[1] Zhu M, Wang H, Li S, et al. Flexible Electrodes for In Vivo and In Vitro Electrophysiological Signal Recording[J]. Adv Healthc Mater, 2021, 10(17): e2100646.
[2] Le Van Quyen M, Martinerie J, Navarro V, et al. Anticipation of epileptic seizures from standard EEG recordings[J]. Lancet, 2001, 357(9251): 183-8.
[3] Jing J, Sun H, Kim J A, et al. Development of Expert-Level Automated Detection of Epileptiform Discharges During Electroencephalogram Interpretation[J]. JAMA Neurol, 2020, 77(1): 103-108.
[4] Tasci I, Tasci B, Barua P D, et al. Epilepsy detection in 121 patient populations using hypercube pattern from EEG signals[J]. Information Fusion, 2023, 96: 252-268.
[5] Zhao W, Van Someren E J W, Li C, et al. EEG spectral analysis in insomnia disorder: A systematic review and meta-analysis[J]. Sleep Med Rev, 2021, 59: 101457.
[6] Sivathamboo S, Farrand S, Chen Z, et al. Sleep-disordered breathing among patients admitted for inpatient video-EEG monitoring[J]. Neurology, 2019, 92(3): e194-e204.
[7] Sondag L, Ruijter B J, Tjepkema-Cloostermans M C, et al. Early EEG for outcome prediction of postanoxic coma: prospective cohort study with cost-minimization analysis[J]. Crit Care, 2017, 21(1): 111.
[8] Claassen J, Taccone F S, Horn P, et al. Recommendations on the use of EEG monitoring in critically ill patients: consensus statement from the neurointensive care section of the ESICM[J]. Intensive Care Med, 2013, 39(8): 1337-51.
[9] Gui P, Jiang Y, Zang D, et al. Assessing the depth of language processing in patients with disorders of consciousness[J]. Nat Neurosci, 2020, 23(6): 761-770.
[10] He B, Baxter B, Edelman B J, et al. Noninvasive Brain-Computer Interfaces Based on Sensorimotor Rhythms[J]. Proc IEEE Inst Electr Electron Eng, 2015, 103(6): 907-925.
[11] Hannun A Y, Rajpurkar P, Haghpanahi M, et al. Cardiologist-level arrhythmia detection and classification in ambulatory electrocardiograms using a deep neural network[J]. Nat Med, 2019, 25(1): 65-69.
[12] Yao Q, Wang R, Fan X, et al. Multi-class Arrhythmia detection from 12-lead varied-length ECG using Attention-based Time-Incremental Convolutional Neural Network[J]. Information Fusion, 2020, 53: 174-182.
[13] Pham H M, Nguyen Q, Tran V D, et al. Value of Surface Electrocardiographic Criteria in Localizing Origins of Outflow Tract Ventricular Arrhythmias[J]. Journal of the American College of Cardiology, 2019, 73(9).
[14] Chatterjee N A, Tikkanen J T, Panicker G K, et al. Simple electrocardiographic measures improve sudden arrhythmic death prediction in coronary disease[J]. Eur Heart J, 2020, 41(21): 1988-1999.
[15] Al-Zaiti S S, Martin-Gill C, Zegre-Hemsey J K, et al. Machine learning for ECG diagnosis and risk stratification of occlusion myocardial infarction[J]. Nat Med, 2023, 29(7): 1804-1813.
[16] Torres-Castillo J R, López-López C O, Padilla-Castañeda M A. Neuromuscular disorders detection through time-frequency analysis and classification of multi-muscular EMG signals using Hilbert-Huang transform[J]. Biomedical Signal Processing and Control, 2022, 71.
[17] Wang H, Wen Z, Wu W, et al. Noninvasive electromyometrial imaging of human uterine maturation during term labor[J]. Nat Commun, 2023, 14(1): 1198.
[18] Hanawa S, Tsuboi A, Watanabe M, Sasaki K. EMG study for perioral facial muscles function during mastication[J]. J Oral Rehabil, 2008, 35(3): 159-70.
