[1] HALL E H. On a New Action of the Magnet on Electric Currents[J/OL]. American Journal of Mathematics, 1879, 2(3):361.
[2] KLITZING K V, DORDA G, PEPPER M. New Method for High-Accuracy Determination of the Fine-Structure Constant Based on Quantized Hall Resistance[J/OL]. Physical Review Letters, 1980, 45(6):494-497.
[3] LAUGHLIN R B. Quantized Hall conductivity in two dimensions[J/OL]. Physical Review B, 1981, 23(10):5632-5633.
[4] HASAN M Z, KANE C L. Colloquium: Topological insulators[J/OL]. Reviews of Modern Physics, 2010, 82(4):3045-3067.
[5] QI X-L, ZHANG S-C. Topological insulators and superconductors[J/OL]. Reviews of Modern Physics, 2011, 83(4):1057-1110.
[6] 维基百科[EB/OL].
[2024-02-08]. https://zh.wikipedia.org/wiki/%E6%8B%93%E6%89%91%E5%AD%A6.
[7] KIM J, BAIK S S, RYU S H, et al. 2D MATERIALS. Observation of tunable band gap and anisotropic Dirac semimetal state in black phosphorus[J/OL]. Science, 2015, 349(6249):723-6.
[8] KIM S H, JIN K-H, PARK J, et al. Edge and interfacial states in a two-dimensional topological insulator: Bi(111) bilayer on Bi2Te2Se[J/OL]. Physical Review B, 2014, 89(15):155436.
[9] DROZDOV I K, ALEXANDRADINATA A, JEON S, et al. One-dimensional topological edge states of bismuth bilayers[J/OL]. Nature Physics, 2014, 10(9):664-669.
[10] KANE C L, MELE E J. Quantum spin Hall effect in graphene[J/OL]. Physical Review Letters, 2005, 95(22):226801.
[11] BERNEVIG B A, HUGHES T L, ZHANG S C. Quantum spin Hall effect and topological phase transition in HgTe quantum wells[J/OL]. Science, 2006, 314(5806):1757-61.
[12] KONIG M, WIEDMANN S, BRUNE C, et al. Quantum spin hall insulator state in HgTe quantum wells[J/OL]. Science, 2007, 318(5851):766-70.
[13] KANE C L, MELE E J. Z2 topological order and the quantum spin Hall effect[J/OL]. Physical Review Letters, 2005, 95(14):146802.
[14] FU L, KANE C L. Time reversal polarization and a Z2 adiabatic spin pump[J/OL]. Physical Review B, 2006, 74(19):195312.
[15] MOORE J E, BALENTS L. Topological invariants of time-reversal-invariant band structures[J/OL]. Physical Review B, 2007, 75(12):121306.
[16] FU L, KANE C L, MELE E J. Topological insulators in three dimensions[J/OL]. Physical Review Letters, 2007, 98(10):106803.
[17] ROY R. Topological phases and the quantum spin Hall effect in three dimensions[J/OL]. Physical Review B, 2009, 79(19):195322.
[18] ZHANG H, LIU C-X, QI X-L, et al. Topological insulators in Bi2Se3, Bi2Te3 and Sb2Te3 with a single Dirac cone on the surface[J/OL]. Nature Physics, 2009, 5(6):438-442.
[19] TEO J C Y, FU L, KANE C L. Surface states and topological invariants in three-dimensional topological insulators: Application to Bi1−xSbx[J/OL]. Physical Review B, 2008, 78(4):045426.
[20] HSIEH D, QIAN D, WRAY L, et al. A topological Dirac insulator in a quantum spin Hall phase[J/OL]. Nature, 2009, 452(7190):970-4.
[21] ROUSHAN P, SEO J, PARKER C V, et al. Topological surface states protected from backscattering by chiral spin texture[J/OL]. Nature, 2009, 460(7259):1106-9.
[22] LIU C-X, QI X-L, ZHANG H, et al. Model Hamiltonian for topological insulators[J/OL]. Physical Review B, 2010, 82(4):045122.
[23] ZHANG W, YU R, ZHANG H-J, et al. First-principles studies of the three-dimensional strong topological insulators Bi2Te3, Bi2Se3 and Sb2Te3[J/OL]. New Journal of Physics, 2010, 12(6):065013.
[24] CHEN Y L, ANALYTIS J G, CHU J H, et al. Experimental realization of a three-dimensional topological insulator, Bi2Te3[J/OL]. Science, 2009, 325(5937):178-81.
[25] QU D X, HOR Y S, XIONG J, et al. Quantum oscillations and hall anomaly of surface states in the topological insulator Bi2Te3[J/OL]. Science, 2010, 329(5993):821-4.
[26] HSIEH D, XIA Y, QIAN D, et al. A tunable topological insulator in the spin helical Dirac transport regime[J/OL]. Nature, 2009, 460(7259):1101-5.
[27] VALLA T, PAN Z H, GARDNER D, et al. Photoemission spectroscopy of magnetic and nonmagnetic impurities on the surface of the Bi2Se3 topological insulator[J/OL]. Physical Review Letters, 2012, 108(11):117601.
[28] CHEN C, HE S, WENG H, et al. Robustness of topological order and formation of quantum well states in topological insulators exposed to ambient environment[J/OL]. Proc Natl Acad Sci USA, 2012, 109(10):3694-8.
[29] WRAY L A, XU S-Y, XIA Y, et al. A topological insulator surface under strong Coulomb, magnetic and disorder perturbations[J/OL]. Nature Physics, 2010, 7(1):32-37.
[30] LIU C X, QI X L, DAI X, et al. Quantum anomalous hall effect in Hg1-yMnyTe quantum wells[J/OL]. Physical Review Letters, 2008, 101(14):146802.
[31] YU R, ZHANG W, ZHANG H J, et al. Quantized anomalous Hall effect in magnetic topological insulators[J/OL]. Science, 2010, 329(5987):61-4.
[32] BESTWICK A J, FOX E J, KOU X, et al. Precise Quantization of the Anomalous Hall Effect near Zero Magnetic Field[J/OL]. Physical Review Letters, 2015, 114(18):187201.
[33] FENG Y, FENG X, OU Y, et al. Observation of the Zero Hall Plateau in a Quantum Anomalous Hall Insulator[J/OL]. Physical Review Letters, 2015, 115(12):126801.
[34] CHANG C Z, ZHAO W, KIM D Y, et al. High-precision realization of robust quantum anomalous Hall state in a hard ferromagnetic topological insulator[J/OL]. Nature Materials, 2015, 14(5):473-7.
[35] KANDALA A, RICHARDELLA A, KEMPINGER S, et al. Giant anisotropic magnetoresistance in a quantum anomalous Hall insulator[J/OL]. Nature Communications, 2015, 6:7434.
[36] KE H. From magnetically doped to intrinsic magnetic topological insulators——a road towards the high temperature quantum anomalous Hall effect[J/OL]. PHYSICS, 2020, 49(12):828-836.
[37] MOGI M, YOSHIMI R, TSUKAZAKI A, et al. Magnetic modulation doping in topological insulators toward higher-temperature quantum anomalous Hall effect[J/OL]. Applied Physics Letters, 2015, 107(18):182401.
[38] QI X-L, HUGHES T L, ZHANG S-C. Topological field theory of time-reversal invariant insulators[J/OL]. Physical Review B, 2008, 78(19):195424.
[39] OTROKOV M M, MENSHCHIKOVA T V, VERGNIORY M G, et al. Highly-ordered wide bandgap materials for quantized anomalous Hall and magnetoelectric effects[J/OL]. 2D Materials, 2017, 4(2):025082.
[40] EREMEEV S V, RUSINOV I P, KOROTEEV Y M, et al. Topological Magnetic Materials of the (MnSb2Te4).(Sb2Te3)n van der Waals Compounds Family[J/OL]. Journal Physics Chemistry Letter, 2021, 12(17):4268-4277.
[41] EREMEEV S V, OTROKOV M M, CHULKOV E V. Competing rhombohedral and monoclinic crystal structures in MnPn2Ch4 compounds: An ab-initio study[J/OL]. Journal of Alloys and Compounds, 2017, 709:172-178.
[42] MURAKAMI T, NAMBU Y, KORETSUNE T, et al. Realization of interlayer ferromagnetic interaction in MnSb2Te4 toward the magnetic Weyl semimetal state[J/OL]. Physical Review B, 2019, 100:195103.
[43] YAN J Q, OKAMOTO S, MCGUIRE M A, et al. Evolution of structural, magnetic, and transport properties in MnBi2−xSbxTe4[J/OL]. Physical Review B, 2019, 100(10):104409.
[44] CHEN L, WANG D, SHI C, et al. Electronic structure and magnetism of MnSb2Te4[J/OL]. Journal of Materials Science, 2020, 55(29):14292-14300.
[45] CHEN Y, CHUANG Y-W, LEE S H, et al. Ferromagnetism in van der Waals compound MnSb1.8Bi0.2Te4[J/OL]. Physical Review Materials, 2020, 4(6):064411.
[46] SHI G, ZHANG M, YAN D, et al. Anomalous Hall Effect in Layered Ferrimagnet MnSb2Te4[J/OL]. Chinese Physics Letters, 2020, 37(4):047301.
[47] WIMMER S, SANCHEZ-BARRIGA J, KUPPERS P, et al. Mn-Rich MnSb2Te4 : A Topological Insulator with Magnetic Gap Closing at High Curie Temperatures of 45-50 K[J/OL]. Advanced Materials, 2021, 33(42):e2102935.
[48] ZANG Z, ZHU Y, XI M, et al. Layer-Number-Dependent Antiferromagnetic and Ferromagnetic Behavior in MnSb2Te4[J/OL]. Physical Review Letter, 2022, 128(1):017201.
[49] HUAN S, ZHANG S, JIANG Z, et al. Multiple Magnetic Topological Phases in Bulk van der Waals Crystal MnSb4Te7[J/OL]. Physical Review Letter, 2021, 126(24):246601.
[50] XIN ZHANG, SHIHAO ZHANG, ZHICHENG JIANG, et al. Tunable intrinsic ferromagnetic topological phases in bulk van der Waals crystal MnSb6Te10[EB/OL] 2021
[2024-02-22]. DOI:10.48550/arXiv.2111.04973.
[51] YIN Y, MA X, YAN D, et al. Pressure-driven electronic and structural phase transition in intrinsic magnetic topological insulator MnSb2Te4[J/OL]. Physical Review B, 2021, 104(17):174114.
[52] LIN J-Y, CHEN Z-J, XIE W-Q, et al. Toward ferromagnetic semimetal ground state with multiple Weyl nodes in van der Waals crystal MnSb4Te7[J/OL]. New Journal of Physics, 2022, 24(4):043033.
[53] PEI C, XI M, WANG Q, et al. Pressure-induced superconductivity in magnetic topological insulator candidate MnSb4Te7[J/OL]. Physical Review Materials, 2022, 6(10):L101801.
[54] MA X-M, ZHAO Y, ZHANG K, et al. Realization of a tunable surface Dirac gap in Sb-doped MnBi2Te4[J/OL]. Physical Review B, 2021, 103(12):L121112.
[55] CHEN B, FEI F, ZHANG D, et al. Intrinsic magnetic topological insulator phases in the Sb doped MnBi2Te4 bulks and thin flakes[J/OL]. Nature Communications, 2019, 10(1):4469.
[56] ZHU T, BISHOP A J, ZHOU T, et al. Synthesis, Magnetic Properties, and Electronic Structure of Magnetic Topological Insulator MnBi2Se4[J/OL]. Nano Letters, 2021, 21(12):5083-5090.
[57] LI H, GAO S-Y, DUAN S-F, et al. Dirac Surface States in Intrinsic Magnetic Topological Insulators EuSn2As2 and MnBi2nTe3n+1[J/OL]. Physical Review X, 2019, 9(4):041039.
[58] ARGUILLA M Q, CULTRARA N D, BAUM Z J, et al. EuSn2As2: an exfoliatable magnetic layered Zintl–Klemm phase[J/OL]. Inorganic Chemistry Frontiers, 2017, 4(2):378-386.
[59] CHEN H-C, LOU Z-F, ZHOU Y-X, et al. Negative Magnetoresistance in Antiferromagnetic Topological Insulator EuSn2As2[J/OL]. Chinese Physics Letters, 2020, 37(4):047201.
[60] LI H, GAO W, CHEN Z, et al. Magnetic properties of the layered magnetic topological insulator EuSn2As2[J/OL]. Physical Review B, 2021, 104(5):054435.
[61] ZHAO L, YI C, WANG C T, et al. Monoclinic EuSn2As2: A Novel High-Pressure Network Structure[J/OL]. Physical Review Letter, 2021, 126(15):155701.
[62] SUN H, CHEN C, HOU Y, et al. Magnetism variation of the compressed antiferromagnetic topological insulator EuSn2As2[J/OL]. Science China Physics, Mechanics & Astronomy, 2021, 64(11):118211.
[63] FIROZA KABIR, M. MOFAZZEL HOSEN, FAIROJA CHEENICODE KABEER, et al. Observation of multiple Dirac states in a magnetic topological material EuMg2Bi2[EB/OL] 2019
[2024-02-22]. DOI:10.48550/arXiv.1912.08645.
[64] RIBEROLLES S X M, TREVISAN T V, KUTHANAZHI B, et al. Magnetic crystalline-symmetry-protected axion electrodynamics and field-tunable unpinned Dirac cones in EuIn2As2[J/OL]. Nature Communications, 2021, 12(1):999.
[65] MARSHALL M, PLETIKOSIĆ I, YAHYAVI M, et al. Magnetic and electronic structures of antiferromagnetic topological material candidate EuMg2Bi2[J/OL]. Journal of Applied Physics, 2021, 129(3):035106.
