中文版 | English
题名

A Critical Study of Well-Dispersed Chemically Functionalized Graphene in Solvents and Polymeric Matrices: Strategies, Fabrication, Characterization and a Mathematical Understanding

姓名
姓名拼音
LI YUAN ZHI
学号
11758003
学位类型
博士
学位专业
化学
导师
陈忠仁
导师单位
化学系
外机构导师
Stefan A. F. Bon
外机构导师单位
华威大学
论文答辩日期
2024-06-07
论文提交日期
2024-06-20
学位授予单位
华威大学
学位授予地点
英国
摘要
As the body of literature on the use of GO material continues to grow, it is crucial to have a rational design for functionalization. However, previous research on the organic chemistry of GO and efforts to stabilize GO suspension contains significant loopholes. Thus, this thesis aims to address the shortfalls by investigating the functionalization of GO and the unrepeatability of stable well-dispersed GO suspension.
In this thesis, Chapter I provides an overview of the field of GO research, including the chemical structure and properties of GO, approaches to the functionalization, and the mechanical properties of nanocomposites incorporating GO. Chapter II focuses on the synthesis of GO and various characterization techniques.
Chapter III discusses developing a “grafting-through” approach based on RAFT polymerization. The behavior of polymerization was not affected by the pre-modified GO (AMA-GO), and DMSO was found to be beneficial as a solvent for achieving a higher grafting amount, as shown by the kinetic study. The grafting amount, and efficiency, and dispersibility of PMMA-GO brushes improved with the polymerization time. The PMMA-GO-24h brushes with 54 wt.% grafted polymer and 0.022 chains/nm2 can be well dispersed in various nonpolar solvents, forming stable suspensions. Moreover, this author has built an approximate expression of the relation between the grafting density and the Mn of grafted polymer to explain the colloidal stability of functionalized GO brushes.
Chapter IV introduces a highly effective approach to isolating PMMA-GOs from a free PMMA solution by controllably reducing the solvent quality. The approach was theoretically rationalized using the model in Chapter III. The chemical reduction was utilized to obtain PMMA-rGOs, and the dispersibility of our PMMA-rGOs in solvents was presented. PMMA–rGOs/PMMA composite systems at loadings from 0.39 wt.% to 3.12 wt.% were prepared using solvent blending. The stronger interactions improved thermal stability and increased Tg at high loadings. A maximum increase of 44% in the modulus of the composite was found at 1.69 vol% loading. Young’s modulus agrees well with the Halpin−Tsai theoretical model.
Noncovalent stabilization of the suspension of GO in THF was realized in the presence of pyrene-capped telechelic polypentenamer in chapter V. Di-Py polypentenamer was synthesis via ROMP of cyclopentene followed by further modification. The kinetic study of ROMP in the presence of CTAs guaranteed the full incorporation of CTAs and the complete formation of telechelic polymers. A GO/1,4-PB composite was prepared via solvent blending, but the agglomerates were observed.
Chapter VI concludes the thesis, and some experimental details can be found in Chapter VII.
关键词
语种
英语
培养类别
联合培养
入学年份
2018
学位授予年份
2024-06
参考文献列表

(1) Srinivasan, C. Graphene - Mother of All Graphitic Materials. Curr. Sci. 2007, 92(10), 1338–1339.(2) Bobrov, K.; Mayne, A. J.; Dujardin, G. Atomic-Scale Imaging of Insulating Diamond through Resonant Electron Injection. Nature 2001, 413 (6856), 616–619.(3) Novoselov, K. S.; Geim, A. K.; Morozov, S. V.; Jiang, D.; Zhang, Y.; Dubonos, S. V.; Grigorieva, I. V.; Firsov, A. A. Electric Field Effect in Atomically Thin Carbon Films. Science (1979) 2004, 306 (5696), 666–669. (4) XIII. On the Atomic Weight of Graphite. Philos Trans R Soc Lond 1859, 149, 249–259. (5) Erickson, K.; Erni, R.; Lee, Z.; Alem, N.; Gannett, W.; Zettl, A. Determination of the Local Chemical Structure of Graphene Oxide and Reduced Graphene Oxide. Advanced Materials 2010, 22 (40), 4467–4472. (6) Brisebois, P. P.; Siaj, M. Harvesting Graphene Oxide – Years 1859 to 2019: A Review of Its Structure, Synthesis, Properties and Exfoliation. J Mater Chem C Mater 2020, 8 (5), 1517–1547.(7) Mouhat, F.; Coudert, F.-X.; Bocquet, M.-L. Structure and Chemistry of Graphene Oxide in Liquid Water from First Principles. Nat Commun 2020, 11 (1), 1566. (8) Du, W.; Wu, H.; Chen, H.; Xu, G.; Li, C. Graphene Oxide in Aqueous and Nonaqueous Media: Dispersion Behaviour and Solution Chemistry. Carbon N Y2020, 158, 568–579. (9) Tu, Y.; Zhao, L.; Sun, J.; Wu, Y.; Zhou, X.; Chen, L.; Lei, X.; Fang, H.; Shi, G. Water￾Mediated Spontaneously Dynamic Oxygen Migration on Graphene Oxide with Structural Adaptivity for Biomolecule Adsorption*. Chinese Physics Letters 2020, 37 (6), 066803.(10) Rawal, A.; Che Man, S. H.; Agarwal, V.; Yao, Y.; Thickett, S. C.; Zetterlund, P. B. Chapter VIII ReferencesStructural Complexity of Graphene Oxide: The Kirigami Model. ACS Appl Mater Interfaces 2021, 13 (15), 18255–18263. (11) He, H.; Riedl, T.; Lerf, A.; Klinowski, J. Solid-State NMR Studies of the Structure of Graphite Oxide. J Phys Chem 1996, 100 (51), 19954–19958. (12) He, H.; Klinowski, J.; Forster, M.; Lerf, A. A New Structural Model for Graphite Oxide. Chem Phys Lett 1998, 287 (1–2), 53–56.(13) Cai, W.; Piner, R. D.; Stadermann, F. J.; Park, S.; Shaibat, M. A.; Ishii, Y.; Yang, D.; Velamakanni, A.; An, S. J.; Stoller, M.; An, J.; Chen, D.; Ruoff, R. S. Synthesis and Solid-State NMR Structural Characterization of 13C-Labeled Graphite Oxide. Science (1979) 2008, 321 (5897), 1815–1817. (14) Doi, M. Soft Matter Physics; Oxford University Press, 2013. (15) Verwey, E. J. W. Theory of the Stability of Lyophobic Colloids. J Phys Colloid Chem1947, 51 (3), 631–636. (16) López, G. V.; Lizarraga, J. A. Charged Particle in a Flat Box with Static Electromagnetic Field and Landau’s Levels. Journal of Modern Physics 2020, 11(10), 1731–1742. (17) Israelachvili J. N. Intermolecular and Surface Forces; Elsevier, 2011. (18) Ogden, A. L.; Lewis, J. A. Effect of Nonadsorbed Polymer on the Stability of Weakly Flocculated Suspensions. Langmuir 1996, 12 (14), 3413–3424. (19) Liang, W.; Tadros, Th. F.; Luckham, P. F. Flocculation of Sterically Stabilized Polystyrene Latex Particles by Adsorbing and Nonadsorbing Poly(Acrylic Acid). Langmuir 1994, 10 (2), 441–446. (20) Semenov, A. N. Theory of Colloid Stabilization in Semidilute Polymer Solutions. Macromolecules 2008, 41 (6), 2243–2249. (21) Mao, Y.; Cates, M. E.; Lekkerkerker, H. N. W. Depletion Force in Colloidal Systems. Physica A: Statistical Mechanics and its Applications 1995, 222 (1–4), 10–24. (22) Walz, J. Y.; Sharma, A. Effect of Long Range Interactions on the Depletion Force between Colloidal Particles. J Colloid Interface Sci 1994, 168 (2), 485–496. 187Chapter VIII References(23) Crocker, J. C.; Matteo, J. A.; Dinsmore, A. D.; Yodh, A. G. Entropic Attraction and Repulsion in Binary Colloids Probed with a Line Optical Tweezer. Phys Rev Lett1999, 82 (21), 4352–4355. (24) Kim, S.; Hyun, K.; Moon, J. Y.; Clasen, C.; Ahn, K. H. Depletion Stabilization in Nanoparticle-Polymer Suspensions: Multi-Length-Scale Analysis of Microstructure. Langmuir 2015, 31 (6), 1892–1900. (25) Guo, S.; Garaj, S.; Bianco, A.; Ménard-Moyon, C. Controlling Covalent Chemistry on Graphene Oxide. Nature Reviews Physics 2022, 4 (4), 247–262. (26) Dreyer, D. R.; Park, S.; Bielawski, C. W.; Ruoff, R. S. The Chemistry of Graphene Oxide. Chem. Soc. Rev. 2010, 39 (1), 228–240. (27) Rourke, J. P.; Wilson, N. R. Letter to the Editor: A Defence of the Two-Component Model of Graphene Oxide. Carbon N Y 2016, 96, 339–341. (28) Rourke, J. P.; Pandey, P. A.; Moore, J. J.; Bates, M.; Kinloch, I. A.; Young, R. J.; Wilson, N. R. The Real Graphene Oxide Revealed: Stripping the Oxidative Debris from the Graphene-like Sheets. Angewandte Chemie International Edition 2011, 50 (14), 3173–3177. (29) Naumov, A.; Grote, F.; Overgaard, M.; Roth, A.; Halbig, C. E.; Nørgaard, K.; Guldi, D. M.; Eigler, S. Graphene Oxide: A One- versus Two-Component Material. J Am Chem Soc 2016, 138 (36), 11445–11448.(30) Stankovich, S.; Piner, R. D.; Nguyen, S. T.; Ruoff, R. S. Synthesis and Exfoliation of Isocyanate-Treated Graphene Oxide Nanoplatelets. Carbon N Y 2006, 44 (15), 3342–3347.