中文版 | English
题名

基于粘性可拉伸导电高分子和液态金属的电生理记录贴片

其他题名
ELECTROPHYSIOLOGICAL RECORDING PATCH BASED ON ADHESIVE STRETCHABLE CONDUCTIVE POLYMER AND LIQUID METAL
姓名
姓名拼音
LIU Yan
学号
12232619
学位类型
硕士
学位专业
0856 材料与化工
学科门类/专业学位类别
08 工学
导师
蒋兴宇,顾东风
导师单位
南方科技大学医学院;生物医学工程系
论文答辩日期
2024-04-25
论文提交日期
2024-06-17
学位授予单位
南方科技大学
学位授予地点
深圳
摘要
脑电图(Electroencephalogram, EEG)、心电图(Electrocardiogram, ECG)和肌电图(Electromyogram, EMG)作为常见的电生理信号,可以提供有关身体活动、器官功能和病理状态的重要信息,为医生们做出准确诊断和制定治疗方案提供帮助。本研究提出了一种基于聚(3,4-乙烯二氧噻吩):聚苯乙烯磺酸(PEDOT:PSS)和聚(甲基乙烯基醚共聚马来酸)(PMVEMA)的新型导电高分子复合材料(PEDOT:PSS-PMVEMA, PPMA)。PPMA与镓铟合金(EGaIn)基的金属聚合物导体(Metal-polymer conductors, MPC)结合可制备与皮肤良好共形的自粘性可拉伸薄膜电极,以实现对上述电生理信号的非侵入性实时监测。与PEDOT:PSS 薄膜相比, PPMA薄膜在PMVEMA质量分数为50%的时候,具有更高的粘性 (最大垂直剥离力≈60 N/m)、更大的断裂应变(≈48%)和更低的杨氏模量(≈9 MPa)。基于PPMA可制备具有各种形状和尺寸的电生理记录贴片,以满足不同应用场景的需求。在实际应用中,这些贴片的有效性得到了很好的证明:脑电贴片在Oddball任务过程中展现出出色的脑电信号采集能力;心电贴片可以采集到高信噪比(≈27 dB)的心电信号,且具备持续监测12 h的能力;基于肌电贴片采集的小臂肌电,借助机器学习算法,在中国数字手势1到10的分类中取得了显著的准确性(96.60%)。这种基于粘性可拉伸导电高分子和液态金属的电生理记录贴片有望在远程医疗和智慧医疗中发挥关键作用,结合远程监测和智能分析手段,以提高医疗效率和个性化护理水平。
其他摘要
Electroencephalogram (EEG), Electrocardiogram (ECG), and Electromyogram (EMG) are common electrophysiological signals that provide important information about bodily activities, organ functions, and pathological conditions, assisting doctors in making accurate diagnoses and formulating treatment plans. This study proposes a novel conductive polymer composite material based on poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate) (PEDOT:PSS) and poly(methyl vinyl ether-alt-maleic acid) (PMVEMA), referred to as PEDOT:PSS-PMVEMA (PPMA). In combination with metal-polymer conductors (MPC) based on eutectic gallium indium (EGaIn), PPMA can be used to fabricate self-adhesive, stretchable thin-film electrodes that conform well to the skin for non-invasive real-time monitoring of the aforementioned electrophysiological signals. Compared to PEDOT:PSS films, PPMA films exhibit higher adhesion (maximum vertical peeling strength ≈60 N/m), greater fracture strain (≈48%), and lower Young’s modulus (≈9 MPa) when the mass fraction of PMVEMA is 50%. Electrophysiological recording patches of various shapes and sizes can be fabricated from PPMA to meet the needs of different application scenarios. In practical applications, the effectiveness of these patches has been well demonstrated: EEG patches have shown excellent EEG signals acquisition capability during Oddball tasks; ECG patches can collect high signal-to-noise ratio (≈27 dB) ECG signals with the capability to monitor continuously for 12 hours; EMG patches collecting forearm EMG signals, with the aid of machine learning algorithms, achieved significant accuracy (96.60%) in classifying Chinese digital hand gestures from 1 to 10. These electrophysiological recording patches based on adhesive stretchable conductive polymer and liquid metal are expected to play a key role in remote medical and smart healthcare. Combined with remote monitoring and intelligent analysis methods, they aims to enhance medical efficiency and the level of personalized care.