[66] GOFORTH A M, KLAVINS P, FETTINGER J C, KAUZLARICH S M. Magnetic properties and negative colossal magnetoresistance of the rare earth Zintl phase EuIn2As2[J/OL]. Inorganic Chemistry, 2008, 47(23):11048-56.
[67] ZHANG Y, DENG K, ZHANG X, et al. In-plane antiferromagnetic moments and magnetic polaron in the axion topological insulator candidate EuIn2As2[J/OL]. Physical Review B, 2020, 101(20):205126.
[68] TOLIŃSKI T, KACZOROWSKI D. Magnetic properties of the putative higher-order topological insulator EuIn2As2[J/OL]. SciPost Physics Proceedings, 2023, (11):005.
[69] XU Y, SONG Z, WANG Z, et al. Higher-Order Topology of the Axion Insulator EuIn2As2[J/OL]. Physical Review Letters, 2019, 122(25):256402.
[70] REGMI S, HOSEN M M, GHOSH B, et al. Temperature-dependent electronic structure in a higher-order topological insulator candidate EuIn2As2[J/OL]. Physical Review B, 2020, 102(16):165153.
[71] GONG M, SAR D, FRIEDMAN J, et al. Surface state evolution induced by magnetic order in axion insulator candidate EuIn2As2[J/OL]. Physical Review B, 2022, 106(12):125156.
[72] ROSA P, XU Y, RAHN M, et al. Colossal magnetoresistance in a nonsymmorphic antiferromagnetic insulator[J/OL]. npj Quantum Materials, 2020, 5(1):52.
[73] VARNAVA N, BERRY T, MCQUEEN T M, VANDERBILT D. Engineering magnetic topological insulators in Eu5M2X6 Zintl compounds[J/OL]. Physical Review B, 2022, 105(23):235128.
[74] WANG H, MAO N, HU X, et al. A magnetic topological insulator in two-dimensional EuCd2Bi2: giant gap with robust topology against magnetic transitions[J/OL]. Mater Horiz, 2021, 8(3):956-961.
[75] LIU J, MENG S, SUN J T. Spin-Orientation-Dependent Topological States in Two-Dimensional Antiferromagnetic NiTl2S4 Monolayers[J/OL]. Nano Letters, 2019, 19(5):3321-3326.
[76] WANG Z, SUN Y, CHEN X-Q, et al. Dirac semimetal and topological phase transitions in A3Bi (A=Na, K, Rb)[J/OL]. Physical Review B, 2012, 85(19):195320.
[77] LIU Z K, ZHOU B, ZHANG Y, et al. Discovery of a three-dimensional topological Dirac semimetal, Na3Bi[J/OL]. Science, 2014, 343(6173):864-7.
[78] WEYL H. Gravitation and the electron[J/OL]. Proceedings of the National Academy of Sciences of the United States of America, 1929, 15:323-324.
[79] WENG H, FANG C, FANG Z, et al. Weyl Semimetal Phase in Noncentrosymmetric Transition-Metal Monophosphides[J/OL]. Physical Review X, 2015, 5(1):011029.
[80] LV B Q, XU N, WENG H M, et al. Observation of Weyl nodes in TaAs[J/OL]. Nature Physics, 2015, 11(9):724-727.
[81] LV B Q, WENG H M, FU B B, et al. Experimental Discovery of Weyl Semimetal TaAs[J/OL]. Physical Review X, 2015, 5(3):031013.
[82] XU N, WENG H M, LV B Q, et al. Observation of Weyl nodes and Fermi arcs in tantalum phosphide[J/OL]. Nature Communications, 2016, 7:11006.
[83] XU S Y, BELOPOLSKI I, SANCHEZ D S, et al. Experimental discovery of a topological Weyl semimetal state in TaP[J/OL]. Science Advances, 2015, 1(10):e1501092.
[84] XU S Y, BELOPOLSKI I, ALIDOUST N, et al. TOPOLOGICAL MATTER. Discovery of a Weyl fermion semimetal and topological Fermi arcs[J/OL]. Science, 2015, 349(6248):613-7.
[85] YANG L X, LIU Z K, SUN Y, et al. Weyl semimetal phase in the non-centrosymmetric compound TaAs[J/OL]. Nature Physics, 2015, 11(9):728-732.
[86] TANG P, ZHOU Q, XU G, ZHANG S-C. Dirac fermions in an antiferromagnetic semimetal[J/OL]. Nature Physics, 2016, 12(12):1100-1104.
[87] LIN Z, WANG C, WANG P, et al. Dirac fermions in antiferromagnetic FeSn kagome lattices with combined space inversion and time-reversal symmetry[J/OL]. Physical Review B, 2020, 102(15):155103.
[88] KANG M, YE L, FANG S, et al. Dirac fermions and flat bands in the ideal kagome metal FeSn[J/OL]. Nature Materials, 2020, 19(2):163-169.
[89] LEE S-H, KIM Y, CHO B, et al. Spin-polarized and possible pseudospin-polarized scanning tunneling microscopy in kagome metal FeSn[J/OL]. Communications Physics, 2022, 5(1):235.
[90] SALES B C, YAN J, MEIER W R, et al. Electronic, magnetic, and thermodynamic properties of the kagome layer compound FeSn[J/OL]. Physical Review Materials, 2019, 3(11):114203.
[91] WAN X, TURNER A M, VISHWANATH A, SAVRASOV S Y. Topological semimetal and Fermi-arc surface states in the electronic structure of pyrochlore iridates[J/OL]. Physical Review B, 2011, 83(20):205101.
[92] BURKOV A A, HOOK M D, BALENTS L. Topological nodal semimetals[J/OL]. Physical Review B, 2011, 84(23):235126.
[93] BURKOV A A, BALENTS L. Weyl semimetal in a topological insulator multilayer[J/OL]. Physical Review Letters, 2011, 107(12):127205.
[94] XU G, WENG H, WANG Z, et al. Chern semimetal and the quantized anomalous Hall effect in HgCr2Se4[J/OL]. Physical Review Letters, 2011, 107(18):186806.
[95] FUJIMORI S-I, FUJIMORI A, SHIMADA K, et al. Direct observation of a quasiparticle band in CeIrIn5: An angle-resolved photoemission spectroscopy study[J/OL]. Physical Review B, 2006, 73(22):224517.
[96] MORALI N, BATABYAL R, NAG P K, et al. Fermi-arc diversity on surface terminations of the magnetic Weyl semimetal Co3Sn2S2[J/OL]. Science, 2019, 365(6459):1286.
[97] LIU D F, LIANG A J, LIU E K, et al. Magnetic Weyl semimetal phase in a Kagomé crystal[J/OL]. Science, 2019, 365(6459):1282.
[98] KURODA K, TOMITA T, SUZUKI M T, et al. Evidence for magnetic Weyl fermions in a correlated metal[J/OL]. Nature Materials, 2017, 16(11):1090-1095.
[99] NAYAK A K, FISCHER J E, SUN Y, et al. Large anomalous Hall effect driven by a nonvanishing Berry curvature in the noncolinear antiferromagnet Mn3Ge[J/OL]. Science Advances, 2016, 2(4):e1501870.
[100] NAKATSUJI S, KIYOHARA N, HIGO T. Large anomalous Hall effect in a non-collinear antiferromagnet at room temperature[J/OL]. Nature, 2015, 527(7577):212-5.
[101] WAN X G, TURNER A M, VISHWANATH A, SAVRASOV S Y. Topological semimetal and Fermi-arc surface states in the electronic structure of pyrochlore iridates[J/OL]. Physical Review B, 2011, 83(20):205101.
[102] XU G, WENG H, WANG Z, et al. Chern Semimetal and the Quantized Anomalous Hall Effect in HgCr2Se4[J/OL]. Physical Review Letters, 2011, 107(18):186806.
[103] LIU E, SUN Y, KUMAR N, et al. Giant anomalous Hall effect in a ferromagnetic Kagome-lattice semimetal[J/OL]. Nature Physics, 2018, 14(11):1125-1131.
[104] LIU C, YI C, WANG X, et al. Anisotropic magnetoelastic response in the magnetic Weyl semimetal Co3Sn2S2[J/OL]. Science China Physics, Mechanics & Astronomy, 2021, 64(5):257511.
[105] LIU D F, LIU E K, XU Q N, et al. Direct observation of the spin–orbit coupling effect in magnetic Weyl semimetal Co3Sn2S2[J/OL]. npj Quantum Materials, 2022, 7(1):11.
[106] KANAGARAJ M, NING J, HE L. Topological Co3Sn2S2 magnetic Weyl semimetal: From fundamental understanding to diverse fields of study[J/OL]. Reviews in Physics, 2022, 8:100072.
[107] BELOPOLSKI I, COCHRAN T A, LIU X, et al. Signatures of Weyl Fermion Annihilation in a Correlated Kagome Magnet[J/OL]. Physical Review Letters, 2021, 127(25):256403.
[108] LI G, XU Q, SHI W, et al. Surface states in bulk single crystal of topological semimetal Co3Sn2S2 toward water oxidation[J/OL]. Science Advances, 2019, 5(8):eaaw9867.
[109] XU Q, LIU E, SHI W, et al. Topological surface Fermi arcs in the magnetic Weyl semimetal Co3Sn2S2[J/OL]. Physical Review B, 2018, 97(23):235416.
[110] WANG Q, XU Y, LOU R, et al. Large intrinsic anomalous Hall effect in half-metallic ferromagnet Co3Sn2S2 with magnetic Weyl fermions[J/OL]. Nature Communications, 2018, 9(1):3681.
[111] TANAKA M, FUJISHIRO Y, MOGI M, et al. Topological Kagome Magnet Co3Sn2S2 Thin Flakes with High Electron Mobility and Large Anomalous Hall Effect[J/OL]. Nano Letters, 2020, 20(10):7476-7481.
[112] CHEN T, TOMITA T, MINAMI S, et al. Anomalous transport due to Weyl fermions in the chiral antiferromagnets Mn3X, X = Sn, Ge[J/OL]. Nature Commun, 2021, 12(1):572.
[113] SOH J R, DE JUAN F, QURESHI N, et al. Ground-state magnetic structure of Mn3Ge[J/OL]. Physical Review B, 2020, 101(14):140411.
[114] LIU J, BALENTS L. Anomalous Hall Effect and Topological Defects in Antiferromagnetic Weyl Semimetals: Mn3Sn/Ge[J/OL]. Physical Review Letters, 2017, 119(8):087202.
[115] YANG H, SUN Y, ZHANG Y, et al. Topological Weyl semimetals in the chiral antiferromagnetic materials Mn3Ge and Mn3Sn[J/OL]. New Journal of Physics, 2017, 19(1):015008.
[116] KIYOHARA N, TOMITA T, NAKATSUJI S. Giant Anomalous Hall Effect in the Chiral Antiferromagnet Mn3Ge[J/OL]. Physical Review Applied, 2016, 5(6):064009.
[117] HIGO T, QU D, LI Y, et al. Anomalous Hall effect in thin films of the Weyl antiferromagnet Mn3Sn[J/OL]. Applied Physics Letters, 2018, 113(20):202402.
[118] MATSUDA T, KANDA N, HIGO T, et al. Room-temperature terahertz anomalous Hall effect in Weyl antiferromagnet Mn3Sn thin films[J/OL]. Nature Communications, 2020, 11(1):909.
[119] TAYLOR J M, MARKOU A, LESNE E, et al. Anomalous and topological Hall effects in epitaxial thin films of the noncollinear antiferromagnet Mn3Sn[J/OL]. Physical Review B, 2020, 101(9):094404.
[120] IKHLAS M, TOMITA T, KORETSUNE T, et al. Large anomalous Nernst effect at room temperature in a chiral antiferromagnet[J/OL]. Nature Physics, 2017, 13(11):1085-1090.
[121] WUTTKE C, CAGLIERIS F, SYKORA S, et al. Berry curvature unravelled by the anomalous Nernst effect in Mn3Ge[J/OL]. Physical Review B, 2019, 100(8):085111.
[122] LI X, COLLIGNON C, XU L, et al. Chiral domain walls of Mn3Sn and their memory[J/OL]. Nature Communications, 2019, 10(1):3021.
[123] REICHLOVA H, JANDA T, GODINHO J, et al. Imaging and writing magnetic domains in the non-collinear antiferromagnet Mn3Sn[J/OL]. Nature Communications, 2019, 10(1):5459.
[124] ROUT P K, MADDURI P V P, MANNA S K, NAYAK A K. Field-induced topological Hall effect in the noncoplanar triangular antiferromagnetic geometry of Mn3Sn[J/OL]. Physical Review B, 2019, 99(9):094430.
[125] XU L, LI X, DING L, et al. Planar Hall effect caused by the memory of antiferromagnetic domain walls in Mn3Ge[J/OL]. Applied Physics Letters, 2020, 117(22):222403.
[126] KIMATA M, CHEN H, KONDOU K, et al. Magnetic and magnetic inverse spin Hall effects in a non-collinear antiferromagnet[J/OL]. Nature, 2019, 565(7741):627-630.
[127] LI P, KOO J, NING W, et al. Giant room temperature anomalous Hall effect and tunable topology in a ferromagnetic topological semimetal Co2MnAl[J/OL]. Nature Communications, 2020, 11(1):3476.
[128] WANG Z, VERGNIORY M G, KUSHWAHA S, et al. Time-Reversal-Breaking Weyl Fermions in Magnetic Heusler Alloys[J/OL]. Physical Review Letters, 2016, 117(23):236401.
[129] CHANG G, XU S Y, ZHENG H, et al. Room-temperature magnetic topological Weyl fermion and nodal line semimetal states in half-metallic Heusler Co2TiX (X=Si, Ge, or Sn)[J/OL]. Scientific Reports, 2016, 6:38839.
[130] UMETSU R Y, KOBAYASHI K, FUJITA A, et al. Magnetic properties and stability of L21 and B2 phases in the Co2MnAl Heusler alloy[J/OL]. Journal of Applied Physics, 2008, 103(7):07D718.