(31) Zhao, H.; Wu, L.; Zhou, Z.; Zhang, L.; Chen, H. Improving the Antifouling Property of Polysulfone Ultrafiltration Membrane by Incorporation of Isocyanate-Treated Graphene Oxide. Physical Chemistry Chemical Physics 2013, 15 (23), 9084–9092. (32) Raspoet, G.; Nguyen, M. T.; Mcgarraghy, M.; Hegarty, A. F. The Alcoholysis Reaction of Isocyanates Giving Urethanes: Evidence for a Multimolecular Mechanism. 1998.188Chapter VIII References(33) Lovering, E. G.; Laidler, K. J. Thermochemical Studies of Some Alcohol–Isocynate Reactions. Can J Chem 1962, 40 (1), 26–30.(34) KING, C. Some Reactions of P-Toluenesulfonyl Isocyanate. J Org Chem 1960, 25(3), 352–356. (35) Abbas, S. S.; Rees, G. J.; Kelly, N. L.; Dancer, C. E. J.; Hanna, J. V.; McNally, T. Facile Silane Functionalization of Graphene Oxide. Nanoscale 2018, 10 (34), 16231–16242. (36) Zisman, W. A. Surface Chemistry of Plastics Reinforced by Strong Fibers. Product R&D 1969, 8 (2), 98–111. (37) Lee, L.-H. Wettability and Conformation of Reactive Polysiloxanes. J Colloid Interface Sci 1968, 27 (4), 751–760.(38) Sagiv, J. Organized Monolayers by Adsorption. 1. Formation and Structure of Oleophobic Mixed Monolayers on Solid Surfaces. J Am Chem Soc 1980, 102 (1), 92–98. (39) Netzer, L.; Sagiv, J. A New Approach to Construction of Artificial Monolayer Assemblies. J Am Chem Soc 1983, 105 (3), 674–676. (40) Silberzan, P.; Leger, L.; Ausserre, D.; Benattar, J. J. Silanation of Silica Surfaces. A New Method of Constructing Pure or Mixed Monolayers. Langmuir 1991, 7 (8), 1647–1651. (41) Tripp, C. P.; Hair, M. L. An Infrared Study of the Reaction of Octadecyltrichlorosilane with Silica. Langmuir 1992, 8 (4), 1120–1126. (42) Guo, S.; Nishina, Y.; Bianco, A.; Ménard-Moyon, C. A Flexible Method for Covalent Double Functionalization of Graphene Oxide. Angewandte Chemie International Edition 2020, 59 (4), 1542–1547. (43) McGrail, B. T.; Rodier, B. J.; Pentzer, E. Rapid Functionalization of Graphene Oxide in Water. Chemistry of Materials 2014, 26 (19), 5806–5811. (44) Vacchi, I. A.; Raya, J.; Bianco, A.; Ménard-Moyon, C. Controlled Derivatization of Hydroxyl Groups of Graphene Oxide in Mild Conditions. 2d Mater 2018, 5 (3), 189Chapter VIII References035037. (45) Vacchi, I. A.; Spinato, C.; Raya, J.; Bianco, A.; Ménard-Moyon, C. Chemical Reactivity of Graphene Oxide towards Amines Elucidated by Solid-State NMR. Nanoscale 2016, 8 (28), 13714–13721. (46) Eigler, S.; Hu, Y.; Ishii, Y.; Hirsch, A. Controlled Functionalization of Graphene Oxide with Sodium Azide. Nanoscale 2013, 5 (24), 12136. (47) Devaraj, N. K.; Finn, M. G. Introduction: Click Chemistry. Chem Rev 2021, 121(12), 6697–6698. (48) Birkofer, L.; Wegner, P. TRIMETHYLSILYL AZIDE. Organic Syntheses 1970, 50, 107. (49) Meng, G.; Guo, T.; Ma, T.; Zhang, J.; Shen, Y.; Sharpless, K. B.; Dong, J. Modular Click Chemistry Libraries for Functional Screens Using a Diazotizing Reagent. Nature 2019, 574 (7776), 86–89. (50) Shioiri, T.; Ninomiya, K.; Yamada, S. Diphenylphosphoryl Azide. New Convenient Reagent for a Modified Curtius Reaction and for Peptide Synthesis. J Am Chem Soc 1972, 94 (17), 6203–6205.(51) Chan, J. W.; Hoyle, C. E.; Lowe, A. B.; Bowman, M. Nucleophile-Initiated Thiol￾Michael Reactions: Effect of Organocatalyst, Thiol, and Ene. Macromolecules2010, 43 (15), 6381–6388.(52) Hoyle, C. E.; Bowman, C. N. Thiol-Ene Click Chemistry. Angewandte Chemie -International Edition. John Wiley & Sons, Ltd February 22, 2010, pp 1540–1573. (53) Thomas, H. R.; Marsden, A. J.; Walker, M.; Wilson, N. R.; Rourke, J. P. Sulfur￾Functionalized Graphene Oxide by Epoxide Ring-Opening. Angewandte Chemie International Edition 2014, 53 (29), 7613–7618. (54) Piñeiro-García, A.; Vega-Díaz, S. M.; Tristán, F.; Meneses-Rodríguez, D.; Labrada￾Delgado, G. J.; Semetey, V. Photochemical Functionalization of Graphene Oxide by Thiol–Ene Click Chemistry. Ind Eng Chem Res 2020, 59 (29), 13033–13041. (55) Piñeiro-García, A.; Vega-Díaz, S. M.; Tristán, F.; Meneses-Rodríguez, D.; Labrada￾Delgado, G. J.; Semetey, V. New Insights in the Chemical Functionalization of 190Chapter VIII ReferencesGraphene Oxide by Thiol-Ene Michael Addition Reaction. FlatChem 2021, 26, 100230. (56) Wang, Y.; Basdogan, Y.; Zhang, T.; Lankone, R. S.; Wallace, A. N.; Fairbrother, D. H.; Keith, J. A.; Gilbertson, L. M. Unveiling the Synergistic Role of Oxygen Functional Groups in the Graphene-Mediated Oxidation of Glutathione. ACS Appl Mater Interfaces 2020, 12 (41), 45753–45762. (57) Hirano, A.; Kameda, T.; Sakuraba, S.; Wada, M.; Tanaka, T.; Kataura, H. Disulfide Bond Formation of Thiols by Using Carbon Nanotubes. Nanoscale 2017, 9 (17), 5389–5393.(58) Magano, J. Large-Scale Amidations in Process Chemistry: Practical Considerations for Reagent Selection and Reaction Execution. Org Process Res Dev 2022, 26 (6), 1562–1689. (59) Shen, J.; Shi, M.; Yan, B.; Ma, H.; Li, N.; Hu, Y.; Ye, M. Covalent Attaching Protein to Graphene Oxide via Diimide-Activated Amidation. Colloids Surf B Biointerfaces 2010, 81 (2), 434–438. (60) Li, Y.; Gabriele, E.; Samain, F.; Favalli, N.; Sladojevich, F.; Scheuermann, J.; Neri, D. Optimized Reaction Conditions for Amide Bond Formation in DNA-Encoded Combinatorial Libraries. ACS Comb Sci 2016, 18 (8), 438–443. (61) Liu, J.; Liu, Z.; Barrow, C. J.; Yang, W. Molecularly Engineered Graphene Surfaces for Sensing Applications: A Review. Anal Chim Acta 2015, 859, 1–19. (62) Nimita Jebaranjitham, J.; Mageshwari, C.; Saravanan, R.; Mu, N. Fabrication of Amine Functionalized Graphene Oxide – AgNPs Nanocomposite with Improved Dispersibility for Reduction of 4-Nitrophenol. Compos B Eng 2019, 171, 302–309. (63) Madison, S. A.; Carnali, J. O. PH Optimization of Amidation via Carbodiimides. Ind Eng Chem Res 2013, 52 (38), 13547–13555. (64) Brisebois, P. P.; Kuss, C.; Schougaard, S. B.; Izquierdo, R.; Siaj, M. New Insights into the Diels–Alder Reaction of Graphene Oxide. Chemistry – A European Journal 2016, 22 (17), 5849–5852. 191Chapter VIII References(65) Peng, K.; Wang, K.; Hsu, K.; Liu, Y. Building up Polymer Architectures on Graphene Oxide Sheet Surfaces through Sequential Atom Transfer Radical Polymerization. J Polym Sci A Polym Chem 2014, 52 (11), 1588–1596. (66) Matyjaszewski, K.; Xia, J. Atom Transfer Radical Polymerization. Chem Rev 2001, 101 (9), 2921–2990. (67) Lee, S. H.; Dreyer, D. R.; An, J.; Velamakanni, A.; Piner, R. D.; Park, S.; Zhu, Y.; Kim, S. O.; Bielawski, C. W.; Ruoff, R. S. Polymer Brushes via Controlled, Surface￾Initiated Atom Transfer Radical Polymerization (ATRP) from Graphene Oxide. Macromol Rapid Commun 2010, 31 (3), 281–288. (68) Liu, Z.; Zhu, S.; Li, Y.; Li, Y.; Shi, P.; Huang, Z.; Huang, X. Preparation of Graphene/Poly(2-Hydroxyethyl Acrylate) Nanohybrid Materials via an Ambient Temperature “Grafting-from” Strategy. Polym Chem 2015, 6 (2), 311–321. (69) Chen, X.; Yuan, L.; Yang, P.; Hu, J.; Yang, D. Covalent Polymeric Modification of Graphene Nanosheets via Surface-initiated Single-electron-transfer Living Radical Polymerization. J Polym Sci A Polym Chem 2011, 49 (23), 4977–4986. (70) Wang, H.; Lu, X.; Lu, X.; Wang, Z.; Ma, J.; Wang, P. Improved Surface Hydrophilicity and Antifouling Property of Polysulfone Ultrafiltration Membrane with Poly(Ethylene Glycol) Methyl Ether Methacrylate Grafted Graphene Oxide Nanofillers. Appl Surf Sci 2017, 425, 603–613. (71) Ohno, K.; Zhao, C.; Nishina, Y. Polymer-Brush-Decorated Graphene Oxide: Precision Synthesis and Liquid-Crystal Formation. Langmuir 2019, 35 (33), 10900–10909. (72) Matyjaszewski, K.; Jakubowski, W.; Min, K.; Tang, W.; Huang, J.; Braunecker, W. A.; Tsarevsky, N. V. Diminishing Catalyst Concentration in Atom Transfer Radical Polymerization with Reducing Agents. Proceedings of the National Academy of Sciences 2006, 103 (42), 15309–15314. (73) Percec, V.; Guliashvili, T.; Ladislaw, J. S.; Wistrand, A.; Stjerndahl, A.; Sienkowska, M. J.; Monteiro, M. J.; Sahoo, S. Ultrafast Synthesis of Ultrahigh Molar Mass 192Chapter VIII ReferencesPolymers by Metal-Catalyzed Living Radical Polymerization of Acrylates, Methacrylates, and Vinyl Chloride Mediated by SET at 25 °C. J Am Chem Soc2006, 128 (43), 14156–14165. (74) Jakubowski, W.; Matyjaszewski, K. Activator Generated by Electron Transfer for Atom Transfer Radical Polymerization. Macromolecules 2005, 38 (10), 4139–4146.