关键词
其他关键词
语种
中文
培养类别
独立培养
入学年份
2022
学位授予年份
2024-05
参考文献列表

[1] Zhu M, Wang H, Li S, et al. Flexible Electrodes for In Vivo and In Vitro Electrophysiological Signal Recording[J]. Adv Healthc Mater, 2021, 10(17): e2100646.
[2] Le Van Quyen M, Martinerie J, Navarro V, et al. Anticipation of epileptic seizures from standard EEG recordings[J]. Lancet, 2001, 357(9251): 183-8.
[3] Jing J, Sun H, Kim J A, et al. Development of Expert-Level Automated Detection of Epileptiform Discharges During Electroencephalogram Interpretation[J]. JAMA Neurol, 2020, 77(1): 103-108.
[4] Tasci I, Tasci B, Barua P D, et al. Epilepsy detection in 121 patient populations using hypercube pattern from EEG signals[J]. Information Fusion, 2023, 96: 252-268.
[5] Zhao W, Van Someren E J W, Li C, et al. EEG spectral analysis in insomnia disorder: A systematic review and meta-analysis[J]. Sleep Med Rev, 2021, 59: 101457.
[6] Sivathamboo S, Farrand S, Chen Z, et al. Sleep-disordered breathing among patients admitted for inpatient video-EEG monitoring[J]. Neurology, 2019, 92(3): e194-e204.
[7] Sondag L, Ruijter B J, Tjepkema-Cloostermans M C, et al. Early EEG for outcome prediction of postanoxic coma: prospective cohort study with cost-minimization analysis[J]. Crit Care, 2017, 21(1): 111.
[8] Claassen J, Taccone F S, Horn P, et al. Recommendations on the use of EEG monitoring in critically ill patients: consensus statement from the neurointensive care section of the ESICM[J]. Intensive Care Med, 2013, 39(8): 1337-51.
[9] Gui P, Jiang Y, Zang D, et al. Assessing the depth of language processing in patients with disorders of consciousness[J]. Nat Neurosci, 2020, 23(6): 761-770.
[10] He B, Baxter B, Edelman B J, et al. Noninvasive Brain-Computer Interfaces Based on Sensorimotor Rhythms[J]. Proc IEEE Inst Electr Electron Eng, 2015, 103(6): 907-925.
[11] Hannun A Y, Rajpurkar P, Haghpanahi M, et al. Cardiologist-level arrhythmia detection and classification in ambulatory electrocardiograms using a deep neural network[J]. Nat Med, 2019, 25(1): 65-69.
[12] Yao Q, Wang R, Fan X, et al. Multi-class Arrhythmia detection from 12-lead varied-length ECG using Attention-based Time-Incremental Convolutional Neural Network[J]. Information Fusion, 2020, 53: 174-182.
[13] Pham H M, Nguyen Q, Tran V D, et al. Value of Surface Electrocardiographic Criteria in Localizing Origins of Outflow Tract Ventricular Arrhythmias[J]. Journal of the American College of Cardiology, 2019, 73(9).
[14] Chatterjee N A, Tikkanen J T, Panicker G K, et al. Simple electrocardiographic measures improve sudden arrhythmic death prediction in coronary disease[J]. Eur Heart J, 2020, 41(21): 1988-1999.
[15] Al-Zaiti S S, Martin-Gill C, Zegre-Hemsey J K, et al. Machine learning for ECG diagnosis and risk stratification of occlusion myocardial infarction[J]. Nat Med, 2023, 29(7): 1804-1813.