[131] CARBONARI A W, SAXENA R N, PENDL W, et al. Magnetic hyperfine field in the Heusler alloys Co2YZ (Y = V, Nb, Ta, Cr; Z = Al, Ga)[J/OL]. Journal of Magnetism and Magnetic Materials, 1996, 163(3):313-321.
[132] YAN Z, BI R, SHEN H, et al. Nodal-link semimetals[J/OL]. Physical Review B, 2017, 96(4):041103.
[133] EZAWA M. Topological semimetals carrying arbitrary Hopf numbers: Fermi surface topologies of a Hopf link, Solomon's knot, trefoil knot, and other linked nodal varieties[J/OL]. Physical Review B, 2017, 96(4):041202.
[134] CHANG P-Y, YEE C-H. Weyl-link semimetals[J/OL]. Physical Review B, 2017, 96(8):081114.
[135] CHANG G, XU S Y, ZHOU X, et al. Topological Hopf and Chain Link Semimetal States and Their Application to Co2MnGa[J/OL]. Physical Review Letters, 2017, 119(15):156401.
[136] BELOPOLSKI I, CHANG G, COCHRAN T A, et al. Observation of a linked-loop quantum state in a topological magnet[J/OL]. Nature, 2022, 604(7907):647-652.
[137] SUMIDA K, SAKURABA Y, MASUDA K, et al. Spin-polarized Weyl cones and giant anomalous Nernst effect in ferromagnetic Heusler films[J/OL]. Communications Materials, 2020, 1(1):89.
[138] WU Q, SOLUYANOV A A, BZDUSEK T. Non-Abelian band topology in noninteracting metals[J/OL]. Science, 2019, 365(6459):1273-1277.
[139] BELOPOLSKI I, MANNA K, SANCHEZ D S, et al. Discovery of topological Weyl fermion lines and drumhead surface states in a room temperature magnet[J/OL]. Science, 2019, 365(6459):1278-1281.
[140] ZHONG C, CHEN Y, YU Z M, et al. Three-dimensional Pentagon Carbon with a genesis of emergent fermions[J/OL]. Nature Communications, 2017, 8:15641.
[141] NIE S, SUN Y, PRINZ F B, et al. Magnetic Semimetals and Quantized Anomalous Hall Effect in EuB6[J/OL]. Phys Rev Lett, 2020, 124(7):076403.
[142] YUAN J, SHI X, SU H, et al. Magnetization tunable Weyl states in EuB6[J/OL]. Physical Review B, 2022, 106(5):054411.
[143] ZHANG X, VON MOLNAR S, FISK Z, XIONG P. Spin-dependent electronic states of the ferromagnetic semimetal EuB6[J/OL]. Physical Review Letters, 2008, 100(16):167001.
[144] KIM J, KU W, LEE C-C, et al. Spin-split conduction band in EuB6and tuning of half-metallicity with external stimuli[J/OL]. Physical Review B, 2013, 87(15):155104.
[145] SÜLLOW S, PRASAD I, ARONSON M C, et al. Structure and magnetic order of EuB6[J/OL]. Physical Review B, 1998, 57(10):5860-5869.
[146] BROOKS M L, LANCASTER T, BLUNDELL S J, et al. Magnetic phase separation in EuB6 detected by muon spin rotation[J/OL]. Physical Review B, 2004, 70(2):020401.
[147] DEGIORGI L, FELDER E, OTT H R, et al. Low-Temperature Anomalies and Ferromagnetism of EuB6[J/OL]. Physical Review Letters, 1997, 79(25):5134-5137.
[148] GUY C N, VON MOLNAR S, ETOURNEAU J, FISK Z. Charge transport and pressure dependence of Tc of single crystal, ferromagnetic EuB6[J/OL]. Solid State Communications, 1980, 33(10):1055-1058.
[149] NYHUS P, YOON S, KAUFFMAN M, et al. Spectroscopic study of bound magnetic polaron formation and the metal-semiconductor transition in EuB6[J/OL]. Physical Review B, 1997, 56(5):2717-2721.
[150] BEAUDIN G, FOURNIER L M, BIANCHI A D, et al. Possible quantum nematic phase in a colossal magnetoresistance material[J/OL]. Physical Review B, 2022, 105(3):035104.
[151] GAO S-Y, XU S, LI H, et al. Time-Reversal Symmetry Breaking Driven Topological Phase Transition in EuB6[J/OL]. Physical Review X, 2021, 11(2):021016.
[152] LIU W L, ZHANG X, NIE S M, et al. Spontaneous Ferromagnetism Induced Topological Transition in EuB6[J/OL]. Physical Review Letters, 2022, 129(16):166402.
[153] ZENG Q, YI C, SHEN J, et al. Berry curvature induced antisymmetric in-plane magneto-transport in magnetic Weyl EuB6[J/OL]. Applied Physics Letters, 2022, 121(16):162405.
[154] DEISEROTH H J, ALEKSANDROV K, REINER C, et al. Fe3GeTe2 and Ni3GeTe2 – Two New Layered Transition‐Metal Compounds: Crystal Structures, HRTEM Investigations, and Magnetic and Electrical Properties[J/OL]. European Journal of Inorganic Chemistry, 2006, 2006(8):1561-1567.
[155] CHEN B, YANG J, WANG H, et al. Magnetic Properties of Layered Itinerant Electron Ferromagnet Fe3GeTe2[J/OL]. Journal of the Physical Society of Japan, 2013, 82(12):124711.
[156] YI J, ZHUANG H, ZOU Q, et al. Competing antiferromagnetism in a quasi-2D itinerant ferromagnet: Fe3GeTe2[J/OL]. 2D Materials, 2016, 4(1):011005.
[157] WANG Y, XIAN C, WANG J, et al. Anisotropic anomalous Hall effect in triangular itinerant ferromagnet Fe3GeTe2[J/OL]. Physical Review B, 2017, 96(13):134428.
[158] ZHANG Y, LU H, ZHU X, et al. Emergence of Kondo lattice behavior in a van der Waals itinerant ferromagnet, Fe3GeTe2[J/OL]. Science Advances, 2018, 4(1):eaao6791.
[159] KIM K, SEO J, LEE E, et al. Large anomalous Hall current induced by topological nodal lines in a ferromagnetic van der Waals semimetal[J/OL]. Nature Materials, 2018, 17(9):794-799.
[160] DENG Y, YU Y, SONG Y, et al. Gate-tunable room-temperature ferromagnetism in two-dimensional Fe3GeTe2[J/OL]. Nature, 2018, 563(7729):94-99.
[161] KE J, YANG M, XIA W, et al. Magnetic and magneto-transport studies of two-dimensional ferromagnetic compound Fe3GeTe2[J/OL]. Journal Physics Condensed Matter, 2020, 32(40):405805.
[162] FENG H, LI Y, SHI Y, et al. Resistance anomaly and linear magnetoresistance in thin flakes of itinerant ferromagnet Fe3GeTe2[J/OL]. Chinese Physics Letters, 2022, 39(7):077501.
[163] XU J, PHELAN W A, CHIEN C L. Large Anomalous Nernst Effect in a van der Waals Ferromagnet Fe3GeTe2[J/OL]. Nano Letters, 2019, 19(11):8250-8254.
[164] LIN X, NI J. Layer-dependent intrinsic anomalous Hall effect in Fe3GeTe2[J/OL]. Physical Review B, 2019, 100(8):085403.
[165] FEI Z, HUANG B, MALINOWSKI P, et al. Two-dimensional itinerant ferromagnetism in atomically thin Fe3GeTe2[J/OL]. Nature Materials, 2018, 17(9):778-782.
[166] LI Q, YANG M, GONG C, et al. Patterning-Induced Ferromagnetism of Fe3GeTe2 van der Waals Materials beyond Room Temperature[J/OL]. Nano Letters, 2018, 18(9):5974-5980.
[167] TAN C, LEE J, JUNG S G, et al. Hard magnetic properties in nanoflake van der Waals Fe3GeTe2[J/OL]. Nature Communications, 2018, 9(1):1554.
[168] WANG X, TANG J, XIA X, et al. Current-driven magnetization switching in a van der Waals ferromagnet Fe3GeTe2[J/OL]. Science Advances, 2019, 5(8):eaaw8904.
[169] PARK S Y, KIM D S, LIU Y, et al. Controlling the Magnetic Anisotropy of the van der Waals Ferromagnet Fe3GeTe2 through Hole Doping[J/OL]. Nano Letters, 2020, 20(1):95-100.
[170] WANG H, LIU Y, WU P, et al. Above Room-Temperature Ferromagnetism in Wafer-Scale Two-Dimensional van der Waals Fe(3)GeTe2 Tailored by a Topological Insulator[J/OL]. ACS Nano, 2020, 14(8):10045-10053.
[171] PARK I K, GONG C, KIM K, LEE G. Controlling interlayer magnetic coupling in the two-dimensional magnet Fe3GeTe2[J/OL]. Physical Review B, 2022, 105(1):014406.
[172] KIDA T, FENNER L A, DEE A A, et al. The giant anomalous Hall effect in the ferromagnet Fe3Sn2--a frustrated kagome metal[J/OL]. Journal Physics Condensed Matter, 2011, 23(11):112205.
[173] HALDANE F D M. Model for a Quantum Hall Effect without Landau Levels: Condensed-Matter Realization of the "Parity Anomaly"[J/OL]. Physical Review Letters, 1988, 61(18):2015-2018.
[174] FENNER L A, DEE A A, WILLS A S. Non-collinearity and spin frustration in the itinerant kagome ferromagnet Fe3Sn2[J/OL]. Journal of Physics: Condensed Matter, 2009, 21(45):452202.
[175] YE L, KANG M, LIU J, et al. Massive Dirac fermions in a ferromagnetic kagome metal[J/OL]. Nature, 2018, 555(7698):638-642.
[176] MALAMAN B, ROQUES B, COURTOIS A, PROTAS J. Structure cristalline du stannure de fer Fe3Sn2[J/OL]. Acta Crystallographica Section B: Structural Crystallography and Crystal Chemistry, 1976, 32(5):1348-1351.
[177] CAER G L, MALAMAN B, ROQUES B. Mossbauer effect study of Fe3Sn2[J/OL]. Journal of Physics F: Metal Physics, 1978, 8(2):323.
[178] MALAMAN B, FRUCHART D, CAER G L. Magnetic properties of Fe3Sn2. II. Neutron diffraction study (and Mossbauer effect)[J/OL]. Journal of Physics F: Metal Physics, 1978, 8(11):2389.
[179] CAER G L, MALAMAN B, HAGGSTROM L, ERICSSON T. Magnetic properties of Fe3Sn2. III. A 119Sn Mossbauer study[J/OL]. Journal of Physics F: Metal Physics, 1979, 9(9):1905.
[180] LIN Z, CHOI J H, ZHANG Q, et al. Flatbands and Emergent Ferromagnetic Ordering in Fe3Sn2 Kagome Lattices[J/OL]. Physical Review Letters, 2018, 121(9):096401.
[181] YIN J X, ZHANG S S, LI H, et al. Giant and anisotropic many-body spin-orbit tunability in a strongly correlated kagome magnet[J/OL]. Nature, 2018, 562(7725):91-95.
[182] WANG Q, SUN S, ZHANG X, et al. Anomalous Hall effect in a ferromagnetic Fe3Sn2 single crystal with a geometrically frustrated Fe bilayer kagome lattice[J/OL]. Physical Review B, 2016, 94(7):075135.
[183] HOU Z-P, DING B, LI H, et al. Observation of new-type magnetic skymrions with extremerely high temperature stability and fabrication of skyrmion-based race-track memory device[J/OL]. Acta Physica Sinica, 2018, 67(13):137509.
[184] LI H, DING B, CHEN J, et al. Large topological Hall effect in a geometrically frustrated kagome magnet Fe3Sn2[J/OL]. Applied Physics Letters, 2019, 114(19):192408.
[185] O'NEILL C D, WILLS A S, HUXLEY A D. Possible topological contribution to the anomalous Hall effect of the noncollinear ferromagnet Fe3Sn2[J/OL]. Physical Review B, 2019, 100(17):174420.
[186] WANG Q, YIN Q, LEI H. Giant topological Hall effect of ferromagnetic kagome metal Fe3Sn2[J/OL]. Chinese Physics B, 2020, 29(1):017101.
[187] HOU Z, REN W, DING B, et al. Observation of Various and Spontaneous Magnetic Skyrmionic Bubbles at Room Temperature in a Frustrated Kagome Magnet with Uniaxial Magnetic Anisotropy[J/OL]. Advanced Materials, 2017, 29(29):1701144.
[188] HOU Z, ZHANG Q, XU G, et al. Creation of Single Chain of Nanoscale Skyrmion Bubbles with Record-High Temperature Stability in a Geometrically Confined Nanostripe[J/OL]. Nano Letters, 2018, 18(2):1274-1279.
[189] GAO L, SHEN S, WANG Q, et al. Anomalous Hall effect in ferrimagnetic metal RMn6Sn6 (R = Tb, Dy, Ho) with clean Mn kagome lattice[J/OL]. Applied Physics Letters, 2021, 119(9):092405.
[190] YIN J X, MA W, COCHRAN T A, et al. Quantum-limit Chern topological magnetism in TbMn6Sn6[J/OL]. Nature, 2020, 583(7817):533-536.
[191] CHEN D, LE C, FU C, et al. Large anomalous Hall effect in the kagome ferromagnet LiMn6Sn6[J/OL]. Physical Review B, 2021, 103(14):144410.
[192] EL IDRISSI B C, VENTURINI G, MALAMAN B. Crystal structures of RFe6Sn6 (R = Sc, Y, Gd-Tm, Lu) rare-earth iron stannides[J/OL]. Materials Research Bulletin, 1991, 26(12):1331-1338.