(75) Matyjaszewski, K.; Tsarevsky, N. V.; Braunecker, W. A.; Dong, H.; Huang, J.; Jakubowski, W.; Kwak, Y.; Nicolay, R.; Tang, W.; Yoon, J. A. Role of Cu 0in Controlled/“Living” Radical Polymerization. Macromolecules 2007, 40 (22), 7795–7806. (76) Soeriyadi, A. H.; Boyer, C.; Nyström, F.; Zetterlund, P. B.; Whittaker, M. R. High￾Order Multiblock Copolymers via Iterative Cu(0)-Mediated Radical Polymerizations (SET-LRP): Toward Biological Precision. J Am Chem Soc 2011, 133 (29), 11128–11131. (77) Sha, J.; Gao, Y.; Wu, T.; Chen, X.; Cordie, T.; Zhao, H.; Xie, L.; Ma, Y.; Turng, L. Biocompatible Graphene Nanosheets Grafted with Poly(2-Hydroxyethyl Methacrylate) Brushes via Surface-Initiated ARGET ATRP. RSC Adv 2016, 6 (42), 35641–35647. (78) Moad, G.; Rizzardo, E.; Thang, S. H. Living Radical Polymerization by the RAFT Process – A Third Update. Aust J Chem 2012, 65 (8), 985. (79) Layek, R. K.; Kuila, A.; Chatterjee, D. P.; Nandi, A. K. Amphiphilic Poly(N-Vinyl Pyrrolidone) Grafted Graphene by Reversible Addition and Fragmentation Polymerization and the Reinforcement of Poly(Vinyl Acetate) Films. J Mater Chem A Mater 2013, 1 (36), 10863. (80) Li, Y.; Li, X.; Dong, C.; Qi, J.; Han, X. A Graphene Oxide-Based Molecularly Imprinted Polymer Platform for Detecting Endocrine Disrupting Chemicals. Carbon N Y 2010, 48 (12), 3427–3433. (81) Beckert, F.; Friedrich, C.; Thomann, R.; Mülhaupt, R. Sulfur-Functionalized 193Chapter VIII ReferencesGraphenes as Macro-Chain-Transfer and RAFT Agents for Producing Graphene Polymer Brushes and Polystyrene Nanocomposites. Macromolecules 2012, 45(17), 7083–7090. (82) Gu, R.; Xu, W. Z.; Charpentier, P. A. Synthesis of Polydopamine-coated Graphene–Polymer Nanocomposites via RAFT Polymerization. J Polym Sci A Polym Chem 2013, 51 (18), 3941–3949.(83) Cui, L.; Liu, J.; Wang, R.; Liu, Z.; Yang, W. A Facile “Graft from” Method to Prepare Molecular-level Dispersed Graphene–Polymer Composites. J Polym Sci A Polym Chem 2012, 50 (21), 4423–4432. (84) Jiang, K.; Ye, C.; Zhang, P.; Wang, X.; Zhao, Y. One-Pot Controlled Synthesis of Homopolymers and Diblock Copolymers Grafted Graphene Oxide Using Couplable RAFT Agents. Macromolecules 2012, 45 (3), 1346–1355. (85) Song, Y.; Lü, J.; Liu, B.; Lü, C. Temperature Responsive Polymer Brushes Grafted from Graphene Oxide: An Efficient Fluorescent Sensing Platform for 2,4,6-Trinitrophenol. J Mater Chem C Mater 2016, 4 (29), 7083–7092. (86) Zhao, W.; Hou, Z.; Yao, Z.; Zhuang, X.; Zhang, F.; Feng, X. Hypercrosslinked Porous Polymer Nanosheets: 2D RAFT Agent Directed Emulsion Polymerization for Multifunctional Applications. Polym Chem 2015, 6 (40), 7171–7178. (87) Mardani, H.; Roghani-Mamaqani, H.; Khezri, K.; Salami-Kalajahi, M. Polystyrene￾Attached Graphene Oxide with Different Graft Densities via Reversible Addition￾Fragmentation Chain Transfer Polymerization and Grafting through Approach. Applied Physics A 2020, 126 (4), 251. (88) Kan, L.; Xu, Z.; Gao, C. General Avenue to Individually Dispersed Graphene Oxide-Based Two-Dimensional Molecular Brushes by Free Radical Polymerization. Macromolecules 2011, 44 (3), 444–452. (89) Georgakilas, V.; Otyepka, M.; Bourlinos, A. B.; Chandra, V.; Kim, N.; Kemp, K. C.; Hobza, P.; Zboril, R.; Kim, K. S. Functionalization of Graphene: Covalent and Non￾Covalent Approaches, Derivatives and Applications. Chem Rev 2012, 112 (11), 194Chapter VIII References6156–6214. (90) Liang, J.; Huang, Y.; Zhang, L.; Wang, Y.; Ma, Y.; Guo, T.; Chen, Y. Molecular-Level Dispersion of Graphene into Poly(Vinyl Alcohol) and Effective Reinforcement of Their Nanocomposites. Adv Funct Mater 2009, 19 (14), 2297–2302. (91) Layek, R. K.; Kundu, A.; Nandi, A. K. High-Performance Nanocomposites of Sodium Carboxymethylcellulose and Graphene Oxide. Macromol Mater Eng2013, 298 (11), 1166–1175.(92) Wang, X.; Bai, H.; Yao, Z.; Liu, A.; Shi, G. Electrically Conductive and Mechanically Strong Biomimetic Chitosan/Reduced Graphene Oxide Composite Films. J Mater Chem 2010, 20 (41), 9032. (93) Dougherty, D. A.; Stauffer, D. A. Acetylcholine Binding by a Synthetic Receptor: Implications for Biological Recognition. Science (1979) 1990, 250 (4987), 1558–1560. (94) Parviz, D.; Das, S.; Ahmed, H. S. T.; Irin, F.; Bhattacharia, S.; Green, M. J. Dispersions of Non-Covalently Functionalized Graphene with Minimal Stabilizer. ACS Nano 2012, 6 (10), 8857–8867. (95) Parviz, D.; Yu, Z.; Hedden, R. C.; Green, M. J. Designer Stabilizer for Preparation of Pristine Graphene/Polysiloxane Films and Networks. Nanoscale 2014, 6 (20), 11722–11731. (96) Liu, J.; Yang, W.; Tao, L.; Li, D.; Boyer, C.; Davis, T. P. Thermosensitive Graphene Nanocomposites Formed Using Pyrene-terminal Polymers Made by RAFT Polymerization. J Polym Sci A Polym Chem 2010, 48 (2), 425–433. (97) Li, H.; Han, L.; Cooper-White, J. J.; Kim, I. A General and Efficient Method for Decorating Graphene Sheets with Metal Nanoparticles Based on the Non￾Covalently Functionalized Graphene Sheets with Hyperbranched Polymers. Nanoscale 2012, 4 (4), 1355. (98) Dikin, D. A.; Stankovich, S.; Zimney, E. J.; Piner, R. D.; Dommett, G. H. B.; Evmenenko, G.; Nguyen, S. T.; Ruoff, R. S. Preparation and Characterization of 195Chapter VIII ReferencesGraphene Oxide Paper. Nature 2007, 448 (7152), 457–460. (99) Chen, H.; Müller, M. B.; Gilmore, K. J.; Wallace, G. G.; Li, D. Mechanically Strong, Electrically Conductive, and Biocompatible Graphene Paper. Advanced Materials 2008, 20 (18), 3557–3561. (100) Novoselov, K. S.; Fal′ko, V. I.; Colombo, L.; Gellert, P. R.; Schwab, M. G.; Kim, K. A Roadmap for Graphene. Nature 2012, 490 (7419), 192–200. (101) Rao, C. N. R.; Sood, A. K.; Subrahmanyam, K. S.; Govindaraj, A. Graphene: The New Two-Dimensional Nanomaterial. Angewandte Chemie International Edition2009, 48 (42), 7752–7777.(102) Stankovich, S.; Dikin, D. A.; Dommett, G. H. B.; Kohlhaas, K. M.; Zimney, E. J.; Stach, E. A.; Piner, R. D.; Nguyen, S. T.; Ruoff, R. S. Graphene-Based Composite Materials. Nature 2006, 442 (7100), 282–286. (103) Potts, J. R.; Dreyer, D. R.; Bielawski, C. W.; Ruoff, R. S. Graphene-Based Polymer Nanocomposites. Polymer (Guildf) 2011, 52 (1), 5–25. (104) Compton, O. C.; Nguyen, S. T. Graphene Oxide, Highly Reduced Graphene Oxide, and Graphene: Versatile Building Blocks for Carbon-Based Materials. Small 2010, 6 (6), 711–723. (105) Pei, S.; Cheng, H.-M. The Reduction of Graphene Oxide. Carbon N Y 2012, 50 (9), 3210–3228. (106) Yu, W.; Sisi, L.; Haiyan, Y.; Jie, L. Progress in the Functional Modification of Graphene/Graphene Oxide: A Review. RSC Advances. Royal Society of Chemistry April 17, 2020, pp 15328–15345. (107) Suk, J. W.; Piner, R. D.; An, J.; Ruoff, R. S. Mechanical Properties of Monolayer Graphene Oxide. ACS Nano 2010, 4 (11), 6557–6564. (108) Gong, L.; Kinloch, I. A.; Young, R. J.; Riaz, I.; Jalil, R.; Novoselov, K. S. Interfacial Stress Transfer in a Graphene Monolayer Nanocomposite. Advanced Materials2010, 22 (24), 2694–2697. (109) Young, R. J.; Lovell, P. A. Introduction to Polymers; CRC press, 2011.196Chapter VIII References(110) Al-Saleh, M. H.; Sundararaj, U. Review of the Mechanical Properties of Carbon Nanofiber/Polymer Composites. Compos Part A Appl Sci Manuf 2011, 42 (12), 2126–2142. (111) Tsai, S. W.; Hahn, H. T. Introduction to Composite Materials, Volume 1: Deformation of Unidirectional and Laminated Composites. ; Technical Report AFML-TR-78-201, 1978; Vol. 1.(112) Kim, H.; Abdala, A. A.; Macosko, C. W. Graphene/Polymer Nanocomposites. Macromolecules 2010, 43 (16), 6515–6530. (113) Coleman, J. N.; Khan, U.; Blau, W. J.; Gun’ko, Y. K. Small but Strong: A Review of the Mechanical Properties of Carbon Nanotube–Polymer Composites. Carbon N Y 2006, 44 (9), 1624–1652. (114) Young, R. J.; Kinloch, I. A.; Gong, L.; Novoselov, K. S. The Mechanics of Graphene Nanocomposites: A Review. Compos Sci Technol 2012, 72 (12), 1459–1476. (115) Gong, L.; Young, R. J.; Kinloch, I. A.; Riaz, I.; Jalil, R.; Novoselov, K. S. Optimizing the Reinforcement of Polymer-Based Nanocomposites by Graphene. ACS Nano2012, 6 (3), 2086–2095. (116) Yousefi, N.; Gudarzi, M. M.; Zheng, Q.; Lin, X.; Shen, X.; Jia, J.; Sharif, F.; Kim, J.