[16] Torres-Castillo J R, López-López C O, Padilla-Castañeda M A. Neuromuscular disorders detection through time-frequency analysis and classification of multi-muscular EMG signals using Hilbert-Huang transform[J]. Biomedical Signal Processing and Control, 2022, 71.
[17] Wang H, Wen Z, Wu W, et al. Noninvasive electromyometrial imaging of human uterine maturation during term labor[J]. Nat Commun, 2023, 14(1): 1198.
[18] Hanawa S, Tsuboi A, Watanabe M, Sasaki K. EMG study for perioral facial muscles function during mastication[J]. J Oral Rehabil, 2008, 35(3): 159-70.
[19] Boonstra T W, Faes L, Kerkman J N, Marinazzo D. Information decomposition of multichannel EMG to map functional interactions in the distributed motor system[J]. Neuroimage, 2019, 202: 116093.
[20] Yetisen A K, Martinez-Hurtado J L, Unal B, et al. Wearables in Medicine[J]. Adv Mater, 2018, 30(33): e1706910.
[21] Iqbal S M A, Mahgoub I, Du E, et al. Advances in healthcare wearable devices[J]. npj Flexible Electronics, 2021, 5(1).
[22] Wang Y, Haick H, Guo S, et al. Skin bioelectronics towards long-term, continuous health monitoring[J]. Chem Soc Rev, 2022, 51(9): 3759-3793.
[23] Wu H, Yang G, Zhu K, et al. Materials, Devices, and Systems of On-Skin Electrodes for Electrophysiological Monitoring and Human-Machine Interfaces[J]. Adv Sci (Weinh), 2021, 8(2): 2001938.
[24] Wang C, Wang C, Huang Z, Xu S. Materials and Structures toward Soft Electronics[J]. Adv Mater, 2018, 30(50): e1801368.
[25] Wang H, Ding Q, Luo Y, et al. High-Performance Hydrogel Sensors Enabled Multimodal and Accurate Human-Machine Interaction System for Active Rehabilitation[J]. Adv Mater, 2023, e2309868.
[26] Wang X, Sun X, Gan D, et al. Bioadhesive and conductive hydrogel-integrated brain-machine interfaces for conformal and immune-evasive contact with brain tissue[J]. Matter, 2022, 5(4): 1204-1223.
[27] Yang G, Zhu K, Guo W, et al. Adhesive and Hydrophobic Bilayer Hydrogel Enabled On‐Skin Biosensors for High‐Fidelity Classification of Human Emotion[J]. Advanced Functional Materials, 2022, 32(29).
[28] Zang W, Wang Y, Wu W, et al. Superstretchable Liquid-Metal Electrodes for Dielectric Elastomer Transducers and Flexible Circuits[J]. ACS Nano, 2024, 18(1): 1226-1236.
[29] Mou L, Xia Y, Jiang X. Liquid metal-polymer conductor-based wireless, battery-free epidermal patch[J]. Biosens Bioelectron, 2022, 197: 113765.
[30] Pei D, Yu S, Liu P, et al. Reversible Wet‐Adhesive and Self‐Healing Conductive Composite Elastomer of Liquid Metal[J]. Advanced Functional Materials, 2022, 32(35).
[31] Gogurla N, Kim Y, Cho S, et al. Multifunctional and Ultrathin Electronic Tattoo for On-Skin Diagnostic and Therapeutic Applications[J]. Adv Mater, 2021, 33(24): e2008308.
[32] Lai H, Liu Y, Cheng Y, et al. Temperature-Triggered Adhesive Bioelectric Electrodes with Long-Term Dynamic Stability and Reusability[J]. Adv Sci (Weinh), 2023, 10(22): e2300793.
[33] Choi S, Han S I, Jung D, et al. Highly conductive, stretchable and biocompatible Ag–Au core–sheath nanowire composite for wearable and implantable bioelectronics[J]. Nature Nanotechnology, 2018, 13(11): 1048-1056.
[34] Yang S, Cheng J, Shang J, et al. Stretchable surface electromyography electrode array patch for tendon location and muscle injury prevention[J]. Nat Commun, 2023, 14(1): 6494.
