Geophysical Journal International, 1995, 122(1): 108-124.
[85] 周月玲, 彭远黔, 陈建强, 等. 河西务断裂活动性的综合探测研究[J]. 震灾防御技术, 2018, 13(3): 610-618.
修改评论