-K. Highly Aligned, Ultralarge-Size Reduced Graphene Oxide/Polyurethane Nanocomposites: Mechanical Properties and Moisture Permeability. Compos Part A Appl Sci Manuf 2013, 49, 42–50. (117) Gómez-Navarro, C.; Burghard, M.; Kern, K. Elastic Properties of Chemically Derived Single Graphene Sheets. Nano Lett 2008, 8 (7), 2045–2049. (118) Moazzami Gudarzi, M.; Sharif, F. Enhancement of Dispersion and Bonding of Graphene-Polymer through Wet Transfer of Functionalized Graphene Oxide. Express Polym Lett 2012, 6 (12), 1017–1031. (119) Jalili, R.; Aboutalebi, S. H.; Esrafilzadeh, D.; Konstantinov, K.; Razal, J. M.; Moulton, S. E.; Wallace, G. G. Formation and Processability of Liquid Crystalline Dispersions of Graphene Oxide. Mater. Horiz. 2014, 1 (1), 87–91. 197Chapter VIII References(120) Aboutalebi, S. H.; Gudarzi, M. M.; Zheng, Q. Bin; Kim, J. Spontaneous Formation of Liquid Crystals in Ultralarge Graphene Oxide Dispersions. Adv Funct Mater2011, 21 (15), 2978–2988. (121) Yousefi, N.; Gudarzi, M. M.; Zheng, Q.; Aboutalebi, S. H.; Sharif, F.; Kim, J.-K. Self￾Alignment and High Electrical Conductivity of Ultralarge Graphene Oxide–Polyurethane Nanocomposites. J Mater Chem 2012, 22 (25), 12709. (122) Rafiee, M. A.; Rafiee, J.; Wang, Z.; Song, H.; Yu, Z.-Z.; Koratkar, N. Enhanced Mechanical Properties of Nanocomposites at Low Graphene Content. ACS Nano2009, 3 (12), 3884–3890. (123) Ramanathan, T.; Abdala, A. A.; Stankovich, S.; Dikin, D. A.; Herrera-Alonso, M.; Piner, R. D.; Adamson, D. H.; Schniepp, H. C.; Chen, X.; Ruoff, R. S.; Nguyen, S. T.; Aksay, I. A.; Prud’Homme, R. K.; Brinson, L. C. Functionalized Graphene Sheets for Polymer Nanocomposites. Nat Nanotechnol 2008, 3 (6), 327–331. (124) Vallés, C.; Papageorgiou, D. G.; Lin, F.; Li, Z.; Spencer, B. F.; Young, R. J.; Kinloch, I. A. PMMA-Grafted Graphene Nanoplatelets to Reinforce the Mechanical and Thermal Properties of PMMA Composites. Carbon N Y 2020, 157, 750–760. (125) Xu, Y.; Hong, W.; Bai, H.; Li, C.; Shi, G. Strong and Ductile Poly(Vinyl Alcohol)/Graphene Oxide Composite Films with a Layered Structure. Carbon N Y 2009, 47 (15), 3538–3543. (126) Luo, H.; Dong, J.; Yao, F.; Yang, Z.; Li, W.; Wang, J.; Xu, X.; Hu, J.; Wan, Y. Layer￾by-Layer Assembled Bacterial Cellulose/Graphene Oxide Hydrogels with Extremely Enhanced Mechanical Properties. Nanomicro Lett 2018, 10 (3), 42. (127) Cheng, Q.; Wu, M.; Li, M.; Jiang, L.; Tang, Z. Ultratough Artificial Nacre Based on Conjugated Cross-linked Graphene Oxide. Angewandte Chemie International Edition 2013, 52 (13), 3750–3755. (128) Zhang, M.; Huang, L.; Chen, J.; Li, C.; Shi, G. Ultratough, Ultrastrong, and Highly Conductive Graphene Films with Arbitrary Sizes. Advanced Materials 2014, 26(45), 7588–7592. 198Chapter VIII References(129) Zou, J.; Kim, F. Diffusion Driven Layer-by-Layer Assembly of Graphene Oxide Nanosheets into Porous Three-Dimensional Macrostructures. Nat Commun2014, 5 (1), 5254. (130) Xu, Z.; Gao, C. Graphene Chiral Liquid Crystals and Macroscopic Assembled Fibres. Nat Commun 2011, 2 (1), 571.(131) Wang, L.; Boyce, M. C. Bioinspired Structural Material Exhibiting Post-Yield Lateral Expansion and Volumetric Energy Dissipation During Tension. Adv Funct Mater 2010, 20 (18), 3025–3030. (132) Kasprzak, A.; Zuchowska, A.; Poplawska, M. Functionalization of Graphene: Does the Organic Chemistry Matter? Beilstein Journal of Organic Chemistry2018, 14, 2018–2026. (133) Hummers, W. S.; Offeman, R. E. Preparation of Graphitic Oxide. J Am Chem Soc1958, 80 (6), 1339–1339.(134) Dimiev, A. M.; Tour, J. M. Mechanism of Graphene Oxide Formation. ACS Nano2014, 8 (3), 3060–3068.(135) Pan, S.; Aksay, I. A. Factors Controlling the Size of Graphene Oxide Sheets Produced via the Graphite Oxide Route. ACS Nano 2011, 5 (5), 4073–4083. (136) Zhao, J.; Pei, S.; Ren, W.; Gao, L.; Cheng, H.-M. Efficient Preparation of Large￾Area Graphene Oxide Sheets for Transparent Conductive Films. ACS Nano 2010, 4 (9), 5245–5252. (137) Zhang, J.; Liu, Q.; Ruan, Y.; Lin, S.; Wang, K.; Lu, H. Monolithic Crystalline Swelling of Graphite Oxide: A Bridge to Ultralarge Graphene Oxide with High Scalability. Chemistry of Materials 2018, 30 (6), 1888–1897. (138) Qin, J.; Zhang, Y.; Lowe, S. E.; Jiang, L.; Ling, H. Y.; Shi, G.; Liu, P.; Zhang, S.; Zhong, Y. L.; Zhao, H. Room Temperature Production of Graphene Oxide with Thermally Labile Oxygen Functional Groups for Improved Lithium Ion Battery Fabrication and Performance. J Mater Chem A Mater 2019, 7 (16), 9646–9655. (139) Chen, H.; Du, W.; Liu, J.; Qu, L.; Li, C. Efficient Room-Temperature Production of 199Chapter VIII ReferencesHigh-Quality Graphene by Introducing Removable Oxygen Functional Groups to the Precursor. Chem Sci 2019, 10 (4), 1244–1253. (140) Eigler, S.; Enzelberger-Heim, M.; Grimm, S.; Hofmann, P.; Kroener, W.; Geworski, A.; Dotzer, C.; Röckert, M.; Xiao, J.; Papp, C.; Lytken, O.; Steinrück, H.; Müller, P.; Hirsch, A. Wet Chemical Synthesis of Graphene. Advanced Materials 2013, 25(26), 3583–3587. (141) Kim, F.; Luo, J.; Cruz-Silva, R.; Cote, L. J.; Sohn, K.; Huang, J. Self-Propagating Domino-like Reactions in Oxidized Graphite. Adv Funct Mater 2010, 20 (17), 2867–2873. (142) Thomas, H. R.; Day, S. P.; Woodruff, W. E.; Vallés, C.; Young, R. J.; Kinloch, I. A.; Morley, G. W.; Hanna, J. V.; Wilson, N. R.; Rourke, J. P. Deoxygenation of Graphene Oxide: Reduction or Cleaning? Chemistry of Materials 2013, 25 (18), 3580–3588. (143) Marcano, D. C.; Kosynkin, D. V.; Berlin, J. M.; Sinitskii, A.; Sun, Z.; Slesarev, A.; Alemany, L. B.; Lu, W.; Tour, J. M. Improved Synthesis of Graphene Oxide. ACS Nano 2010, 4 (8), 4806–4814.(144) Yeh, C.-N.; Raidongia, K.; Shao, J.; Yang, Q.-H.; Huang, J. On the Origin of the Stability of Graphene Oxide Membranes in Water. Nat Chem 2015, 7 (2), 166–170. (145) Dimiev, A.; Kosynkin, D. V.; Alemany, L. B.; Chaguine, P.; Tour, J. M. Pristine Graphite Oxide. J Am Chem Soc 2012, 134 (5), 2815–2822. (146) Eigler, S.; Dotzer, C.; Hof, F.; Bauer, W.; Hirsch, A. Sulfur Species in Graphene Oxide. Chemistry – A European Journal 2013, 19 (29), 9490–9496. (147) XIII. On the Atomic Weight of Graphite. Philos Trans R Soc Lond 1859, 149, 249–259. (148) Croft, R. C. Lamellar Compounds of Graphite. Quarterly Reviews, Chemical Society 1960, 14 (1), 1. (149) Higginbotham, A. L.; Lomeda, J. R.; Morgan, A. B.; Tour, J. M. Graphite Oxide 200Chapter VIII ReferencesFlame-Retardant Polymer Nanocomposites. ACS Appl Mater Interfaces 2009, 1(10), 2256–2261. (150) Dimiev, A. M.; Alemany, L. B.; Tour, J. M. Graphene Oxide. Origin of Acidity, Its Instability in Water, and a New Dynamic Structural Model. ACS Nano 2013, 7 (1), 576–588. (151) Whitby, R. L. D.; Gun’ko, V. M.; Korobeinyk, A.; Busquets, R.; Cundy, A. B.; László, K.; Skubiszewska-Zięba, J.; Leboda, R.; Tombácz, E.; Toth, I. Y.; Kovacs, K.; Mikhalovsky, S. V. Driving Forces of Conformational Changes in Single-Layer Graphene Oxide. ACS Nano 2012, 6 (5), 3967–3973. (152) Konkena, B.; Vasudevan, S. Understanding Aqueous Dispersibility of Graphene Oxide and Reduced Graphene Oxide through p K a Measurements. J Phys Chem Lett 2012, 3 (7), 867–872. (153) Cooper, E. M.; Vasudevan, D. Hydroxynaphthoic Acid Isomer Sorption onto Goethite. J Colloid Interface Sci 2009, 333 (1), 85–96. (154) Taniguchi, T.; Kurihara, S.; Tateishi, H.; Hatakeyama, K.; Koinuma, M.; Yokoi, H.; Hara, M.; Ishikawa, H.; Matsumoto, Y. PH-Driven, Reversible Epoxy Ring Opening/Closing in Graphene Oxide. Carbon N Y 2015, 84, 560–566. (155) Chen, C.; Kong, W.; Duan, H.-M.; Zhang, J. Theoretical Simulation of Reduction Mechanism of Graphene Oxide in Sodium Hydroxide Solution. Physical Chemistry Chemical Physics 2014, 16 (25), 12858. (156) Chua, C. K.; Pumera, M. Light and Atmosphere Affect the Quasi-equilibrium States of Graphite Oxide and Graphene Oxide Powders. Small 2015, 11 (11), 1266–1272. (157) Huang, H.; Park, H.; Huang, J. Self-Crosslinking of Graphene Oxide Sheets by Dehydration. Chem 2022, 8 (9), 2432–2441. (158) Kumar, P. V.; Bardhan, N. M.; Tongay, S.; Wu, J.; Belcher, A. M.; Grossman, J. C. Scalable Enhancement of Graphene Oxide Properties by Thermally Driven Phase Transformation. Nat Chem 2014, 6 (2), 151–158. 