[193] VENTURINI G, IDRISSI B C E, MALAMAN B. Magnetic properties of RMn6Sn6 (R = Sc, Y, Gd−Tm, Lu) compounds with HfFe6Ge6 type structure[J/OL]. Journal of Magnetism and Magnetic Materials, 1991, 94(1):35-42.
[194] GHIMIRE N J, DALLY R L, POUDEL L, et al. Competing magnetic phases and fluctuation-driven scalar spin chirality in the kagome metal YMn6Sn6[J/OL]. Science Advances, 2020, 6(51):eabe2680.
[195] MA W, XU X, YIN J X, et al. Rare Earth Engineering in RMn6Sn6 (R=Gd-Tm, Lu) Topological Kagome Magnets[J/OL]. Physical Review Letters, 2021, 126(24):246602.
[196] LI M, WANG Q, WANG G, et al. Dirac cone, flat band and saddle point in kagome magnet YMn6Sn6[J/OL]. Nature Communications, 2021, 12(1):3129.
[197] GU X, CHEN C, WEI W S, et al. Robust kagome electronic structure in the topological quantum magnets XMn6Sn6 (X=Dy,Tb,Gd,Y)[J/OL]. Physical Review B, 2022, 105(15):155108.
[198] ROYCHOWDHURY S, OCHS A M, GUIN S N, et al. Large Room Temperature Anomalous Transverse Thermoelectric Effect in Kagome Antiferromagnet YMn6Sn6[J/OL]. Advanced Materials, 2022, 34(40):e2201350.
[199] DHAKAL G, CHEENICODE KABEER F, PATHAK A K, et al. Anisotropically large anomalous and topological Hall effect in a kagome magnet[J/OL]. Physical Review B, 2021, 104(16):L161115.
[200] WANG Q, NEUBAUER K J, DUAN C, et al. Field-induced topological Hall effect and double-fan spin structure with a c-axis component in the metallic kagome antiferromagnetic compound YMn6Sn6[J/OL]. Physical Review B, 2021, 103(1):014416.
[201] KABIR F, FILIPPONE R, DHAKAL G, et al. Unusual magnetic and transport properties in HoMn6Sn6 kagome magnet[J/OL]. Physical Review Materials, 2022, 6(6):064404.
[202] LEE J, MUN E. Anisotropic magnetic property of single crystals RV6Sn6 (R=Y, Gd−Tm, Lu)[J/OL]. Physical Review Materials, 2022, 6(8):083401.
[203] PENG S, HAN Y, POKHAREL G, et al. Realizing Kagome Band Structure in Two-Dimensional Kagome Surface States of RV6Sn6 (R=Gd, Ho)[J/OL]. Physical Review Letters, 2021, 127(26):266401.
[204] HU Y, WU X, YANG Y, et al. Tunable topological Dirac surface states and van Hove singularities in kagome metal GdV6Sn6[J/OL]. Science Advances, 2022, 8(38):eadd2024.
[205] CHENG E, XIA W, SHI X, et al. Magnetism-induced topological transition in EuAs3[J/OL]. Nature Communications, 2021, 12(1):6970.
[206] BAUHOFER W, WITTMANN M, SCHNERING H G V. Structure, electrical and magnetic properties of CaAs3, SrAs3, BaAs3 and EuAs3[J/OL]. Journal of Physics and Chemistry of Solids, 1981, 42(8):687-695.
[207] CHATTOPADHYAY T, V. SCHNERING H G, BROWN P J. Neutron diffraction study of the magnetic ordering in EuAs3[J/OL]. Journal of Magnetism and Magnetic Materials, 1982, 28(3):247-249.
[208] CHATTOPADHYAY T, BROWN P J. Field-induced transverse-sine-wave-to-longitudinal-sine-wave transition in EuAs3[J/OL]. Physical Review B, 1988, 38(1):795-797.
[209] CHATTERJI T, LIS K D, TSCHENTSCHER T, et al. High-energy non-resonant X-ray magnetic scattering from EuAs3[J/OL]. Solid State Communications, 2004, 131(11):713-717.
[210] CHATTERJI T, HENGGELER W. μSR investigation of the magnetic ordering in EuAs3[J/OL]. Solid State Communications, 2004, 132(9):617-622.
[211] BAUHOFER W, MCEWEN K A. Anisotropic magnetoresistance of the semimetallic antiferromagnet EuAs3[J/OL]. Physical Review B, 1991, 43(16):13450-13455.
[212] 黄昆, 韩汝琦(改编). 固体物理学[M]. 北京: 高等教育出版社, 1988, 35.
[213] CHANG C Z, ZHANG J, FENG X, et al. Experimental observation of the quantum anomalous Hall effect in a magnetic topological insulator[J/OL]. Science, 2013, 340(6129):167-70.
[214] TANG F, REN Y, WANG P, et al. Three-dimensional quantum Hall effect and metal-insulator transition in ZrTe5[J/OL]. Nature, 2019, 569(7757):537-541.
[215] SCHMIDT P, BINNEWIES M, R G. Chemical Vapor Transport Reactions–Methods, Materials, Modeling[M/OL]. Advanced Topic on Crystal Growth, 2013.
[216] C R W. On a New Kind of Rays[J/OL]. Nature, 1896, 53(1369):274-276.
[217] L B W. The Diffraction of Short Electromagnetic Waves by a Crystal[J/OL]. Cambridge Philosophical Society, 1912, 17:43.
[218] HERTZ H. Ueber einen Einfluss des ultravioletten Lichtes auf die electrische Entladung[J/OL]. Annalen der Physik, 2006, 267(8):983-1000.
[219] EINSTEIN A. Zur Elektrodynamik bewegter Körper[J/OL]. Annalen der Physik, 1905, 322(10):891-921.
[220] DAMASCELLI A, HUSSAIN Z, SHEN Z-X. Angle-resolved photoemission studies of the cuprate superconductors[J/OL]. Reviews of Modern Physics, 2003, 75(2):473-541.
[221] LV B, QIAN T, DING H. Angle-resolved photoemission spectroscopy and its application to topological materials[J/OL]. Nature Reviews Physics, 2019, 1(10):609-626.
[222] NORMAN M R, DING H, FRETWELL H, et al. Extraction of the electron self-energy from angle-resolved photoemission data: Application to Bi2Sr2CaCu2O8+x[J/OL]. Physical Review B, 1999, 60(10):7585-7590.
[223] BERGLUND C N, SPICER W E. Photoemission Studies of Copper and Silver: Theory[J/OL]. Physical Review, 1964, 136(4A):A1030-A1044.
[224] FAN H Y. Theory of Photoelectric Emission from Metals[J/OL]. Physical Review, 1945, 68(1-2):43-52.
[225] FEIBELMAN P J, EASTMAN D E. Photoemission spectroscopy—Correspondence between quantum theory and experimental phenomenology[J/OL]. Physical Review B, 1974, 10(12):4932-4947.
[226] DAMASCELLI A. Probing the Electronic Structure of Complex Systems by ARPES[J/OL]. Physica Scripta, 2004, T109.
[227] XIA Y, QIAN D, HSIEH D, et al. Observation of a large-gap topological-insulator class with a single Dirac cone on the surface[J/OL]. Nature Physics, 2009, 5(6):398-402.
[228] YOSHIDA T, TANAKA K, YAGI H, et al. Direct observation of the mass renormalization in SrVO3 by angle resolved photoemission spectroscopy[J/OL]. Physical Review Letters, 2005, 95(14):146404.
[229] XU Y M, HUANG Y B, CUI X Y, et al. Observation of a ubiquitous three-dimensional superconducting gap function in optimally doped Ba0.6K0.4Fe2As2[J/OL]. Nature Physics, 2011, 7(3):198-202.
[230] HEDIN L, LUNDQVIST S. Effects of Electron-Electron and Electron-Phonon Interactions on the One-Electron States of Solids [M]. 1970: 1-181.
[231] ZHANG Y, CHEN F, HE C, et al. Orbital characters of bands in the iron-based superconductor BaFe1.85Co0.15As2[J/OL]. Physical Review B, 2011, 83(5):054510.
[232] SEAH M P, DENCH W A. Quantitative electron spectroscopy of surfaces: A standard data base for electron inelastic mean free paths in solids[J/OL]. Surface and Interface Analysis, 1979, 1(1):2-11.
[233] SOBOTA J A, HE Y, SHEN Z-X. Angle-resolved photoemission studies of quantum materials[J/OL]. Reviews of Modern Physics, 2021, 93(2):025006.
[234] LIU G, WANG G, ZHU Y, et al. Development of a vacuum ultraviolet laser-based angle-resolved photoemission system with a superhigh energy resolution better than 1 meV[J/OL]. Review of Scientific Instruments, 2008, 79:023105.
[235] KISS T, SHIMOJIMA T, ISHIZAKA K, et al. A versatile system for ultrahigh resolution, low temperature, and polarization dependent laser-angle-resolved photoemission spectroscopy[J/OL]. Review of Scientific Instruments, 2008, 79:023106.
[236] BORISENKO S V. “One-cubed” ARPES User Facility at BESSY II[J/OL]. Synchrotron Radiation News, 2012, 25(5):6-11.
[237] STROCOV V N, WANG X, SHI M, et al. Soft-X-ray ARPES facility at the ADRESS beamline of the SLS: concepts, technical realisation and scientific applications[J/OL]. Journal of Synchrotron Radiation, 2014, 21:32-44.
[238] AVILA J, ASENSIO M C. First NanoARPES User Facility Available at SOLEIL: An Innovative and Powerful Tool for Studying Advanced Materials[J/OL]. Synchrotron Radiation News, 2014, 27(2):24-30.
[239] BOGAERTS A, NEYTS E, GIJBELS R, VAN DER MULLEN J. Gas discharge plasmas and their applications[J/OL]. Spectrochimica Acta Part B: Atomic Spectroscopy, 2002, 57(4):609-658.
[240] 贝克斯帝尔科技(北京)有限公司 [EB/OL].
[2024-02-22]. http://www.specs-tii.com.cn/index.php?m=content&c=index&a=show&catid=280&id=523.
[241] LIU J, SHEN D, LIU Z, et al. A short introduction to synchrotron radiation-based angle-resolved photoemission spectroscopy endstations in China[J/OL]. SCIENTIA SINICA Physica, Mechanica & Astronomica, 2023, 53(6):609-626.
[242] GAY T J, DUNNING F B. Mott electron polarimetry[J/OL]. Review of Scientific Instruments, 1992, 63(2):1635-1651.
[243] KIRSCHNER J, FEDER R. Spin Polarization in Double Diffraction of Low-Energy Electrons from W(001): Experiment and Theory[J/OL]. Physical Review Letters, 1979, 42(15):1008-1011.
[244] OKUDA T, TAKEICHI Y, MAEDA Y, et al. A new spin-polarized photoemission spectrometer with very high efficiency and energy resolution[J/OL]. Review of Scientific Instrument, 2008, 79(12):123117.
[245] KOLBE M, LUSHCHYK P, PETEREIT B, et al. Highly efficient multichannel spin-polarization detection[J/OL]. Physical Review Letters, 2011, 107(20):207601.
[246] JI F, SHI T, YE M, et al. Multichannel Exchange-Scattering Spin Polarimetry[J/OL]. Physical Review Letters, 2016, 116(17):177601.
[247] WEINELT M. Time-resolved two-photon photoemission from metal surfaces[J/OL]. Journal of Physics: Condensed Matter, 2002, 14(43):R1099-R1141.
[248] PETEK H, OGAWA S. Femtosecond time-resolved two-photon photoemission studies of electron dynamics in metals[J/OL]. Progress in Surface Science, 1997, 56(4):239-310.
[249] GE N H, WONG C M, HARRIS C B. Femtosecond studies of electron dynamics at interfaces[J/OL]. Accounts of Chemistry Research, 2000, 33(2):111-8.
[250] MATHIAS S, MIAJA-AVILA L, MURNANE M M, et al. Angle-resolved photoemission spectroscopy with a femtosecond high harmonic light source using a two-dimensional imaging electron analyzer[J/OL]. Review of Scientific Instrument, 2007, 78(8):083105.
[251] ISHIDA Y, OTSU T, OZAWA A, et al. High repetition pump-and-probe photoemission spectroscopy based on a compact fiber laser system[J/OL]. Review of Scientific Instrument, 2016, 87(12):123902.
[252] SMALLWOOD C L, KAINDL R A, LANZARA A. Ultrafast angle-resolved photoemission spectroscopy of quantum materials[J/OL]. Europhysics Letters, 2016, 115(2):27001.
[253] ROHDE G, HENDEL A, STANGE A, et al. Time-resolved ARPES with sub-15 fs temporal and near Fourier-limited spectral resolution[J/OL]. Review of Scientific Instrument, 2016, 87(10):103102.
[254] CAVALIERI A L, MULLER N, UPHUES T, et al. Attosecond spectroscopy in condensed matter[J/OL]. Nature, 2007, 449(7165):1029-32.
[255] TAO Z, CHEN C, SZILVASI T, et al. Direct time-domain observation of attosecond final-state lifetimes in photoemission from solids[J/OL]. Science, 2016, 353(6294):62-7.
[256] HELLMANN S, ROHWER T, KALLANE M, et al. Time-domain classification of charge-density-wave insulators[J/OL]. Nature Communications, 2012, 3:1069.
[257] BELOPOLSKI I, SANCHEZ D S, ISHIDA Y, et al. Discovery of a new type of topological Weyl fermion semimetal state in MoxW1-xTe2[J/OL]. Nature Communications, 2016, 7:13643.
[258] ZHANG P, MA J Z, ISHIDA Y, et al. Topologically Entangled Rashba-Split Shockley States on the Surface of Grey Arsenic[J/OL]. Physical Review Letters, 2017, 118(4):046802.
[259] BELOPOLSKI I, YU P, SANCHEZ D S, et al. Signatures of a time-reversal symmetric Weyl semimetal with only four Weyl points[J/OL]. Nature Communications, 2017, 8(1):942.