[35] Zhao Y, Zhang S, Yu T, et al. Ultra-conformal skin electrodes with synergistically enhanced conductivity for long-time and low-motion artifact epidermal electrophysiology[J]. Nat Commun, 2021, 12(1): 4880.
[36] Alshabouna F, Lee H S, Barandun G, et al. PEDOT:PSS-modified cotton conductive thread for mass manufacturing of textile-based electrical wearable sensors by computerized embroidery[J]. Materials Today, 2022, 59: 56-67.
[37] Hong S, Lee S, Kim D-H. Materials and Design Strategies of Stretchable Electrodes for Electronic Skin and its Applications[J]. Proceedings of the IEEE, 2019, 107(10): 2185-2197.
[38] Zhao Y, Kim A, Wan G, Tee B C K. Design and applications of stretchable and self-healable conductors for soft electronics[J]. Nano Converg, 2019, 6(1): 25.
[39] Lee G H, Woo H, Yoon C, et al. A Personalized Electronic Tattoo for Healthcare Realized by On-the-Spot Assembly of an Intrinsically Conductive and Durable Liquid-Metal Composite[J]. Adv Mater, 2022, 34(32): e2204159.
[40] Chen G, Matsuhisa N, Liu Z, et al. Plasticizing Silk Protein for On-Skin Stretchable Electrodes[J]. Adv Mater, 2018, 30(21): e1800129.
[41] Zheng Y, Li Y, Zhao Y, et al. Ultrathin and highly breathable electronic tattoo for sensing multiple signals imperceptibly on the skin[J]. Nano Energy, 2023, 107.
[42] Wen Y, Wu M, Zhang M, et al. Topological Design of Ultrastrong and Highly Conductive Graphene Films[J]. Adv Mater, 2017, 29(41).
[43] Adly N, Teshima T F, Hassani H, et al. Printed Silk Microelectrode Arrays for Electrophysiological Recording and Controlled Drug Delivery[J]. Adv Healthc Mater, 2023, 12(17): e2202869.
[44] Lu B, Yuk H, Lin S, et al. Pure PEDOT:PSS hydrogels[J]. Nat Commun, 2019, 10(1): 1043.
[45] Luo J, Billep D, Waechtler T, et al. Enhancement of the thermoelectric properties of PEDOT:PSS thin films by post-treatment[J]. Journal of Materials Chemistry A, 2013, 1(26).
[46] Yildirim E, Wu G, Yong X, et al. A theoretical mechanistic study on electrical conductivity enhancement of DMSO treated PEDOT:PSS[J]. Journal of Materials Chemistry C, 2018, 6(19): 5122-5131.
[47] Mahato S, Puigdollers J, Voz C, et al. Near 5% DMSO is the best: A structural investigation of PEDOT: PSS thin films with strong emphasis on surface and interface for hybrid solar cell[J]. Applied Surface Science, 2020, 499.
[48] Alemu D, Wei H-Y, Ho K-C, Chu C-W. Highly conductive PEDOT:PSS electrode by simple film treatment with methanol for ITO-free polymer solar cells[J]. Energy & Environmental Science, 2012, 5(11).
[49] Thomas J P, Zhao L, Mcgillivray D, Leung K T. High-efficiency hybrid solar cells by nanostructural modification in PEDOT:PSS with co-solvent addition[J]. Journal of Materials Chemistry A, 2014, 2(7).
[50] Ganji M, Kaestner E, Hermiz J, et al. Development and Translation of PEDOT:PSS Microelectrodes for Intraoperative Monitoring[J]. Advanced Functional Materials, 2017, 28(12).
[51] Aguzin A, Dominguez-Alfaro A, Criado-Gonzalez M, et al. Direct ink writing of PEDOT eutectogels as substrate-free dry electrodes for electromyography[J]. Mater Horiz, 2023, 10(7): 2516-2524.