201Chapter VIII References(159) Eigler, S.; Dotzer, C.; Hirsch, A.; Enzelberger, M.; Müller, P. Formation and Decomposition of CO2 Intercalated Graphene Oxide. Chemistry of Materials2012, 24 (7), 1276–1282. (160) Deng, Y.; Li, Y.; Dai, J.; Lang, M.; Huang, X. Functionalization of Graphene Oxide towards Thermo-sensitive Nanocomposites via Moderate in Situ SET-LRP. J Polym Sci A Polym Chem 2011, 49 (22), 4747–4755. (161) New Techniques in Solid-State NMR; Klinowski, J., Ed.; Springer Berlin Heidelberg: Berlin, Heidelberg, 2005; Vol. 246.(162) Gao, W.; Alemany, L. B.; Ci, L.; Ajayan, P. M. New Insights into the Structure and Reduction of Graphite Oxide. Nat Chem 2009, 1 (5), 403–408. (163) Vieira, M. A.; Gonçalves, G. R.; Cipriano, D. F.; Schettino, M. A.; Silva Filho, E. A.; Cunha, A. G.; Emmerich, F. G.; Freitas, J. C. C. Synthesis of Graphite Oxide from Milled Graphite Studied by Solid-State 13C Nuclear Magnetic Resonance. Carbon N Y 2016, 98, 496–503.(164) Li, Y.; Chen, H.; Voo, L. Y.; Ji, J.; Zhang, G.; Zhang, G.; Zhang, F.; Fan, X. Synthesis of Partially Hydrogenated Graphene and Brominated Graphene. J Mater Chem2012, 22 (30), 15021.(165) Shard, A. G. Practical Guides for X-Ray Photoelectron Spectroscopy: Quantitative XPS. Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films 2020, 38 (4). (166) Kovtun, A.; Jones, D.; Dell’Elce, S.; Treossi, E.; Liscio, A.; Palermo, V. Accurate Chemical Analysis of Oxygenated Graphene-Based Materials Using X-Ray Photoelectron Spectroscopy. Carbon N Y 2019, 143, 268–275. (167) Greczynski, G.; Hultman, L. Compromising Science by Ignorant Instrument Calibration—Need to Revisit Half a Century of Published XPS Data. Angewandte Chemie International Edition 2020, 59 (13), 5002–5006. (168) Gengenbach, T. R.; Major, G. H.; Linford, M. R.; Easton, C. D. Practical Guides for X-Ray Photoelectron Spectroscopy (XPS): Interpreting the Carbon 1s Spectrum. 202Chapter VIII ReferencesJournal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films 2021, 39 (1). (169) Szabó, T.; Berkesi, O.; Dékány, I. DRIFT Study of Deuterium-Exchanged Graphite Oxide. Carbon N Y 2005, 43 (15), 3186–3189. (170) Ederer, J.; Janoš, P.; Ecorchard, P.; Tolasz, J.; Štengl, V.; Beneš, H.; Perchacz, M.; Pop-Georgievski, O. Determination of Amino Groups on Functionalized Graphene Oxide for Polyurethane Nanomaterials: XPS Quantitation vs. Functional Speciation. RSC Adv 2017, 7 (21), 12464–12473. (171) Zhang, P.; Gong, J.-L.; Zeng, G.-M.; Deng, C.-H.; Yang, H.-C.; Liu, H.-Y.; Huan, S.-Y. Cross-Linking to Prepare Composite Graphene Oxide-Framework Membranes with High-Flux for Dyes and Heavy Metal Ions Removal. Chemical Engineering Journal 2017, 322, 657–666. (172) Srinivas, G.; Burress, J. W.; Ford, J.; Yildirim, T. Porous Graphene Oxide Frameworks: Synthesis and Gas Sorption Properties. J Mater Chem 2011, 21 (30), 11323. (173) Liu, T.; Tian, L.; Graham, N.; Yang, B.; Yu, W.; Sun, K. Regulating the Interlayer Spacing of Graphene Oxide Membranes and Enhancing Their Stability by Use of PACl. Environ Sci Technol 2019, 53 (20), 11949–11959. (174) Li, Z. Q.; Lu, C. J.; Xia, Z. P.; Zhou, Y.; Luo, Z. X-Ray Diffraction Patterns of Graphite and Turbostratic Carbon. Carbon N Y 2007, 45 (8), 1686–1695. (175) Ruz, P.; Banerjee, S.; Pandey, M.; Sudarsan, V.; Sastry, P. U.; Kshirsagar, R. J. Structural Evolution of Turbostratic Carbon: Implications in H2 Storage. Solid State Sci 2016, 62, 105–111. (176) Cabria, I.; López, M. J.; Alonso, J. A. Simulation of the Hydrogen Storage in Nanoporous Carbons with Different Pore Shapes. Int J Hydrogen Energy 2011, 36 (17), 10748–10759. (177) Dresselhaus, M. S.; Jorio, A.; Saito, R. Characterizing Graphene, Graphite, and Carbon Nanotubes by Raman Spectroscopy. Annu Rev Condens Matter Phys203Chapter VIII References2010, 1 (1), 89–108. (178) Avinash, M. B.; Subrahmanyam, K. S.; Sundarayya, Y.; Govindaraju, T. Covalent Modification and Exfoliation of Graphene Oxide Using Ferrocene. Nanoscale2010, 2 (9), 1762. (179) Min, C.; Shen, Z.; Shen, J.; Zhang, Y.; Fang, H.; Yuan, G.; Du, L.; Zhu, S.; Lei, T.; Yuan, X. Focused Plasmonic Trapping of Metallic Particles. Nat Commun 2013, 4(1), 2891. (180) Roddaro, S.; Pingue, P.; Piazza, V.; Pellegrini, V.; Beltram, F. The Optical Visibility of Graphene: Interference Colors of Ultrathin Graphite on SiO 2. Nano Lett 2007, 7 (9), 2707–2710. (181) Wang, M.; Huang, M.; Luo, D.; Li, Y.; Choe, M.; Seong, W. K.; Kim, M.; Jin, S.; Wang, M.; Chatterjee, S.; Kwon, Y.; Lee, Z.; Ruoff, R. S. Single-Crystal, Large-Area, Fold-Free Monolayer Graphene. Nature 2021, 596 (7873), 519–524. (182) Glockler, G. Carbon–Oxygen Bond Energies and Bond Distances. J Phys Chem1958, 62 (9), 1049–1054. (183) Wilson, N. R.; Pandey, P. A.; Beanland, R.; Rourke, J. P.; Lupo, U.; Rowlands, G.; Römer, R. A. On the Structure and Topography of Free-Standing Chemically Modified Graphene. New J Phys 2010, 12 (12), 125010. (184) Mkhoyan, K. A.; Contryman, A. W.; Silcox, J.; Stewart, D. A.; Eda, G.; Mattevi, C.; Miller, S.; Chhowalla, M. Atomic and Electronic Structure of Graphene-Oxide. Nano Lett 2009, 9 (3), 1058–1063. (185) Dufrêne, Y. F. Atomic Force Microscopy, a Powerful Tool in Microbiology. J Bacteriol 2002, 184 (19), 5205–5213. (186) Nair, R. R.; Blake, P.; Grigorenko, A. N.; Novoselov, K. S.; Booth, T. J.; Stauber, T.; Peres, N. M. R.; Geim, A. K. Fine Structure Constant Defines Visual Transparency of Graphene. Science (1979) 2008, 320 (5881), 1308–1308. (187) Llopis, J.; McCaffery, J. M.; Miyawaki, A.; Farquhar, M. G.; Tsien, R. Y. Measurement of Cytosolic, Mitochondrial, and Golgi PH in Single Living Cells 204Chapter VIII Referenceswith Green Fluorescent Proteins. Proceedings of the National Academy of Sciences 1998, 95 (12), 6803–6808. (188) Kim, J.; Cote, L. J.; Kim, F.; Huang, J. Visualizing Graphene Based Sheets by Fluorescence Quenching Microscopy. J Am Chem Soc 2010, 132 (1), 260–267. (189) Geim, A. K.; Novoselov, K. S. The Rise of Graphene. Nat Mater 2007, 6 (3), 183–191. (190) Kuilla, T.; Bhadra, S.; Yao, D.; Kim, N. H.; Bose, S.; Lee, J. H. Recent Advances in Graphene Based Polymer Composites. Prog Polym Sci 2010, 35 (11), 1350–1375. (191) Chua, C. K.; Pumera, M. Chemical Reduction of Graphene Oxide: A Synthetic Chemistry Viewpoint. Chem. Soc. Rev. 2014, 43 (1), 291–312. (192) Yu, X.; Cheng, H.; Zhang, M.; Zhao, Y.; Qu, L.; Shi, G. Graphene-Based Smart Materials. Nat Rev Mater 2017, 2 (9), 17046. (193) Tuček, J.; Kemp, K. C.; Kim, K. S.; Zbořil, R. Iron-Oxide-Supported Nanocarbon in Lithium-Ion Batteries, Medical, Catalytic, and Environmental Applications. ACS Nano 2014, 8 (8), 7571–7612. (194) Mao, H. Y.; Laurent, S.; Chen, W.; Akhavan, O.; Imani, M.; Ashkarran, A. A.; Mahmoudi, M. Graphene: Promises, Facts, Opportunities, and Challenges in Nanomedicine. Chem Rev 2013, 113 (5), 3407–3424. (195) Koltonow, A. R.; Luo, C.; Luo, J.; Huang, J. Graphene Oxide Sheets in Solvents: To Crumple or Not to Crumple? ACS Omega 2017, 2 (11), 8005–8009. (196) Paredes, J. I.; Villar-Rodil, S.; Martínez-Alonso, A.; Tascón, J. M. D. Graphene Oxide Dispersions in Organic Solvents. Langmuir 2008, 24 (19), 10560–10564. (197) Konios, D.; Stylianakis, M. M.; Stratakis, E.; Kymakis, E. Dispersion Behaviour of Graphene Oxide and Reduced Graphene Oxide. J Colloid Interface Sci 2014, 430, 108–112. (198) Li, D.; Müller, M. B.; Gilje, S.; Kaner, R. B.; Wallace, G. G. Processable Aqueous Dispersions of Graphene Nanosheets. Nat Nanotechnol 2008, 3 (2), 101–105. (199) Xu, L. Q.; Yang, W. J.; Neoh, K.-G.; Kang, E.