[260] WOLF M, ERTL G. Electron Dynamics at Surfaces[J/OL]. Science, 2000, 288(5470):1352-1353.
[261] HERTEL T, KNOESEL E, WOLF M, ERTL G. Ultrafast electron dynamics at Cu(111): Response of an electron gas to optical excitation[J/OL]. Physical Review Letters, 1996, 76(3):535-538.
[262] HÖFER U, SHUMAY I L, REUS C, et al. Time-Resolved Coherent Photoelectron Spectroscopy of Quantized Electronic States on Metal Surfaces[J/OL]. Science, 1997, 277(5331):1480-1482.
[263] KIRCHMANN P S, LOUKAKOS P A, BOVENSIEPEN U, WOLF M. Ultrafast electron dynamics studied with time-resolved two-photon photoemission: intra- and interband scattering in C6F6Cu(111)[J/OL]. New Journal of Physics, 2005, 7:113-113.
[264] SOBOTA J A, YANG S L, KEMPER A F, et al. Direct optical coupling to an unoccupied dirac surface state in the topological insulator Bi2Se3[J/OL]. Physical Reviewe Letters, 2013, 111(13):136802.
[265] SAVARY L, BALENTS L. Quantum spin liquids: a review[J/OL]. Reports on Progress Physics, 2017, 80(1):016502.
[266] ZHOU Y, KANODA K, NG T-K. Quantum spin liquid states[J/OL]. Reviews of Modern Physics, 2017, 89(2):025003.
[267] GONG C, LI L, LI Z, et al. Discovery of intrinsic ferromagnetism in two-dimensional van der Waals crystals[J/OL]. Nature, 2017, 546(7657):265-269.
[268] HUANG B, CLARK G, NAVARRO-MORATALLA E, et al. Layer-dependent ferromagnetism in a van der Waals crystal down to the monolayer limit[J/OL]. Nature, 2017, 546:270.
[269] HASAN M Z, KANE C L. Colloquium: Topological insulators[J/OL]. Reviews of Modern Physics, 2010, 82(4):3045.
[270] BERNEVIG B A, HUGHES T L, ZHANG S C. Quantum spin Hall effect and topological phase transition in HgTe quantum wells[J/OL]. Science, 2006, 314(5806):1757-1761.
[271] KONIG M, WIEDMANN S, BRUNE C, et al. Quantum spin hall insulator state in HgTe quantum wells[J/OL]. Science, 2007, 318(5851):766-770.
[272] FU L, KANE C L, MELE E J. Topological insulators in three dimensions[J/OL]. Physical Review Letters, 2007, 98(10):106803.
[273] HSIEH D, QIAN D, WRAY L, et al. A topological Dirac insulator in a quantum spin Hall phase[J/OL]. Nature, 2008, 452(7190):970-974.
[274] TANG F, PO H C, VISHWANATH A, WAN X. Comprehensive search for topological materials using symmetry indicators[J/OL]. Nature, 2019, 566(7745):486-489.
[275] VERGNIORY M G, ELCORO L, FELSER C, et al. A complete catalogue of high-quality topological materials[J/OL]. Nature, 2019, 566(7745):480-485.
[276] ZHANG T, JIANG Y, SONG Z, et al. Catalogue of topological electronic materials[J/OL]. Nature, 2019, 566(7745):475-479.
[277] LIU CHANG, XIANG-RUI L. Angle resolved photoemission spectroscopy studies on three dimensional strong topological insulators and magnetic topological insulators[J/OL]. Acta Physica Sinica, 2019, 68(22):227901.
[278] ANDO Y. Topological Insulator Materials[J/OL]. Journal of the Physical Society of Japan, 2013, 82(10):102001.
[279] SOBOTA J A, HE Y, SHEN Z-X. Angle-resolved photoemission studies of quantum materials[J/OL]. Reviews of Modern Physics, 2021, 93(2):025006.
[280] CHEN Y L, ANALYTIS J G, CHU J H, et al. Experimental Realization of a Three-Dimensional Topological Insulator, Bi2Te3[J/OL]. Science, 2009, 325(5937):178-181.
[281] HSIEH D, XIA Y, QIAN D, et al. A tunable topological insulator in the spin helical Dirac transport regime[J/OL]. Nature, 2009, 460(7259):1101-U59.
[282] ZHANG H J, LIU C X, QI X L, et al. Topological insulators in Bi2Se3, Bi2Te3 and Sb2Te3 with a single Dirac cone on the surface[J/OL]. Nature Physics, 2009, 5(6):438-442.
[283] YU R, ZHANG W, ZHANG H-J, et al. Quantized Anomalous Hall Effect in Magnetic Topological Insulators[J/OL]. Science, 2010, 329(5987):61-64.
[284] CHANG C-Z, ZHANG J, FENG X, et al. Experimental Observation of the Quantum Anomalous Hall Effect in a Magnetic Topological Insulator[J/OL]. Science, 2013, 340(6129):167.
[285] VONKLITZING K, DORDA G, PEPPER M. New Method for High-Accuracy Determination of the Fine-Structure Constant Based on Quantized Hall Resistance[J/OL]. Physical Review Letters, 1980, 45(6):494-497.
[286] THOULESS D J, KOHMOTO M, NIGHTINGALE M P, DEN NIJS M. Quantized Hall Conductance in a Two-Dimensional Periodic Potential[J/OL]. Physical Review Letters, 1982, 49(6):405-408.
[287] MOGI M, OKAMURA Y, KAWAMURA M, et al. Experimental signature of the parity anomaly in a semi-magnetic topological insulator[J/OL]. Nature Physics, 2022, 18:390-394.
[288] YASUDA K, MOGI M, YOSHIMI R, et al. Quantized chiral edge conduction on domain walls of a magnetic topological insulator[J/OL]. Science, 2017, 358(6368):1311-1314.
[289] MOGI M, KAWAMURA M, TSUKAZAKI A, et al. Tailoring tricolor structure of magnetic topological insulator for robust axion insulator[J/OL]. Science Advances, 2017, 3(10):eaao1669.
[290] MOGI M, YOSHIMI R, TSUKAZAKI A, et al. Magnetic modulation doping in topological insulators toward higher-temperature quantum anomalous Hall effect[J/OL]. Applied Physics Letters, 2015, 107(18):182401.
[291] KOU X, GUO S T, FAN Y, et al. Scale-invariant quantum anomalous Hall effect in magnetic topological insulators beyond the two-dimensional limit[J/OL]. Physical Review Letters, 2014, 113(13):137201.
[292] CHECKELSKY J G, YOSHIMI R, TSUKAZAKI A, et al. Trajectory of the anomalous Hall effect towards the quantized state in a ferromagnetic topological insulator[J/OL]. Nature Physics, 2014, 10(10):731-736.
[293] MONG R S K, ESSIN A M, MOORE J E. Antiferromagnetic topological insulators[J/OL]. Physical Review B, 2010, 81(24):245209.
[294] OTROKOV M M, MENSHCHIKOVA T V, RUSINOV I P, et al. Magnetic extension as an efficient method for realizing the quantum anomalous hall state in topological insulators[J/OL]. JETP Letters, 2017, 105(5):297-302.
[295] ZHANG D, SHI M, ZHU T, et al. Topological Axion States in the Magnetic Insulator MnBi2Te4 with the Quantized Magnetoelectric Effect[J/OL]. Physical Review Letters, 2019, 122(20):206401.
[296] OTROKOV M M, RUSINOV I P, BLANCO-REY M, et al. Unique Thickness-Dependent Properties of the van der Waals Interlayer Antiferromagnet MnBi2Te4 Films[J/OL]. Physical Review Letters, 2019, 122(10):107202.
[297] LI J, LI Y, DU S, et al. Intrinsic magnetic topological insulators in van der Waals layered MnBi2Te4-family materials[J/OL]. Science Advances, 2019, 5(6):eaaw5685.
[298] OTROKOV M M, KLIMOVSKIKH, II, BENTMANN H, et al. Prediction and observation of an antiferromagnetic topological insulator[J/OL]. Nature, 2019, 576(7787):416-422.
[299] LI J, LI Y, DU S, et al. Intrinsic magnetic topological insulators in van der Waals layered MnBi2Te4-family materials[J/OL]. Science Advances, 2019, 5(6):eaaw5685.
[300] LEE D S, KIM T-H, PARK C-H, et al. Crystal structure, properties and nanostructuring of a new layered chalcogenide semiconductor, Bi2MnTe4[J/OL]. CrystEngComm, 2013, 15(27):5532.
[301] ALIEV Z S, AMIRASLANOV I R, NASONOVA D I, et al. Novel ternary layered manganese bismuth tellurides of the MnTe-Bi2Te3 system: Synthesis and crystal structure[J/OL]. Journal of Alloys and Compounds, 2019, 789:443-450.
[302] DING L, HU C, YE F, et al. Crystal and magnetic structures of magnetic topological insulators MnBi2Te4 and MnBi4Te7[J/OL]. Physical Review B, 2020, 101(2):020412.
[303] YAN J Q, ZHANG Q, HEITMANN T, et al. Crystal growth and magnetic structure of MnBi2Te4[J/OL]. Physical Review Materials, 2019, 3(6):064202.
[304] LEE S H, ZHU Y, WANG Y, et al. Spin scattering and noncollinear spin structure-induced intrinsic anomalous Hall effect in antiferromagnetic topological insulator MnBi2Te4[J/OL]. Physical Review Research, 2019, 1(1):012011.
[305] VIDAL R C, BENTMANN H, PEIXOTO T R F, et al. Surface states and Rashba-type spin polarization in antiferromagnetic MnBi2Te4 (0001)[J/OL]. Physical Review B, 2019, 100(12):121104.
[306] GONG Y, GUO J, LI J, et al. Experimental Realization of an Intrinsic Magnetic Topological Insulator[J/OL]. Chinese Physics Letters, 2019, 36(7):076801.
[307] ZHANG D, SHI M, ZHU T, et al. Topological Axion States in the Magnetic Insulator MnBi2Te4 with the Quantized Magnetoelectric Effect[J/OL]. Physical Review Letters, 2019, 122(20):206401.
[308] OTROKOV M M, RUSINOV I P, BLANCO-REY M, et al. Unique Thickness-Dependent Properties of the van der Waals Interlayer Antiferromagnet MnBi2Te4 Films[J/OL]. Physical Review Letters, 2019, 122(10):107202.
[309] M. M. OTROKOV, I. I. KLIMOVSKIKH, H. BENTMANN, et al. Prediction and observation of the first antiferromagnetic topological insulator[EB/OL] 2018
[2024-2-22]. DOI:10.48550/arXiv.1809.07389.
[310] CHEN Y J, XU L X, LI J H, et al. Topological Electronic Structure and Its Temperature Evolution in Antiferromagnetic Topological Insulator MnBi2Te4[J/OL]. Physical Review X, 2019, 9(4):041040.
[311] HAO Y-J, LIU P, FENG Y, et al. Gapless Surface Dirac Cone in Antiferromagnetic Topological Insulator MnBi2Te4[J/OL]. Physical Review X, 2019, 9(4):041038.
[312] SWATEK P, WU Y, WANG L-L, et al. Gapless Dirac surface states in the antiferromagnetic topological insulator MnBi2Te4[J/OL]. Physical Review B, 2020, 101(16):161109.
[313] LIANG A, CHEN C, ZHENG H, et al. Approaching a Minimal Topological Electronic Structure in Antiferromagnetic Topological Insulator MnBi2Te4 via Surface Modification[J/OL]. Nano Letters, 2022, 22(11):4307-4314.
[314] NEVOLA D, LI H X, YAN J Q, et al. Coexistence of Surface Ferromagnetism and a Gapless Topological State in MnBi2Te4[J/OL]. Physical Review Letters, 2020, 125(11):117205.
[315] SHIKIN A M, ESTYUNIN D A, KLIMOVSKIKH, II, et al. Nature of the Dirac gap modulation and surface magnetic interaction in axion antiferromagnetic topological insulator [Formula: see text][J/OL]. Scientific Reports, 2020, 10(1):13226.
[316] SHIKIN A M, ESTYUNIN D A, ZAITSEV N L, et al. Sample-dependent Dirac-point gap in MnBi2Te4 and its response to applied surface charge: A combined photoemission andab initiostudy[J/OL]. Physical Review B, 2021, 104(11):115168.
[317] XU R, BAI Y, ZHOU J, et al. Evolution of the Electronic Structure of Ultrathin MnBi2Te4 Films[J/OL]. Nano Letters, 2022, 22(15):6320-6327.
[318] IWASAWA H, SCHWIER E F, ARITA M, et al. Development of laser-based scanning micro-ARPES system with ultimate energy and momentum resolutions[J/OL]. Ultramicroscopy, 2017, 182:85-91.
[319] LEE D S, KIM T-H, PARK C-H, et al. Crystal structure, properties and nanostructuring of a new layered chalcogenide semiconductor, Bi2MnTe4[J/OL]. CrystEngComm, 2013, 15(27):5532-5538
[320] ZEUGNER A, NIETSCHKE F, WOLTER A U B, et al. Chemical Aspects of the Candidate Antiferromagnetic Topological Insulator MnBi2Te4[J/OL]. Chemistry of Materials, 2019, 31(8):2795-2806.
[321] YAN J Q, ZHANG Q, HEITMANN T, et al. Crystal growth and magnetic structure of MnBi2Te4[J/OL]. Physical Review Materials, 2019, 3(6):064202.
[322] HAO Y-J, LIU P, FENG Y, et al. Gapless Surface Dirac Cone in Antiferromagnetic Topological Insulator MnBi2Te4[J/OL]. Physical Review X, 2019, 9(4):041038.
[323] CHEN Y J, XU L X, LI J H, et al. Topological Electronic Structure and Its Temperature Evolution in Antiferromagnetic Topological Insulator MnBi2Te4[J/OL]. Physical Review X, 2019, 9(4):041040.