[52] Huang X, Chen C, Ma X, et al. In Situ Forming Dual‐Conductive Hydrogels Enable Conformal, Self‐Adhesive and Antibacterial Epidermal Electrodes[J]. Advanced Functional Materials, 2023, 33(38).
[53] Xia M, Liu J, Kim B J, et al. Kirigami-Structured, Low-Impedance, and Skin-Conformal Electronics for Long-Term Biopotential Monitoring and Human-Machine Interfaces[J]. Adv Sci (Weinh), 2024, 11(1): e2304871.
[54] Li T, Qi H, Dong X, et al. Highly Robust Conductive Organo-Hydrogels with Powerful Sensing Capabilities Under Large Mechanical Stress[J]. Adv Mater, 2024, 36(5): e2304145.
[55] Seyedin M Z, Razal J M, Innis P C, Wallace G G. Strain‐Responsive Polyurethane/PEDOT:PSS Elastomeric Composite Fibers with High Electrical Conductivity[J]. Advanced Functional Materials, 2014, 24(20): 2957-2966.
[56] Panwar V, Panwar L S, Anoop G, Park S. Electronic-ionic polymer composite for high output voltage generation[J]. Composites Part B: Engineering, 2022, 232.
[57] Kerdsakundee N, Li W, Martins J P, et al. Multifunctional Nanotube-Mucoadhesive Poly(methyl vinyl ether-co-maleic acid)@Hydroxypropyl Methylcellulose Acetate Succinate Composite for Site-Specific Oral Drug Delivery[J]. Adv Healthc Mater, 2017, 6(20).
[58] Ma X, Zhou N, Zhang T, et al. Self-healing pH-sensitive poly[(methyl vinyl ether)-alt-(maleic acid)]-based supramolecular hydrogels formed by inclusion complexation between cyclodextrin and adamantane[J]. Mater Sci Eng C Mater Biol Appl, 2017, 73: 357-365.
[59] Liang L, Zhang S, Goenaga G A, et al. Chemically Cross-Linked Cellulose Nanocrystal Aerogels for Effective Removal of Cation Dye[J]. Front Chem, 2020, 8: 570.
[60] Reis Carneiro M, Majidi C, Tavakoli M. Multi‐Electrode Printed Bioelectronic Patches for Long‐Term Electrophysiological Monitoring[J]. Advanced Functional Materials, 2022, 32(43).
[61] Tang L, Mou L, Zhang W, Jiang X. Large-Scale Fabrication of Highly Elastic Conductors on a Broad Range of Surfaces[J]. ACS Appl Mater Interfaces, 2019, 11(7): 7138-7147.
[62] Wang Y, Li J, Sun L, et al. Liquid Metal Droplets-Based Elastomers from Electric Toothbrush-Inspired Revolving Microfluidics[J]. Adv Mater, 2023, 35(20): e2211731.
[63] Hang C, Ding L, Cheng S, et al. A Soft and Absorbable Temporary Epicardial Pacing Wire[J]. Adv Mater, 2021, 33(36): e2101447.
[64] Ge Z, Guo W, Tao Y, et al. Wireless and Closed-Loop Smart Dressing for Exudate Management and On-Demand Treatment of Chronic Wounds[J]. Adv Mater, 2023, 35(47): e2304005.
[65] Tang L, Cheng S, Zhang L, et al. Printable Metal-Polymer Conductors for Highly Stretchable Bio-Devices[J]. iScience, 2018, 4: 302-31.

所在学位评定分委会
材料与化工
国内图书分类号
R318
来源库
人工提交
成果类型学位论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/765770
专题南方科技大学
工学院_生物医学工程系
推荐引用方式
GB/T 7714
刘焱. 基于粘性可拉伸导电高分子和液态金属的电生理记录贴片[D]. 深圳. 南方科技大学,2024.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可 操作
12232619-刘焱-生物医学工程系.(6856KB)----限制开放--请求全文
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[刘焱]的文章
百度学术
百度学术中相似的文章
[刘焱]的文章
必应学术
必应学术中相似的文章
[刘焱]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。