-T.; Fu, G. D. Dopamine-Induced 205Chapter VIII ReferencesReduction and Functionalization of Graphene Oxide Nanosheets. Macromolecules 2010, 43 (20), 8336–8339. (200) Pan, Y.; Bao, H.; Sahoo, N. G.; Wu, T.; Li, L. Water-Soluble Poly( N -isopropylacrylamide)–Graphene Sheets Synthesized via Click Chemistry for Drug Delivery. Adv Funct Mater 2011, 21 (14), 2754–2763. (201) Lin, Y.; Jin, J.; Song, M. Preparation and Characterisation of Covalent Polymer Functionalized Graphene Oxide. J. Mater. Chem. 2011, 21 (10), 3455–3461. (202) Layek, R. K.; Kuila, A.; Chatterjee, D. P.; Nandi, A. K. Amphiphilic Poly(N-Vinyl Pyrrolidone) Grafted Graphene by Reversible Addition and Fragmentation Polymerization and the Reinforcement of Poly(Vinyl Acetate) Films. J Mater Chem A Mater 2013, 1 (36), 10863. (203) Sarkar, S. D.; Uddin, Md. M.; Roy, C. K.; Hossen, Md. J.; Sujan, M. I.; Azam, Md. S. Mechanically Tough and Highly Stretchable Poly(Acrylic Acid) Hydrogel Cross￾Linked by 2D Graphene Oxide. RSC Adv 2020, 10 (18), 10949–10958. (204) Edmondson, S.; Osborne, V. L.; Huck, W. T. S. Polymer Brushes via Surface￾Initiated Polymerizations. Chem Soc Rev 2004, 33 (1), 14. (205) Zhang, C.; Zhang, G.; Luo, S.; Wang, C.; Li, H. Base-Catalyzed Selective Esterification of Alcohols with Unactivated Esters. Org Biomol Chem 2018, 16(44), 8467–8471.(206) He, L.; Read, E. S.; Armes, S. P.; Adams, D. J. Direct Synthesis of Controlled￾Structure Primary Amine-Based Methacrylic Polymers by Living Radical Polymerization. Macromolecules 2007, 40 (13), 4429–4438. (207) Kim, F.; Luo, J.; Cruz-Silva, R.; Cote, L. J.; Sohn, K.; Huang, J. Self-Propagating Domino-like Reactions in Oxidized Graphite. Adv Funct Mater 2010, 20 (17), 2867–2873.(208) "Nikolaev, A. V. " "Nazarov, A. S. " "Lisitsa, V. V. ". Preparation of Graphite Oxide. Russ. J. Inorg. Chem. 1974, 19 (12), 3396–3397.(209) Wang, C.; Yan, Q.; Liu, H.-B.; Zhou, X.-H.; Xiao, S.-J. Different EDC/NHS Activation 206Chapter VIII ReferencesMechanisms between PAA and PMAA Brushes and the Following Amidation Reactions. Langmuir 2011, 27 (19), 12058–12068. (210) Zhang, C.; Luo, N.; Hirt, D. E. Surface Grafting Polyethylene Glycol (PEG) onto Poly(Ethylene- Co -Acrylic Acid) Films. Langmuir 2006, 22 (16), 6851–6857. (211) Dahoumane, S. A.; Nguyen, M. N.; Thorel, A.; Boudou, J.-P.; Chehimi, M. M.; Mangeney, C. Protein-Functionalized Hairy Diamond Nanoparticles. Langmuir2009, 25 (17), 9633–9638. (212) Sam, S.; Touahir, L.; Salvador Andresa, J.; Allongue, P.; Chazalviel, J.-N.; Gouget￾Laemmel, A. C.; Henry de Villeneuve, C.; Moraillon, A.; Ozanam, F.; Gabouze, N.; Djebbar, S. Semiquantitative Study of the EDC/NHS Activation of Acid Terminal Groups at Modified Porous Silicon Surfaces. Langmuir 2010, 26 (2), 809–814. (213) Jansen, R. J. J.; van Bekkum, H. XPS of Nitrogen-Containing Functional Groups on Activated Carbon. Carbon N Y 1995, 33 (8), 1021–1027. (214) Bu, J.; Peng, Z.; Zhao, F.; McLuckey, S. A. Enhanced Reactivity in Nucleophilic Acyl Substitution Ion/Ion Reactions Using Triazole-Ester Reagents. J Am Soc Mass Spectrom 2017, 28 (7), 1254–1261. (215) Stevie, F. A.; Donley, C. L. Introduction to X-Ray Photoelectron Spectroscopy. Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films 2020, 38 (6). (216) Ji, Y.; Yang, X.; Ji, Z.; Zhu, L.; Ma, N.; Chen, D.; Jia, X.; Tang, J.; Cao, Y. DFT￾Calculated IR Spectrum Amide I, II, and III Band Contributions of N -Methylacetamide Fine Components. ACS Omega 2020, 5 (15), 8572–8578. (217) Ren, J.; Ashida, R.; Kawase, M.; Sakai, K.; Okuyama, N. Development of a Novel Mild Depolymerization Method of Coal by Combining Oxygen Oxidation and Formic Acid Reduction Reactions. ACS Omega 2023, 8 (2), 2531–2537. (218) Montes-Navajas, P.; Asenjo, N. G.; Santamaría, R.; Menéndez, R.; Corma, A.; García, H. Surface Area Measurement of Graphene Oxide in Aqueous Solutions. Langmuir 2013, 29 (44), 13443–13448. 207Chapter VIII References(219) Gody, G.; Maschmeyer, T.; Zetterlund, P. B.; Perrier, S. Exploitation of the Degenerative Transfer Mechanism in RAFT Polymerization for Synthesis of Polymer of High Livingness at Full Monomer Conversion. Macromolecules 2014, 47 (2), 639–649.(220) Bradford, K. G. E.; Petit, L. M.; Whitfield, R.; Anastasaki, A.; Barner-Kowollik, C.; Konkolewicz, D. Ubiquitous Nature of Rate Retardation in Reversible Addition–Fragmentation Chain Transfer Polymerization. J Am Chem Soc 2021, 143 (42), 17769–17777. (221) Olaj, O. F.; Schnöll-Bitai, I. Solvent Effects on the Rate Constant of Chain Propagation in Free Radical Polymerization. Monatshefte für Chemie / Chemical Monthly 1999, 130 (6), 731–740. (222) Zammit, M. D.; Davis, T. P.; Willett, G. D.; O’Driscoll, Kenneth. F. The Effect of Solvent on the Homo-Propagation Rate Coefficients of Styrene and Methyl Methacrylate. J Polym Sci A Polym Chem 1997, 35 (11), 2311–2321. (223) Gupta, S. N.; Nandi, U. S. Role of Dimethyl Sulfoxide as a Solvent for Vinyl Polymerization. J Polym Sci A1 1970, 8 (6), 1493–1501. (224) Voylov, D.; Saito, T.; Lokitz, B.; Uhrig, D.; Wang, Y.; Agapov, A.; Holt, A.; Bocharova, V.; Kisliuk, A.; Sokolov, A. P. Graphene Oxide as a Radical Initiator: Free Radical and Controlled Radical Polymerization of Sodium 4-Vinylbenzenesulfonate with Graphene Oxide. ACS Macro Lett 2016, 5 (2), 199–202. (225) Schilling, M. R. Effects of Sample Size and Packing in the Thermogravimetric Analysis of Calcium Montmorillonite STx-1. Clays Clay Miner 1990, 38 (5), 556–558. (226) You, W.; Yu, W.; Zhou, C. Cluster Size Distribution of Spherical Nanoparticles in Polymer Nanocomposites: Rheological Quantification and Evidence of Phase Separation. Soft Matter 2017, 13 (22), 4088–4098. (227) N’Diaye, M.; Pascaretti-Grizon, F.; Massin, P.; Baslé, M. F.; Chappard, D. Water Absorption of Poly(Methyl Methacrylate) Measured by Vertical Interference 208Chapter VIII ReferencesMicroscopy. Langmuir 2012, 28 (31), 11609–11614. (228) Giermanska, J.; Ben Jabrallah, S.; Delorme, N.; Vignaud, G.; Chapel, J.-P. Direct Experimental Evidences of the Density Variation of Ultrathin Polymer Films with Thickness. Polymer (Guildf) 2021, 228, 123934. (229) Lübbe, J.; Temmen, M.; Rahe, P.; Reichling, M. Noise in NC-AFM Measurements with Significant Tip–Sample Interaction. Beilstein Journal of Nanotechnology2016, 7, 1885–1904.(230) Lin, S.; Yang, Q.; Liu, W.; Wang, X.; Li, J.; Zhao, H. Naked-Eye Observations of Visible Spectra Using a Transmission-Grating-Based Spectrometer. Eur J Phys2021, 42 (5), 055302. (231) de Gennes, P. G. Polymers at an Interface; a Simplified View. Adv Colloid Interface Sci 1987, 27 (3–4), 189–209. (232) Huang, H.; Ruckenstein, E. Steric and Bridging Interactions between Two Plates Induced by Grafted Polyelectrolytes. Langmuir 2006, 22 (7), 3174–3179. (233) Milner, S. T.; Witten, T. A.; Cates, M. E. Theory of the Grafted Polymer Brush. Macromolecules 1988, 21 (8), 2610–2619. (234) Alexander, S. Adsorption of Chain Molecules with a Polar Head a Scaling Description. Journal de Physique 1977, 38 (8), 983–987. (235) Milner, S. T. Polymer Brushes. Science (1979) 1991, 251 (4996), 905–914. (236) Milner, S. T. Compressing Polymer “Brushes”: A Quantitative Comparison of Theory and Experiment. Europhysics Letters (EPL) 1988, 7 (8), 695–699. (237) Hernandez, Y.; Nicolosi, V.; Lotya, M.; Blighe, F. M.; Sun, Z.; De, S.; McGovern, I. T.; Holland, B.; Byrne, M.; Gun’Ko, Y. K.; Boland, J. J.; Niraj, P.; Duesberg, G.; Krishnamurthy, S.; Goodhue, R.; Hutchison, J.; Scardaci, V.; Ferrari, A. C.; Coleman, J. N. High-Yield Production of Graphene by Liquid-Phase Exfoliation of Graphite. Nat Nanotechnol 2008, 3 (9), 563–568. (238) Schick, M. J.; Doty, P.; Zimm, B. H. Thermodynamic Properties of Concentrated Polystyrene Solutions 1. J Am Chem Soc 1950, 72 (1), 530–534. 209Chapter VIII References210(239) Ruckenstein, E.; Li, B. Steric Interactions between Two Grafted Polymer Brushes. J Chem Phys 1997, 107 (3), 932–942. (240) Rubinstein, M.; Colby, R. H. Title Page. In Polymer Physics; Oxford University PressOxford, 2003; pp i–iv. (241) Kumar, S.; Rama, P.; Panwar, A. S. Scaling Relations for the Interactions between Curved Graphene Sheets in Water. Physical Chemistry Chemical Physics 2017, 19 (44), 30217–30226. (242) Flory, P. J. Principles of Polymer Chemistry; Cornell University Press: Ithaca, N. Y., 1981. (243) Fernández-Merino, M. J.; Guardia, L.; Paredes, J. I.; Villar-Rodil, S.; Solís￾Fernández, P.; Martínez-Alonso, A.; Tascón, J. M. D. Vitamin C Is an Ideal Substitute for Hydrazine in the Reduction of Graphene Oxide Suspensions. The Journal of Physical Chemistry C 2010, 114 (14), 6426–6432. (244) Gong, L.; Kinloch, I. A.; Young, R. J.; Riaz, I.; Jalil, R.; Novoselov, K. S. Interfacial Stress Transfer in a Graphene Monolayer Nanocomposite. Advanced Materials2010, 22 (24), 2694–2697. (245) Hong, R. Y.; Fu, H. P.; Zhang, Y. J.; Liu, L.; Wang, J.; Li, H. Z.; Zheng, Y. Surface￾modified Silica Nanoparticles for Reinforcement of PMMA. J Appl Polym Sci2007, 105 (4), 2176–2184.