[324] LI H, GAO S-Y, DUAN S-F, et al. Dirac Surface States in Intrinsic Magnetic Topological Insulators EuSn2As2 and MnBi2nTe3n+1[J/OL]. Physical Review X, 2019, 9(4):041039.
[325] ESSIN A M, MOORE J E, VANDERBILT D. Magnetoelectric polarizability and axion electrodynamics in crystalline insulators[J/OL]. Physical Review Letters, 2009, 102(14):146805.
[326] LI R, WANG J, QI X-L, ZHANG S-C. Dynamical axion field in topological magnetic insulators[J/OL]. Nature Physics, 2010, 6(4):284-288.
[327] WANG J, LIAN B, ZHANG S-C. Dynamical axion field in a magnetic topological insulator superlattice[J/OL]. Physical Review B, 2016, 93(4):045115.
[328] SEKINE A, NOMURA K. Axion electrodynamics in topological materials[J/OL]. Journal of Applied Physics, 2021, 129(14):141101.
[329] FU H, LIU C-X, YAN B. Exchange bias and quantum anomalous nomalous Hall effect in the MnBi2Te4/CrI3 heterostructure[J/OL]. Science Advances, 2020, 6(10):eaaz0948.
[330] WANG Z, RODRIGUEZ J O, JIAO L, et al. Evidence for dispersing 1D Majorana channels in an iron-based superconductor[J/OL]. Science, 2020, 367(6473):104.
[331] PALACIO-MORALES A, MASCOT E, COCKLIN S, et al. Atomic-scale interface engineering of Majorana edge modes in a 2D magnet-superconductor hybrid system[J/OL]. Science Advances, 2019, 5(7):eaav6600.
[332] YASUDA K, MOGI M, YOSHIMI R, et al. Quantized chiral edge conduction on domain walls of a magnetic topological insulator[J/OL]. Science, 2017, 358(6368):1311.
[333] HE Q L, PAN L, STERN A L, et al. Chiral Majorana fermion modes in a quantum anomalous Hall insulator–superconductor structure[J/OL]. Science, 2017, 357(6348):294.
[334] DENG Y, YU Y, SHI M Z, et al. Quantum anomalous Hall effect in intrinsic magnetic topological insulator MnBi2Te4[J/OL]. Science, 2020, 367(6480):895-900.
[335] LIU C, WANG Y, LI H, et al. Robust axion insulator and Chern insulator phases in a two-dimensional antiferromagnetic topological insulator[J/OL]. Nature Materials, 2020, 19(5):522-527.
[336] GE J, LIU Y, LI J, et al. High-Chern-number and high-temperature quantum Hall effect without Landau levels[J/OL]. National Science Review, 2020, 7(8):1280-1287.
[337] GAO A, LIU Y F, HU C, et al. Layer Hall effect in a 2D topological axion antiferromagnet[J/OL]. Nature, 2021, 595(7868):521-525.
[338] LIAN B, LIU Z, ZHANG Y, WANG J. Flat Chern Band from Twisted Bilayer MnBi2Te4[J/OL]. Physical Review Letters, 2020, 124(12):126402.
[339] SUN H, XIA B, CHEN Z, et al. Rational Design Principles of the Quantum Anomalous Hall Effect in Superlatticelike Magnetic Topological Insulators[J/OL]. Physical Review Letters, 2019, 123(9):096401.
[340] LI J, WANG C, ZHANG Z, et al. Magnetically controllable topological quantum phase transitions in the antiferromagnetic topological insulator MnBi2Te4[J/OL]. Physical Review B, 2019, 100(12):121103.
[341] CHOWDHURY S, GARRITY K F, TAVAZZA F. Prediction of Weyl semimetal and antiferromagnetic topological insulator phases in Bi2MnSe4[J/OL]. npj Computational Materials, 2019, 5(1):33.
[342] ZHANG R X, WU F, DAS SARMA S. Mobius Insulator and Higher-Order Topology in MnBi2nTe3n+1[J/OL]. Physical Review Letters, 2020, 124(13):136407.
[343] HU Y, XU L, SHI M, et al. Universal gapless Dirac cone and tunable topological states in (MnBi2Te4)m(Bi2Te3)n heterostructures[J/OL]. Physical Review B, 2020, 101(16):161113.
[344] NEVOLA D, LI H X, YAN J Q, et al. Coexistence of Surface Ferromagnetism and a Gapless Topological State in MnBi2Te4[J/OL]. Physical Review Letters, 2020, 125(11):117205.
[345] SWATEK P, WU Y, WANG L-L, et al. Gapless Dirac surface states in the antiferromagnetic topological insulator MnBi2Te4[J/OL]. Physical Review B, 2020, 101(16):161109.
[346] FUKASAWA T, KUSAKA S, SUMIDA K, et al. Absence of ferromagnetism in MnBi2Te4/Bi2Te3 down to 6 K[J/OL]. Physical Review B, 2021, 103(20):205405.
[347] YAN C, FERNANDEZ-MULLIGAN S, MEI R, et al. Origins of electronic bands in the antiferromagnetic topological insulator MnBi2Te4[J/OL]. Physical Review B, 2021, 104(4):L041102.
[348] XU R, BAI Y, ZHOU J, et al. Evolution of the Electronic Structure of Ultrathin MnBi2Te4 Films[J/OL]. Nano Letters, 2022, 22(15):6320-6327.
[349] VIDAL R C, BENTMANN H, FACIO J I, et al. Orbital Complexity in Intrinsic Magnetic Topological Insulators MnBi4Te7 and MnBi6Te10[J/OL]. Physical Review Letters, 2021, 126(17):176403.
[350] WU J, LIU F, LIU C, et al. Toward 2D Magnets in the (MnBi2Te4)(Bi2Te3)n Bulk Crystal[J/OL]. Advanced Materials, 2020, 32(23):e2001815.
[351] YAN J Q, LIU Y H, PARKER D S, et al. A-type antiferromagnetic order in MnBi4Te7 and MnBi6Te10 single crystals[J/OL]. Physical Review Materials, 2020, 4(5):054202.
[352] DING L, HU C, YE F, et al. Crystal and magnetic structures of magnetic topological insulators MnBi2Te4 and MnBi4Te7[J/OL]. Physical Review B, 2020, 101(2):020412.
[353] TIAN S, GAO S, NIE S, et al. Magnetic topological insulator MnBi6Te10 with a zero-field ferromagnetic state and gapped Dirac surface states[J/OL]. Physical Review B, 2020, 102(3):035144.
[354] MA X-M, CHEN Z, SCHWIER E F, et al. Hybridization-induced gapped and gapless states on the surface of magnetic topological insulators[J/OL]. Physical Review B, 2020, 102(24):245136.
[355] WU X, LI J, MA X-M, et al. Distinct Topological Surface States on the Two Terminations of MnBi4Te7[J/OL]. Physical Review X, 2020, 10(3):031013.
[356] JO N H, WANG L-L, SLAGER R-J, et al. Intrinsic axion insulating behavior in antiferromagnetic MnBi6Te10[J/OL]. Physical Review B, 2020, 102(4):045130.
[357] LIANG A, CHEN C, ZHENG H, et al. Approaching a Minimal Topological Electronic Structure in Antiferromagnetic Topological Insulator MnBi2Te4 via Surface Modification[J/OL]. Nano Letters, 2022, 22(11):4307-4314.
[358] SASS P M, KIM J, VANDERBILT D, et al. Robust A-Type Order and Spin-Flop Transition on the Surface of the Antiferromagnetic Topological Insulator MnBi2Te4[J/OL]. Physical Review Letters, 2020, 125(3):037201.
[359] SHIKIN A M, ESTYUNIN D A, KLIMOVSKIKH, II, et al. Nature of the Dirac gap modulation and surface magnetic interaction in axion antiferromagnetic topological insulator MnBi2Te4[J/OL]. Scientific Reports, 2020, 10(1):13226.
[360] LIU M K, LEI C, KIM H, et al. Visualizing the interplay of Dirac mass gap and magnetism at nanoscale in intrinsic magnetic topological insulators[J/OL]. Proceedings of the National Academy of Sciences, 2022, 119(42): e2207681119.
[361] YANG S, XU X, ZHU Y, et al. Odd-Even Layer-Number Effect and Layer-Dependent Magnetic Phase Diagrams in MnBi2Te4[J/OL]. Physical Review X, 2021, 11(1):011003.
[362] KAGERER P, FORNARI C I, BUCHBERGER S, et al. Molecular beam epitaxy of antiferromagnetic (MnBi2Te4)(Bi2Te3) thin films on BaF2 (111)[J/OL]. Journal of Applied Physics, 2020, 128(13):135303.
[363] HIRAHARA T, OTROKOV M M, SASAKI T T, et al. Fabrication of a novel magnetic topological heterostructure and temperature evolution of its massive Dirac cone[J/OL]. Nature Communications, 2020, 11(1):4821.
[364] VIDAL R C, ZEUGNER A, FACIO J I, et al. Topological Electronic Structure and Intrinsic Magnetization in MnBi4Te7: A Bi2Te3 Derivative with a Periodic Mn Sublattice[J/OL]. Physical Review X, 2019, 9(4):041065.
[365] ESTYUNIN D A, KLIMOVSKIKH I I, SHIKIN A M, et al. Signatures of temperature driven antiferromagnetic transition in the electronic structure of topological insulator MnBi2Te4[J/OL]. APL Materials, 2020, 8(2):021105.
[366] GARNICA M, OTROKOV M M, AGUILAR P C, et al. Native point defects and their implications for the Dirac point gap at MnBi2Te4(0001)[J/OL]. npj Quantum Materials, 2022, 7(1):7.
[367] WIMMER S, SANCHEZ-BARRIGA J, KUPPERS P, et al. Mn-Rich MnSb2Te4 : A Topological Insulator with Magnetic Gap Closing at High Curie Temperatures of 45-50 K[J/OL]. Advanced Materials, 2021, 33(42):e2102935.
[368] SITNICKA J, PARK K, SKUPIŃSKI P, et al. Systemic consequences of disorder in magnetically self-organized topological MnBi2Te4/(Bi2Te3)n superlattices[J/OL]. 2D Materials, 2021, 9(1):015026.
[369] SHIKIN A M, MAKAROVA T P, ERYZHENKOV A V, et al. Routes for the topological surface state energy gap modulation in antiferromagnetic MnBi2Te4 [J/OL]. Physica B Condensed Matter, 2023, 649(15):414443.
[370] LIU Y, WANG L-L, ZHENG Q, et al. Site Mixing for Engineering Magnetic Topological Insulators[J/OL]. Physical Review X, 2021, 11(2):021033.
[371] LAI Y, KE L, YAN J, et al. Defect-driven ferrimagnetism and hidden magnetization in MnBi2Te4[J/OL]. Physical Review B, 2021, 103(18):184429.
[372] HU C, LIEN S-W, FENG E, et al. Tuning magnetism and band topology through antisite defects in Sb-doped MnBi4Te7[J/OL]. Physical Review B, 2021, 104(5):054422.
[373] YUAN Y, WANG X, LI H, et al. Electronic States and Magnetic Response of MnBi2Te4 by Scanning Tunneling Microscopy and Spectroscopy[J/OL]. Nano Letters, 2020, 20(5):3271-3277.
[374] LIANG Z, LUO A, SHI M, et al. Mapping Dirac fermions in the intrinsic antiferromagnetic topological insulators (MnBi2Te4)(Bi2Te3)n (n=0,1)[J/OL]. Physical Review B, 2020, 102(16):161115.
[375] HUANG Z, DU M-H, YAN J, WU W. Native defects in antiferromagnetic topological insulator MnBi2Te4[J/OL]. Physical Review Materials, 2020, 4(12):121202.
[376] YANG Z, ZHANG H. Evolution of surface states of antiferromagnetic topological insulator MnBi2Te4 with tuning the surface magnetization[J/OL]. New Journal of Physics, 2022, 24(7):073034.
[377] SASS P M, GE W, YAN J, et al. Magnetic Imaging of Domain Walls in the Antiferromagnetic Topological Insulator MnBi2Te4[J/OL]. Nano Letters, 2020, 20(4):2609-2614.
[378] TOKURA Y, YASUDA K, TSUKAZAKI A. Magnetic topological insulators[J/OL]. Nature Reviews Physics, 2019, 1(2):126-143.
[379] GARRITY K F, CHOWDHURY S, TAVAZZA F M. Topological surface states of MnBi2Te4 at finite temperatures and at domain walls[J/OL]. Physical Review Materials, 2021, 5(2):024207.
[380] HE K. MnBi2Te4-family intrinsic magnetic topological materials[J/OL]. npj Quantum Materials, 2020, 5(1):90.
[381] XU Z, DUAN W H, Xu Y. Controllable chirality and band gap of quantum anomalous Hall insulators[J/OL]. Nano Letters, 2023, 23(1):305-311.
[382] PADMANABHAN H, STOICA V A, KIM P K, et al. Large Exchange Coupling Between Localized Spins and Topological Bands in MnBi2Te4[J/OL]. Advanced Materials, 2022, 34(49):e2202841.
[383] SUN H-P, WANG C M, ZHANG S-B, et al. Analytical solution for the surface states of the antiferromagnetic topological insulator MnBi2Te4[J/OL]. Physical Review B, 2020, 102(24):241406.
[384] WANG D, WANG H, XING D, ZHANG H. Three-Dirac-fermion approach to unexpected universal gapless surface states in van der Waals magnetic topological insulators[J/OL]. Science China Physics, Mechanics & Astronomy, 2023, 66(9):297211.
[385] CHEN C, HE S, WENG H, et al. Robustness of topological order and formation of quantum well states in topological insulators exposed to ambient environment[J/OL]. Proceedings of the National Academy of Sciences, 2012, 109(10):3694-3698.
[386] MENSHCHIKOVA T, EREMEEV S, CHULKOV E. On the origin of two-dimensional electron gas states at the surface of topological insulators[J/OL]. Jetp Letters, 2011, 94(2):106-111.