(246) Qu, M.; Meth, J. S.; Blackman, G. S.; Cohen, G. M.; Sharp, K. G.; Van Vliet, K. J. Tailoring and Probing Particle–Polymer Interactions in PMMA/Silica Nanocomposites. Soft Matter 2011, 7 (18), 8401. (247) Gong, L.-X.; Pei, Y.-B.; Han, Q.-Y.; Zhao, L.; Wu, L.-B.; Jiang, J.-X.; Tang, L.-C. Polymer Grafted Reduced Graphene Oxide Sheets for Improving Stress Transfer in Polymer Composites. Compos Sci Technol 2016, 134, 144–152. (248) Layek, R. K.; Samanta, S.; Chatterjee, D. P.; Nandi, A. K. Physical and Mechanical Properties of Poly(Methyl Methacrylate) -Functionalized Graphene/Poly(Vinylidine Fluoride) Nanocomposites: Piezoelectric β Chapter VIII ReferencesPolymorph Formation. Polymer (Guildf) 2010, 51 (24), 5846–5856. (249) Vallés, C.; Abdelkader, A. M.; Young, R. J.; Kinloch, I. A. The Effect of Flake Diameter on the Reinforcement of Few-Layer Graphene–PMMA Composites. Compos Sci Technol 2015, 111, 17–22. (250) Wang, J.; Shi, Z.; Ge, Y.; Wang, Y.; Fan, J.; Yin, J. Solvent Exfoliated Graphene for Reinforcement of PMMA Composites Prepared by in Situ Polymerization. Mater Chem Phys 2012, 136 (1), 43–50. (251) Gonçalves, G.; Marques, P. A. A. P.; Barros-Timmons, A.; Bdkin, I.; Singh, M. K.; Emami, N.; Grácio, J. Graphene Oxide Modified with PMMA via ATRP as a Reinforcement Filler. J Mater Chem 2010, 20 (44), 9927. (252) Vallés, C.; Kinloch, I. A.; Young, R. J.; Wilson, N. R.; Rourke, J. P. Graphene Oxide and Base-Washed Graphene Oxide as Reinforcements in PMMA Nanocomposites. Compos Sci Technol 2013, 88, 158–164. (253) Kar, G. P.; Biswas, S.; Bose, S. Tailoring the Interface of an Immiscible Polymer Blend by a Mutually Miscible Homopolymer Grafted onto Graphene Oxide: Outstanding Mechanical Properties. Physical Chemistry Chemical Physics 2015, 17 (3), 1811–1821. (254) Rubio, N.; Au, H.; Leese, H. S.; Hu, S.; Clancy, A. J.; Shaffer, M. S. P. Grafting fromversus Grafting to Approaches for the Functionalization of Graphene Nanoplatelets with Poly(Methyl Methacrylate). Macromolecules 2017, 50 (18), 7070–7079. (255) Sheng, X.; Xie, D.; Cai, W.; Zhang, X.; Zhong, L.; Zhang, H. In Situ Thermal Reduction of Graphene Nanosheets Based Poly(Methyl Methacrylate) Nanocomposites with Effective Reinforcements. 2014. (256) Cano, M.; Khan, U.; Sainsbury, T.; O’Neill, A.; Wang, Z.; McGovern, I. T.; Maser, W. K.; Benito, A. M.; Coleman, J. N. Improving the Mechanical Properties of Graphene Oxide Based Materials by Covalent Attachment of Polymer Chains. Carbon N Y 2013, 52, 363–371. 211Chapter VIII References(257) Kedzior, S. A.; Zoppe, J. O.; Berry, R. M.; Cranston, E. D. Recent Advances and an Industrial Perspective of Cellulose Nanocrystal Functionalization through Polymer Grafting. Curr Opin Solid State Mater Sci 2019, 23 (2), 74–91. (258) Prince, E.; Narayanan, P.; Chekini, M.; Pace-Tonna, C.; Roberts, M. G.; Zhulina, E.; Kumacheva, E. Solvent-Mediated Isolation of Polymer-Grafted Nanoparticles. Macromolecules 2020, 53 (11), 4533–4540. (259) Khokhlov, A. R.; Grosberg, A. Y.; Pande, V. S. Statistical Physics of Macromolecules, 1st ed.; AIP Press: New York, 1994.(260) Vold, M. J. Van Der Waals’ Attraction between Anisometric Particles. J Colloid Sci 1954, 9 (5), 451–459. (261) Tuinstra, F.; Koenig, J. L. Raman Spectrum of Graphite. J Chem Phys 1970, 53 (3), 1126–1130. (262) Stankovich, S.; Dikin, D. A.; Piner, R. D.; Kohlhaas, K. A.; Kleinhammes, A.; Jia, Y.; Wu, Y.; Nguyen, S. T.; Ruoff, R. S. Synthesis of Graphene-Based Nanosheets via Chemical Reduction of Exfoliated Graphite Oxide. Carbon N Y 2007, 45 (7), 1558–1565. (263) Zhang, J.; Yang, H.; Shen, G.; Cheng, P.; Zhang, J.; Guo, S. Reduction of Graphene Oxide via l -Ascorbic Acid. Chem. Commun. 2010, 46 (7), 1112–1114. (264) King, A. A. K.; Davies, B. R.; Noorbehesht, N.; Newman, P.; Church, T. L.; Harris, A. T.; Razal, J. M.; Minett, A. I. A New Raman Metric for the Characterisation of Graphene Oxide and Its Derivatives. Sci Rep 2016, 6 (1), 19491. (265) Kashiwagi, T.; Du, F.; Douglas, J. F.; Winey, K. I.; Harris, R. H.; Shields, J. R. Nanoparticle Networks Reduce the Flammability of Polymer Nanocomposites. Nat Mater 2005, 4 (12), 928–933. (266) Papageorgiou, D. G.; Terzopoulou, Z.; Fina, A.; Cuttica, F.; Papageorgiou, G. Z.; Bikiaris, D. N.; Chrissafis, K.; Young, R. J.; Kinloch, I. A. Enhanced Thermal and Fire Retardancy Properties of Polypropylene Reinforced with a Hybrid 212Chapter VIII ReferencesGraphene/Glass-Fibre Filler. Compos Sci Technol 2018, 156, 95–102. (267) Liao, K.-H.; Aoyama, S.; Abdala, A. A.; Macosko, C. Does Graphene Change T g of Nanocomposites? Macromolecules 2014, 47 (23), 8311–8319. (268) Wang, X.; Yang, H.; Song, L.; Hu, Y.; Xing, W.; Lu, H. Morphology, Mechanical and Thermal Properties of Graphene-Reinforced Poly(Butylene Succinate) Nanocomposites. Compos Sci Technol 2011, 72 (1), 1–6. (269) Raghu, A. V.; Lee, Y. R.; Jeong, H. M.; Shin, C. M. Preparation and Physical Properties of Waterborne Polyurethane/Functionalized Graphene Sheet Nanocomposites. Macromol Chem Phys 2008, 209 (24), 2487–2493. (270) Salavagione, H. J.; Martínez, G. Importance of Covalent Linkages in the Preparation of Effective Reduced Graphene Oxide−Poly(Vinyl Chloride) Nanocomposites. Macromolecules 2011, 44 (8), 2685–2692. (271) Wang, Y.; Tsai, H. Thermal, Dynamic-mechanical, and Dielectric Properties of Surfactant Intercalated Graphite Oxide Filled Maleated Polypropylene Nanocomposites. J Appl Polym Sci 2012, 123 (5), 3154–3163. (272) Ramanathan, T.; Abdala, A. A.; Stankovich, S.; Dikin, D. A.; Herrera-Alonso, M.; Piner, R. D.; Adamson, D. H.; Schniepp, H. C.; Chen, X.; Ruoff, R. S.; Nguyen, S. T.; Aksay, I. A.; Prud’Homme, R. K.; Brinson, L. C. Functionalized Graphene Sheets for Polymer Nanocomposites. Nat Nanotechnol 2008, 3 (6), 327–331. (273) Liao, K.-H.; Kobayashi, S.; Kim, H.; Abdala, A. A.; Macosko, C. W. Influence of Functionalized Graphene Sheets on Modulus and Glass Transition of PMMA. Macromolecules 2014, 47 (21), 7674–7676. (274) Fang, M.; Wang, K.; Lu, H.; Yang, Y.; Nutt, S. Covalent Polymer Functionalization of Graphene Nanosheets and Mechanical Properties of Composites. J Mater Chem 2009, 19 (38), 7098. (275) Hong, Y.; Li, Y.; Wang, F.; Zuo, B.; Wang, X.; Zhang, L.; Kawaguchi, D.; Tanaka, K. Enhanced Thermal Stability of Polystyrene by Interfacial Noncovalent Interactions. Macromolecules 2018, 51 (15), 5620–5627. 213Chapter VIII References(276) Napolitano, S.; Rotella, C.; Wübbenhorst, M. Can Thickness and Interfacial Interactions Univocally Determine the Behavior of Polymers Confined at the Nanoscale? ACS Macro Lett 2012, 1 (10), 1189–1193. (277) Rittigstein, P.; Priestley, R. D.; Broadbelt, L. J.; Torkelson, J. M. Model Polymer Nanocomposites Provide an Understanding of Confinement Effects in Real Nanocomposites. Nat Mater 2007, 6 (4), 278–282. (278) Ellison, C. J.; Torkelson, J. M. The Distribution of Glass-Transition Temperatures in Nanoscopically Confined Glass Formers. Nat Mater 2003, 2 (10), 695–700. (279) Huang, J.; Zhou, J.; Liu, M. Interphase in Polymer Nanocomposites. 2022. (280) Shen, B.; Zhai, W.; Tao, M.; Lu, D.; Zheng, W. Chemical Functionalization of Graphene Oxide toward the Tailoring of the Interface in Polymer Composites. Compos Sci Technol 2013, 77, 87–94. (281) Nguyễn, L.; Choi, S.-M.; Kim, D.-H.; Kong, N.-K.; Jung, P.-J.; Park, S.-Y. Preparation and Characterization of Nylon 6 Compounds Using the Nylon 6-Grafted GO. Macromol Res 2014, 22 (3), 257–263. (282) Guan, L.-Z.; Wan, Y.-J.; Gong, L.-X.; Yan, D.; Tang, L.-C.; Wu, L.-B.; Jiang, J.-X.; Lai, G.