[387] TAN H, YAN B. Distinct Magnetic Gaps between Antiferromagnetic and Ferromagnetic Orders Driven by Surface Defects in the Topological Magnet MnBi2Te4[J/OL]. Physical Review Letters, 2023, 130(12):126702.
[388] MURAKAMI T, NAMBU Y, KORETSUNE T, et al. Realization of interlayer ferromagnetic interaction in MnSb2Te4 toward the magnetic Weyl semimetal state[J/OL]. Physical Review B, 2019, 100:195103.
[389] LU R, SUN H Y, KUMAR S, et al. Half-Magnetic Topological Insulator with Magnetization-Induced Dirac Gap at a Selected Surface[J/OL]. Physical Review X, 2021, 11:011039.
[390] HU C, DING L, GORDON K N, et al. Realization of an intrinsic ferromagnetic topological state in MnBi8Te13[J/OL]. Science Advances, 2020, 6(30):eaba4275.
[391] WANG Y, MA X-M, Hao Z Y, et al. On the topological surface states of the intrinsic magnetic topological insulator Mn-Bi-Te family[J/OL]. National Science Review, 2023, 11:nwad066.
[392] HU C, GAO A, BERGGREN B S, et al. Growth, characterization, and Chern insulator state in MnBi2Te4 via the chemical vapor transport method[J/OL]. Physical Review Materials, 2021, 5(12):124206.
[393] CHEN W, ZHAO Y, YAO Q, et al. Koopmans' theorem as the mechanism of nearly gapless surface states in self-doped magnetic topological insulators[J/OL]. Physical Review B, 2021, 103(20):L201102.
[394] LIU H, JIANG H, SUN Q F, XIE X C. Dephasing effect on backscattering of helical surface states in 3D topological insulators[J/OL]. Physical Review Letters, 2014, 113(4):046805.
[395] KLIMOVSKIKH I I, OTROKOV M M, ESTYUNIN D, et al. Tunable 3D/2D magnetism in the (MnBi2Te4)(Bi2Te3)m topological insulators family[J/OL]. npj Quantum Materials, 2020, 5(1):54.
[396] HU C, DING L, GORDON K N, et al. Realization of an intrinsic ferromagnetic topological state in MnBi8Te13[J/OL]. Science Advances, 2020, 6(30):eaba4275.
[397] HU C, GORDON K N, LIU P, et al. A van der Waals antiferromagnetic topological insulator with weak interlayer magnetic coupling[J/OL]. Nature Communications, 2020, 11(1):97.
[398] HOHENBERG P, KOHN W. Inhomogeneous Electron Gas[J/OL]. Physical Review, 1964, 136(3B):B864-B871.
[399] KOHN W, SHAM L J. Self-Consistent Equations Including Exchange and Correlation Effects[J/OL]. Physical Review, 1965, 140(4A):A1133-A1138.
[400] KRESSE G, JOUBERT D. From ultrasoft pseudopotentials to the projector augmented-wave method[J/OL]. Physical Review B, 1999, 59(3):1758-1775.
[401] PERDEW J P, BURKE K, ERNZERHOF M. Generalized Gradient Approximation Made Simple[J/OL]. Physical Review Letters, 1996, 77(18):3865-3868.
[402] PERDEW J P, BURKE K, ERNZERHOF M. Generalized Gradient Approximation Made Simple[J/OL]. Physical Review Letters, 1997, 78(7):1396-1396.
[403] KRESSE G, FURTHMÜLLER J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set[J/OL]. Physical Review B, 1996, 54(16):11169-11186.
[404] DUDAREV S L, BOTTON G A, SAVRASOV S Y, et al. Electron-energy-loss spectra and the structural stability of nickel oxide: An LSDA+U study[J/OL]. Physical Review B, 1998, 57(3):1505-1509.
[405] MARZARI N, VANDERBILT D. Maximally localized generalized Wannier functions for composite energy bands[J/OL]. Physical Review B, 1997, 56(20):12847-12865.
[406] SOUZA I, MARZARI N, VANDERBILT D. Maximally localized Wannier functions for entangled energy bands[J/OL]. Physical Review B, 2001, 65(3):035109.
[407] MOSTOFI A A, YATES J R, PIZZI G, et al. An updated version of wannier90: A tool for obtaining maximally-localised Wannier functions[J/OL]. Computer Physics Communications, 2014, 185(8):2309-2310.
[408] WU Q, ZHANG S, SONG H-F, et al. WannierTools: An open-source software package for novel topological materials[J/OL]. Computer Physics Communications, 2018, 224:405-416.
[409] POWELL C J, JABLONSKI A, TILININ I S, et al. Surface sensitivity of Auger-electron spectroscopy and X-ray photoelectron spectroscopy[J/OL]. Journal of Electron Spectroscopy and Related Phenomena, 1999, 98-99:1-15.
[410] MA X-M, CHEN Z, SCHWIER E F, et al. Hybridization-induced gapped and gapless states on the surface of magnetic topological insulators[J/OL]. Physical Review B, 2020, 102(24):245136.
[411] SHIKIN A M, ESTYUNIN D A, ZAITSEV N L, et al. Modulation of the Dirac Point Band Gap in the Antiferromagnetic Topological Insulator MnBi2Te4 due to the Surface Potential Gradient Change[J/OL]. Electronic Properties of Solid, 2022, 134:103-111.
[412] XU L, MAO Y, WANG H, et al. Persistent surface states with diminishing gap in MnBi2Te4/Bi2Te3 superlattice antiferromagnetic topological insulator[J/OL]. Science Bulletin (Beijing), 2020, 65(24):2086-2093.
[413] KRUTHOFF J, DE BOER J, VAN WEZEL J, et al. Topological Classification of Crystalline Insulators through Band Structure Combinatorics[J/OL]. Physical Review X, 2017, 7(4):041069.
[414] HARUKI W, CHUN P H, ASHVIN V. Structure and topology of band structures in the 1651 magnetic space groups[J/OL]. Science Advances, 2018, 4(8):eaat8685.
[415] GU M, LI J, SUN H, et al. Spectral signatures of the surface anomalous Hall effect in magnetic axion insulators[J/OL]. Nature Communication, 2021, 12(1):3524.
[416] CHEN R, LI S, SUN H-P, et al. Using nonlocal surface transport to identify the axion insulator[J/OL]. Physical Review B, 2021, 103(24):L241409.
[417] JI H-R, LIU Y-Z, WANG H, et al. Detection of Magnetic Gap in Topological Surface States of MnBi2Te4[J/OL]. Chinese Physics Letters, 2021, 38(10):107404.
[418] XU Y, ELCORO L, SONG Z D, et al. High-throughput calculations of magnetic topological materials[J/OL]. Nature, 2020, 586(7831):702-707.
[419] CHOUDHARY K, GARRITY K F, GHIMIRE N J, et al. High-throughput search for magnetic topological materials using spin-orbit spillage, machine learning, and experiments[J/OL]. Physical Review B, 2021, 103(15):155131.
[420] GAO J, GUO Z, WENG H, WANG Z. Magnetic band representations, Fu-Kane-like symmetry indicators, and magnetic topological materials[J/OL]. Physical Review B, 2022, 106(3):035150.
[421] ELCORO L, WIEDER B J, SONG Z, et al. Magnetic topological quantum chemistry[J/OL]. Nature Communication, 2021, 12(1):5965.
[422] WATANABE H, PO H C, VISHWANATH A. Structure and topology of band structures in the 1651 magnetic space groups[J/OL]. Science Advances, 2018, 4(8):eaat8685.
[423] BOUHON A, LANGE G F, SLAGER R-J. Topological correspondence between magnetic space group representations and subdimensions[J/OL]. Physical Review B, 2021, 103(24):245127.
[424] XU S-Y, LIU C, KUSHWAHA S K, et al. Observation of Fermi arc surface states in a topological metal[J/OL]. Science, 2015, 347(6219):294.
[425] LIU Z K, ZHOU B, ZHANG Y, et al. Discovery of a Three-Dimensional Topological Dirac Semimetal, Na3Bi[J/OL]. Science, 2014, 343(6173):864.
[426] LIANG A, CHEN C, WANG Z, et al. Electronic structure, Dirac points and Fermi arc surface states in three-dimensional Dirac semimetal Na3Bi from angle-resolved photoemission spectroscopy[J/OL]. Chinese Physics B, 2016, 25(7):077101.
[427] XU S-Y, BELOPOLSKI I, ALIDOUST N, et al. Discovery of a Weyl fermion semimetal and topological Fermi arcs[J/OL]. Science, 2015, 349(6248):613.
[428] XU S-Y, ALIDOUST N, BELOPOLSKI I, et al. Discovery of a Weyl fermion state with Fermi arcs in niobium arsenide[J/OL]. Nature Physics, 2015, 11(9):748-754.
[429] LIU Z K, YANG L X, SUN Y, et al. Evolution of the Fermi surface of Weyl semimetals in the transition metal pnictide family[J/OL]. Nature Materials, 2016, 15(1):27-31.
[430] JIANG J, LIU Z K, SUN Y, et al. Signature of type-II Weyl semimetal phase in MoTe2[J/OL]. Nature Communications, 2017, 8:13973.
[431] HUANG L, MCCORMICK T M, OCHI M, et al. Spectroscopic evidence for a type II Weyl semimetallic state in MoTe2[J/OL]. Nature Materials, 2016, 15(11):1155-1160.
[432] NEUPANE M, BELOPOLSKI I, HOSEN M M, et al. Observation of topological nodal fermion semimetal phase in ZrSiS[J/OL]. Physical Review B, 2016, 93(20):201104.
[433] SCHOOP L M, ALI M N, STRASSER C, et al. Dirac cone protected by non-symmorphic symmetry and three-dimensional Dirac line node in ZrSiS[J/OL]. Nature Communication, 2016, 7:11696.
[434] TAKANE D, WANG Z, SOUMA S, et al. Dirac-node arc in the topological line-node semimetal HfSiS[J/OL]. Physical Review B, 2016, 94(12):121108.
[435] TOPP A, LIPPMANN J M, VARYKHALOV A, et al. Non-symmorphic band degeneracy at the Fermi level in ZrSiTe[J/OL]. New Journal of Physics, 2016, 18(12):125014.
[436] CHEN C, XU X, JIANG J, et al. Dirac line nodes and effect of spin-orbit coupling in the nonsymmorphic critical semimetals MSiS(M=Hf,Zr)[J/OL]. Physical Review B, 2017, 95(12):125126.
[437] BELOPOLSKI I, MANNA K, SANCHEZ D S, et al. Discovery of topological Weyl fermion lines and drumhead surface states in a room temperature magnet[J/OL]. Science, 2019, 365(6459):1278.
[438] MOURIK V, ZUO K, FROLOV S M, et al. Signatures of Majorana Fermions in Hybrid Superconductor-Semiconductor Nanowire Devices[J/OL]. Science, 2012, 336(6084):1003.
[439] NADJ-PERGE S, DROZDOV I K, LI J, et al. Observation of Majorana fermions in ferromagnetic atomic chains on a superconductor[J/OL]. Science, 2014, 346(6209):602.
[440] WANG D, KONG L, FAN P, et al. Evidence for Majorana bound states in an iron-based superconductor[J/OL]. Science, 2018, 362(6412):333.
[441] ZHANG H, LIU C X, GAZIBEGOVIC S, et al. Quantized Majorana conductance[J/OL]. Nature, 2018, 556(7699):74-79.
[442] LIU Q, ZUNGER A. Predicted Realization of Cubic Dirac Fermion in Quasi-One-Dimensional Transition-Metal Monochalcogenides[J/OL]. Physical Review X, 2017, 7(2):021019.
[443] FANG C, GILBERT M J, DAI X, BERNEVIG B A. Multi-Weyl topological semimetals stabilized by point group symmetry[J/OL]. Physical Review Letters, 2012, 108(26):266802.
[444] HUANG S M, XU S Y, BELOPOLSKI I, et al. A Weyl Fermion semimetal with surface Fermi arcs in the transition metal monopnictide TaAs class[J/OL]. Nature Communications, 2015, 6:7373.
[445] SOLUYANOV A A, GRESCH D, WANG Z, et al. Type-II Weyl semimetals[J/OL]. Nature, 2015, 527(7579):495-8.
[446] HUANG S M, XU S Y, BELOPOLSKI I, et al. New type of Weyl semimetal with quadratic double Weyl fermions[J/OL]. Proc Natl Acad Sci U S A, 2016, 113(5):1180-5.
[447] BRADLYN B, CANO J, WANG Z, et al. Beyond Dirac and Weyl fermions: Unconventional quasiparticles in conventional crystals[J/OL]. Science, 2016, 353(6299):aaf5037.
[448] WENG H, FANG C, FANG Z, DAI X. Topological semimetals with triply degenerate nodal points in θ-phase tantalum nitride[J/OL]. Physical Review B, 2016, 93(24):241202.
[449] ZHU Z, WINKLER G W, WU Q, et al. Triple Point Topological Metals[J/OL]. Physical Review X, 2016, 6(3):031003.
[450] WANG Z, SUN Y, CHEN X-Q, et al. Dirac semimetal and topological phase transitions in A3Bi (A=Na, K, Rb)[J/OL]. Physical Review B, 2012, 85(19):195320.
[451] YOUNG S M, ZAHEER S, TEO J C Y, et al. Dirac Semimetal in Three Dimensions[J/OL]. Physical Review Letters, 2012, 108(14):140405.
[452] WANG Z J, WENG H M, WU Q S, et al. Three-dimensional Dirac semimetal and quantum transport in Cd3As2[J/OL]. Physical Review B, 2013, 88(12):125427.
[453] WIEDER B J, KIM Y, RAPPE A M, KANE C L. Double Dirac Semimetals in Three Dimensions[J/OL]. Physical Review Letters, 2016, 116(18):186402.
[454] LV B Q, FENG Z L, XU Q N, et al. Observation of three-component fermions in the topological semimetal molybdenum phosphide[J/OL]. Nature, 2017, 546(7660):627-631.
[455] MA J Z, HE J B, XU Y F, et al. Three-component fermions with surface Fermi arcs in tungsten carbide[J/OL]. Nature Physics, 2018, 14(4):349-354.
[456] LIU Z K, JIANG J, ZHOU B, et al. A stable three-dimensional topological Dirac semimetal Cd3As2[J/OL]. Nature Materials, 2014, 13(7):677-81.
[457] NEUPANE M, XU S Y, SANKAR R, et al. Observation of a three-dimensional topological Dirac semimetal phase in high-mobility Cd3As2[J/OL]. Nature Communications, 2014, 5:3786.
[458] YI H, WANG Z, CHEN C, et al. Evidence of topological surface state in three-dimensional Dirac semimetal Cd3As2[J/OL]. Scientific Reports, 2014, 4:6106.
[459] KUMAR N, YAO M, NAYAK J, et al. Signatures of Sixfold Degenerate Exotic Fermions in a Superconducting Metal PdSb2[J/OL]. Advanced Materials, 2020, 32(11):e1906046.
[460] SUN Z P, HUA C Q, LIU X L, et al. Direct observation of sixfold exotic fermions in the pyrite-structured topological semimetal PdSb2[J/OL]. Physical Review B, 2020, 101(15):155114.
[461] YÁNG X, COCHRAN T A, CHAPAI R, et al. Observation of sixfold degenerate fermions in PdSb2[J/OL]. Physical Review B, 2020, 101(20):201105.
[462] ANDERSON P W. Resonating valence bonds: A new kind of insulator?[J/OL]. Materials Research Bulletin, 1973, 8(2):153-160.
[463] TAKAGI H, TAKAYAMA T, JACKELI G, et al. Concept and realization of Kitaev quantum spin liquids[J/OL]. Nature Reviews Physics, 2019, 1(4):264-280.
[464] WEN J, YU S-L, LI S, et al. Experimental identification of quantum spin liquids[J/OL]. npj Quantum Materials, 2019, 4(1):12.
[465] WINTER S M, TSIRLIN A A, DAGHOFER M, et al. Models and materials for generalized Kitaev magnetism[J/OL]. J Phys Condens Matter, 2017, 29(49):493002.
[466] YU Y J, XU Y, RAN K J, et al. Ultralow-Temperature Thermal Conductivity of the Kitaev Honeycomb Magnet alpha-RuCl3 across the Field-Induced Phase Transition[J/OL]. Physical Review Letters, 2018, 120(6):067202.
[467] KASAHARA Y, OHNISHI T, MIZUKAMI Y, et al. Majorana quantization and half-integer thermal quantum Hall effect in a Kitaev spin liquid[J/OL]. Nature, 2018, 559(7713):227-231.
[468] HENTRICH R, WOLTER A U B, ZOTOS X, et al. Unusual Phonon Heat Transport in α−RuCl3: Strong Spin-Phonon Scattering and Field-Induced Spin Gap[J/OL]. Physical Review Letters, 2018, 120(11):117204.
[469] JANŠA N, ZORKO A, GOMILŠEK M, et al. Observation of two types of fractional excitation in the Kitaev honeycomb magnet[J/OL]. Nature Physics, 2018, 14(8):786-790.
[470] ZHENG J, RAN K, LI T, et al. Gapless Spin Excitations in the Field-Induced Quantum Spin Liquid Phase of alpha-RuCl3[J/OL]. Physical Review Letters, 2017, 119(22):227208.
[471] RAN K, WANG J, WANG W, et al. Spin-Wave Excitations Evidencing the Kitaev Interaction in Single Crystalline α−RuCl3[J/OL]. Physical Review Letters, 2017, 118(10):107203.
[472] NASU J, KNOLLE J, KOVRIZHIN D L, et al. Fermionic response from fractionalization in an insulating two-dimensional magnet[J/OL]. Nature Physics, 2016, 12(10):912-915.
[473] SANDILANDS L J, TIAN Y, PLUMB K W, et al. Scattering continuum and possible fractionalized excitations in alpha-RuCl3[J/OL]. Physical Review Letters, 2015, 114(14):147201.
[474] BANERJEE A, YAN J, KNOLLE J, et al. Neutron scattering in the proximate quantum spin liquid α-RuCl3[J/OL]. Science, 2017, 356(6342):1055.
[475] BANERJEE A, BRIDGES C A, YAN J Q, et al. Proximate Kitaev quantum spin liquid behaviour in a honeycomb magnet[J/OL]. Nature Materials, 2016, 15:733.
[476] ZIATDINOV M, BANERJEE A, MAKSOV A, et al. Atomic-scale observation of structural and electronic orders in the layered compound alpha-RuCl3[J/OL]. Nature Communication, 2016, 7:13774.
[477] JOHNSON R D, WILLIAMS S C, HAGHIGHIRAD A A, et al. Monoclinic crystal structure of α−RuCl3 and the zigzag antiferromagnetic ground state[J/OL]. Physical Review B, 2015, 92(23):235119.
[478] JACKELI G, KHALIULLIN G. Mott insulators in the strong spin-orbit coupling limit: from Heisenberg to a quantum compass and Kitaev models[J/OL]. Physical Review Letters, 2009, 102(1):017205.
[479] SANDILANDS L J, SOHN C H, PARK H J, et al. Optical probe of Heisenberg-Kitaev magnetism in α−RuCl3[J/OL]. Physical Review B, 2016, 94(19):195156.
[480] SANDILANDS L J, TIAN Y, REIJNDERS A A, et al. Spin-orbit excitations and electronic structure of the putative Kitaev magnet α−RuCl3[J/OL]. Physical Review B, 2016, 93(7):075144.
[481] PLUMB K W, CLANCY J P, SANDILANDS L J, et al. α−RuCl3: A spin-orbit assisted Mott insulator on a honeycomb lattice[J/OL]. Physical Review B, 2014, 90(4):041112.
[482] KOITZSCH A, HABENICHT C, MULLER E, et al. Jeff Description of the Honeycomb Mott Insulator alpha-RuCl3[J/OL]. Physical Review Letters, 2016, 117(12):126403.
[483] ZHOU X, LI H, WAUGH J A, et al. Angle-resolved photoemission study of the Kitaev candidate α−RuCl3[J/OL]. Physical Review B, 2016, 94(16):161106.
[484] KOITZSCH A, HABENICHT C, MULLER E, et al. Jeff Description of the Honeycomb Mott Insulator alpha-RuCl3[J/OL]. Physical Review Letters, 2016, 117(12):126403.
[485] SINN S, KIM C H, KIM B H, et al. Electronic Structure of the Kitaev Material α-RuCl3 Probed by Photoemission and Inverse Photoemission Spectroscopies[J/OL]. Scientific Reports, 2016, 6:39544.
[486] CAO H B, BANERJEE A, YAN J Q, et al. Low-temperature crystal and magnetic structure of α−RuCl3[J/OL]. Physical Review B, 2016, 93(13):134423.
[487] DAI Z, YU J-X, ZHOU B, et al. Crystal structure reconstruction in the surface monolayer of the quantum spin liquid candidate α-RuCl3[J/OL]. 2D Materials, 2020, 7(3):035004.
[488] KUBOTA Y, TANAKA H, ONO T, et al. Successive magnetic phase transitions in α−RuCl3: XY-like frustrated magnet on the honeycomb lattice[J/OL]. Physical Review B, 2015, 91(9):094422.
[489] SEARS J A, SONGVILAY M, PLUMB K W, et al. Magnetic order in α−RuCl3: A honeycomb-lattice quantum magnet with strong spin-orbit coupling[J/OL]. Physical Review B, 2015, 91(14):144420.
[490] MAJUMDER M, SCHMIDT M, ROSNER H, et al. Anisotropic Ru3+ 4d5 magnetism in the α−RuCl3 honeycomb system: Susceptibility, specific heat, and zero-field NMR[J/OL]. Physical Review B, 2015, 91(18):180401.
[491] KRESSE G, HAFNER J. Ab initio molecular-dynamics simulation of the liquid-metal-amorphous-semiconductor transition in germanium[J/OL]. Physical Review B, 1994, 49(20):14251-14269.
[492] LIECHTENSTEIN A I, ANISIMOV V I, ZAANEN J. Density-functional theory and strong interactions: Orbital ordering in Mott-Hubbard insulators[J/OL]. Physical Review B, 1995, 52(8):R5467-R5470.
[493] MEDEIROS P V C, STAFSTRÖM S, BJÖRK J. Effects of extrinsic and intrinsic perturbations on the electronic structure of graphene: Retaining an effective primitive cell band structure by band unfolding[J/OL]. Physical Review B, 2014, 89(4):041407.
[494] MEDEIROS P V C, TSIRKIN S S, STAFSTRÖM S, BJÖRK J. Unfolding spinor wave functions and expectation values of general operators: Introducing the unfolding-density operator[J/OL]. Physical Review B, 2015, 91(4):041116.
[495] BRADLEY C, CRACKNELL A. The Mathematical Theory of Symmetry in Solids (Clarendon, Oxford, 1972).
[496] SOLUYANOV A A, VANDERBILT D. Computing topological invariants without inversion symmetry[J/OL]. Physical Review B, 2011, 83(23):235401.
[497] WENG H, YU R, HU X, et al. Quantum anomalous Hall effect and related topological electronic states[J/OL]. Advances in Physics, 2015, 64(3):227-282.
[498] KUNDU A K, LIU Y, PETROVIC C, VALLA T. Valence band electronic structure of the van der Waals ferromagnetic insulators: VI and CrI[J/OL]. Scientific Reports, 2020, 10(1):15602.
[499] O. SOLOGUB, K. HIEB, P. ROGL, BODAK. O I. Formation, crystal chemistry and magnetism of compounds RE2TGe6, RE- rareearth,T- Pd,Pt,Cu,Ag and Au[J/OL], Journal of Alloys and Compounds, 1995, (227):37-39.
[500] M.B. KONYK, L.P. ROMAKA, YU.K. GORELENKO, BODAK O I. Magnetic and electrical properties of R2CuGe6 compounds[J/OL]. Journal of Alloys and Compounds, 2000, (311):120-123.
[501] C. RIZZOLIA, O. SOLOGUBB, SALAMAKHA P. Single crystal investigation of the Yb2Pd1.075(1)Ge6 compound[J/OL], Journal of Alloys and Compounds, 2003, (351):L10-L12.
[502] LI D X, NIMORI S, LI Y X, et al. Magnetic ordering in ternary germanide Nd2CuGe6[J/OL]. Journal of Alloys and Compounds, 2006, 408-412:122-126.
[503] PENC B, ARULRAY A, BARAN S, et al. Crystal and magnetic structure of Ho2NiGe6[J/OL]. Solid State Communications, 2007, 142(11):627-630.
[504] KONYK M, KUZHEL B, STADNYK Y, et al. Electric transport in R2MGe6 ternary compounds (R = La, Ce, Gd, Tb, Dy, Ho; M = Mn, Ni, Cu)[J/OL]. Journal of Alloys and Compounds, 2008, 459(1-2):18-21.
[505] GRIBANOV A, SAFRONOV S, MURASHOVA E, SEROPEGIN Y. Crystal structure of Dy2PdGe6[J/OL]. Journal of Alloys and Compounds, 2012, 542:28-31.
[506] KACZOROWSKI D, KONYK M, ROMAKA L. Magnetic and electrical transport properties of Gd2CoGe6 and Tb2CoGe6 germanides[J/OL]. Journal of Alloys and Compounds, 2012, 526:22-24.
[507] WAWRYK R, TROĆ R, GRIBANOV A V. Physical properties of polycrystalline Dy2PdGe6 and La2PdGe6[J/OL]. Journal of Alloys and Compounds, 2012, 520:255-261.
[508] DURAJ R, KONYK M, PRZEWOŹNIK J, et al. Magnetic properties of RE2MnGe6 (RE = La, Ce) and YMn0.3Ge2 germanides[J/OL]. Solid State Sciences, 2013, 25:11-14.
[509] FRECCERO R, SOLOKHA P, PROSERPIO D M, et al. A new glance on R2MGe6 (R = rare earth metal, M = another metal) compounds. An experimental and theoretical study of R2PdGe6 germanides[J/OL]. Dalton Transactions, 2017, 46(40):14021-14033.
[510] TATSUSHI YAGUCHI, MIHO NAKASHIMA, AMAKO Y. Single crystal growth and magnetic properties of R2TGe6 (R = Ce,Pr, T = Cu,Pd)[J/OL]. JPS Conference Proceedings, 2020, (30):011111.
[511] PENC B, BARAN S, HOSER A, SZYTUŁA A. Magnetic properties and magnetic structures of Nd2TGe6 (T = Ni, Cu)[J/OL]. Phase Transitions, 2019, 92(12):1118-1126.
[512] PETER S C, SUBBARAO U, SARKAR S, et al. Crystal structure of Yb2CuGe6 and Yb3Cu4Ge4 and the valency of ytterbium[J/OL]. Journal of Alloys and Compounds, 2014, 589:405-411.
[513] HU J, TANG Z, LIU J, et al. Evidence of Topological Nodal-Line Fermions in ZrSiSe and ZrSiTe[J/OL]. Physical Review Letters, 2016, 117(1):016602.
[514] SUN Z P, LIU Z H, LIU Z T, et al. Performance of the BL03U beamline at SSRF[J/OL]. J Synchrotron Radiat, 2020, 27(Pt 5):1388-1394.
[515] HART L S, WEBB J L, DALE S, et al. Electronic bandstructure and van der Waals coupling of ReSe2 revealed by high-resolution angle-resolved photoemission spectroscopy[J/OL]. Scientific Reports, 2017, 7(1):5145.
修改评论