-Q. Toward Effective and Tunable Interphases in Graphene Oxide/Epoxy Composites by Grafting Different Chain Lengths of Polyetheramine onto Graphene Oxide. J Mater Chem A Mater 2014, 2 (36), 15058. (283) Zhao, C.; Zhang, P.; Zhou, J.; Qi, S.; Yamauchi, Y.; Shi, R.; Fang, R.; Ishida, Y.; Wang, S.; Tomsia, A. P.; Liu, M.; Jiang, L. Layered Nanocomposites by Shear-Flow￾Induced Alignment of Nanosheets. Nature 2020, 580 (7802), 210–215. (284) Papageorgiou, D. G.; Kinloch, I. A.; Young, R. J. Mechanical Properties of Graphene and Graphene-Based Nanocomposites. Prog Mater Sci 2017, 90, 75–127. (285) Wu, S.; Beckerbauer, R. Effect of Tacticity on Chain Entanglement in Poly(Methyl Methacrylate). Polym J 1992, 24 (12), 1437–1442. (286) Liu, B.; Feng, X.; Zhang, S.-M. The Effective Young’s Modulus of Composites 214Chapter VIII Referencesbeyond the Voigt Estimation Due to the Poisson Effect. Compos Sci Technol 2009, 69 (13), 2198–2204. (287) Coleman, J. N.; Khan, U.; Gun’ko, Y. K. Mechanical Reinforcement of Polymers Using Carbon Nanotubes. Advanced Materials 2006, 18 (6), 689–706. (288) Cadek, M.; Coleman, J. N.; Ryan, K. P.; Nicolosi, V.; Bister, G.; Fonseca, A.; Nagy, J. B.; Szostak, K.; Béguin, F.; Blau, W. J. Reinforcement of Polymers with Carbon Nanotubes: The Role of Nanotube Surface Area. Nano Lett 2004, 4 (2), 353–356. (289) Li, Z.; Young, R. J.; Wilson, N. R.; Kinloch, I. A.; Vallés, C.; Li, Z. Effect of the Orientation of Graphene-Based Nanoplatelets upon the Young’s Modulus of Nanocomposites. Compos Sci Technol 2016, 123, 125–133. (290) Young, R. J.; Liu, M.; Kinloch, I. A.; Li, S.; Zhao, X.; Vallés, C.; Papageorgiou, D. G. The Mechanics of Reinforcement of Polymers by Graphene Nanoplatelets. Compos Sci Technol 2018, 154, 110–116. (291) Lee, D.; Choi, M.; Ha, C. Polynorbornene Dicarboximide/Amine Functionalized Graphene Hybrids for Potential Oxygen Barrier Films. J Polym Sci A Polym Chem2012, 50 (8), 1611–1621. (292) Kim, G. Y.; Choi, M.; Lee, D.; Ha, C. 2D-Aligned Graphene Sheets in Transparent Polyimide/Graphene Nanocomposite Films Based on Noncovalent Interactions Between Poly(Amic Acid) and Graphene Carboxylic Acid. Macromol Mater Eng2012, 297 (4), 303–311. (293) Affdl, J. C. H.; Kardos, J. L. The Halpin-Tsai Equations: A Review. Polym Eng Sci1976, 16 (5), 344–352. (294) Martinez, C. R.; Iverson, B. L. Rethinking the Term “Pi-Stacking.” Chem Sci 2012, 3 (7), 2191. (295) Grimme, S. Do Special Noncovalent π–π Stacking Interactions Really Exist? Angewandte Chemie International Edition 2008, 47 (18), 3430–3434. (296) Ha, H.; Shanmuganathan, K.; Fei, Y.; Ellison, C. J. Thermal Stimuli-responsive 215Chapter VIII ReferencesBehavior of Pyrene End-functionalized PDMS through Tunable Π–Π Interactions. J Polym Sci B Polym Phys 2016, 54 (2), 159–168. (297) Zhang, Y.; Liu, C.; Shi, W.; Wang, Z.; Dai, L.; Zhang, X. Direct Measurements of the Interaction between Pyrene and Graphite in Aqueous Media by Single Molecule Force Spectroscopy: Understanding the Π−π Interactions. Langmuir2007, 23 (15), 7911–7915. (298) Zhang, Y.; Liu, C.; Shi, W.; Wang, Z.; Dai, L.; Zhang, X. Direct Measurements of the Interaction between Pyrene and Graphite in Aqueous Media by Single Molecule Force Spectroscopy: Understanding the Π−π Interactions. Langmuir2007, 23 (15), 7911–7915. (299) Parviz, D.; Das, S.; Ahmed, H. S. T.; Irin, F.; Bhattacharia, S.; Green, M. J. Dispersions of Non-Covalently Functionalized Graphene with Minimal Stabilizer. ACS Nano 2012, 6 (10), 8857–8867. (300) Parviz, D.; Yu, Z.; Hedden, R. C.; Green, M. J. Designer Stabilizer for Preparation of Pristine Graphene/Polysiloxane Films and Networks. Nanoscale 2014, 6 (20), 11722–11731. (301) Dinger, M. B.; Mol, J. C. Degradation of the First-Generation Grubbs Metathesis Catalyst with Primary Alcohols, Water, and Oxygen. Formation and Catalytic Activity of Ruthenium(II) Monocarbonyl Species. Organometallics 2003, 22 (5), 1089–1095. (302) Kohler, H.; Benda, H.; Scherb, H. Process for Purifying Cyclopentene. 3,793,381, February 19, 1974.(303) Nickel, A.; Ung, T.; Mkrtumyan, G.; Uy, J.; Lee, C. W.; Stoianova, D.; Papazian, J.; Wei, W.-H.; Mallari, A.; Schrodi, Y.; Pederson, R. L. A Highly Efficient Olefin Metathesis Process for the Synthesis of Terminal Alkenes from Fatty Acid Esters. Top Catal 2012, 55 (7–10), 518–523. (304) Ji, S.; Hoye, T. R.; Macosko, C. W. Controlled Synthesis of High Molecular Weight Telechelic Polybutadienes by Ring-Opening Metathesis Polymerization. 216Chapter VIII ReferencesMacromolecules 2004, 37 (15), 5485–5489. (305) Sutthasupa, S.; Shiotsuki, M.; Sanda, F. Recent Advances in Ring-Opening Metathesis Polymerization, and Application to Synthesis of Functional Materials. Polym J 2010, 42 (12), 905–915. (306) Hiemenz, P. C.; Lodge, T. P. Polymer Chemistry, 2nd ed.; CRC Press: New York, 2007.(307) Vougioukalakis, G. C.; Grubbs, R. H. Ruthenium-Based Heterocyclic Carbene￾Coordinated Olefin Metathesis Catalysts. Chem Rev 2010, 110 (3), 1746–1787. (308) Katayama, H.; Urushima, H.; Nishioka, T.; Wada, C.; Nagao, M.; Ozawa, F. Highly Selective Ring-Opening/Cross-Metathesis Reactions of Norbornene Derivatives Using Selenocarbene Complexes as Catalysts. Angewandte Chemie International Edition 2000, 39 (24), 4513–4515. (309) Louie, J.; Grubbs, R. H. Metathesis of Electron-Rich Olefins: Structure and Reactivity of Electron-Rich Carbene Complexes. Organometallics 2002, 21 (11), 2153–2164. (310) Chen, Z.-R.; Claverie, J. P.; Grubbs, R. H.; Kornfield, J. A. Modeling Ring-Chain Equilibria in Ring-Opening Polymerization of Cycloolefins. Macromolecules 1995, 28 (7), 2147–2154. (311) Feist, J. D.; Xia, Y. Enol Ethers Are Effective Monomers for Ring-Opening Metathesis Polymerization: Synthesis of Degradable and Depolymerizable Poly(2,3-Dihydrofuran). J Am Chem Soc 2020, 142 (3), 1186–1189. (312) Adjiman, C. S.; Clarke, A. J.; Cooper, G.; Taylor, P. C. Solvents for Ring-Closing Metathesis Reactions. Chemical Communications 2008, No. 24, 2806. (313) Pauling, L. The Nature of the Chemical Bond; Cornell Univ. Press: New York, 1960.(314) Geim, A. K.; Novoselov, K. S. The Rise of Graphene. Nat Mater 2007, 6 (3), 183–191. (315) Diesendruck, C. E.; Tzur, E.; Ben-Asuly, A.; Goldberg, I.; Straub, B. F.; Lemcoff, N. G. Predicting the Cis−Trans Dichloro Configuration of Group 15−16 Chelated 217Chapter VIII ReferencesRuthenium Olefin Metathesis Complexes: A DFT and Experimental Study. Inorg Chem 2009, 48 (22), 10819–10825. (316) Benitez, D.; Goddard, W. A. The Isomerization Equilibrium between Cis and Trans Chloride Ruthenium Olefin Metathesis Catalysts from Quantum Mechanics Calculations. J Am Chem Soc 2005, 127 (35), 12218–12219. (317) Khan, R. K. M.; Zhugralin, A. R.; Torker, S.; O’Brien, R. V.; Lombardi, P. J.; Hoveyda, A. H. Synthesis, Isolation, Characterization, and Reactivity of High-Energy Stereogenic-at-Ru Carbenes: Stereochemical Inversion through Olefin Metathesis and Other Pathways. J Am Chem Soc 2012, 134 (30), 12438–12441. (318) Bahri-Laleh, N.; Credendino, R.; Cavallo, L. The Intriguing Modeling of Cis–Trans s Electivity in Ruthenium-Catalyzed Olefin Metathesis. Beilstein Journal of Organic Chemistry 2011, 7, 40–45. (319) Neary, W. J.; Kennemur, J. G. Polypentenamer Renaissance: Challenges and Opportunities. ACS Macro Lett 2019, 8 (1), 46–56. (320) Liu, H.; Nelson, A. Z.; Ren, Y.; Yang, K.; Ewoldt, R. H.; Moore, J. S. Dynamic Remodeling of Covalent Networks via Ring-Opening Metathesis Polymerization. ACS Macro Lett 2018, 7 (8), 933–937. (321) Doi, M.; See, H. Introduction to Polymer Physics; Oxford University Press: New York, 1996.(322) Li, H.; Bubeck, C. Photoreduction Processes of Graphene Oxide and Related Applications. Macromol Res 2013, 21 (3), 290–297.

来源库
人工提交
成果类型学位论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/765762
专题南方科技大学
理学院_化学系
推荐引用方式
GB/T 7714
Li YZ. A Critical Study of Well-Dispersed Chemically Functionalized Graphene in Solvents and Polymeric Matrices: Strategies, Fabrication, Characterization and a Mathematical Understanding[D]. 英国. 华威大学,2024.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可 操作
11758003-李远致-化学系.pdf(11036KB)----限制开放--请求全文
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[李远致]的文章
百度学术
百度学术中相似的文章
[李远致]的文章
必应学术
必应学术中相似的文章
[李远致]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。