[19] Boonstra T W, Faes L, Kerkman J N, Marinazzo D. Information decomposition of multichannel EMG to map functional interactions in the distributed motor system[J]. Neuroimage, 2019, 202: 116093.
[20] Yetisen A K, Martinez-Hurtado J L, Unal B, et al. Wearables in Medicine[J]. Adv Mater, 2018, 30(33): e1706910.
[21] Iqbal S M A, Mahgoub I, Du E, et al. Advances in healthcare wearable devices[J]. npj Flexible Electronics, 2021, 5(1).
[22] Wang Y, Haick H, Guo S, et al. Skin bioelectronics towards long-term, continuous health monitoring[J]. Chem Soc Rev, 2022, 51(9): 3759-3793.
[23] Wu H, Yang G, Zhu K, et al. Materials, Devices, and Systems of On-Skin Electrodes for Electrophysiological Monitoring and Human-Machine Interfaces[J]. Adv Sci (Weinh), 2021, 8(2): 2001938.
[24] Wang C, Wang C, Huang Z, Xu S. Materials and Structures toward Soft Electronics[J]. Adv Mater, 2018, 30(50): e1801368.
[25] Wang H, Ding Q, Luo Y, et al. High-Performance Hydrogel Sensors Enabled Multimodal and Accurate Human-Machine Interaction System for Active Rehabilitation[J]. Adv Mater, 2023, e2309868.
[26] Wang X, Sun X, Gan D, et al. Bioadhesive and conductive hydrogel-integrated brain-machine interfaces for conformal and immune-evasive contact with brain tissue[J]. Matter, 2022, 5(4): 1204-1223.
[27] Yang G, Zhu K, Guo W, et al. Adhesive and Hydrophobic Bilayer Hydrogel Enabled On‐Skin Biosensors for High‐Fidelity Classification of Human Emotion[J]. Advanced Functional Materials, 2022, 32(29).
[28] Zang W, Wang Y, Wu W, et al. Superstretchable Liquid-Metal Electrodes for Dielectric Elastomer Transducers and Flexible Circuits[J]. ACS Nano, 2024, 18(1): 1226-1236.
[29] Mou L, Xia Y, Jiang X. Liquid metal-polymer conductor-based wireless, battery-free epidermal patch[J]. Biosens Bioelectron, 2022, 197: 113765.
[30] Pei D, Yu S, Liu P, et al. Reversible Wet‐Adhesive and Self‐Healing Conductive Composite Elastomer of Liquid Metal[J]. Advanced Functional Materials, 2022, 32(35).
[31] Gogurla N, Kim Y, Cho S, et al. Multifunctional and Ultrathin Electronic Tattoo for On-Skin Diagnostic and Therapeutic Applications[J]. Adv Mater, 2021, 33(24): e2008308.
[32] Lai H, Liu Y, Cheng Y, et al. Temperature-Triggered Adhesive Bioelectric Electrodes with Long-Term Dynamic Stability and Reusability[J]. Adv Sci (Weinh), 2023, 10(22): e2300793.
[33] Choi S, Han S I, Jung D, et al. Highly conductive, stretchable and biocompatible Ag–Au core–sheath nanowire composite for wearable and implantable bioelectronics[J]. Nature Nanotechnology, 2018, 13(11): 1048-1056.
[34] Yang S, Cheng J, Shang J, et al. Stretchable surface electromyography electrode array patch for tendon location and muscle injury prevention[J]. Nat Commun, 2023, 14(1): 6494.
[35] Zhao Y, Zhang S, Yu T, et al. Ultra-conformal skin electrodes with synergistically enhanced conductivity for long-time and low-motion artifact epidermal electrophysiology[J]. Nat Commun, 2021, 12(1): 4880.
[36] Alshabouna F, Lee H S, Barandun G, et al. PEDOT:PSS-modified cotton conductive thread for mass manufacturing of textile-based electrical wearable sensors by computerized embroidery[J]. Materials Today, 2022, 59: 56-67.
[37] Hong S, Lee S, Kim D-H. Materials and Design Strategies of Stretchable Electrodes for Electronic Skin and its Applications[J]. Proceedings of the IEEE, 2019, 107(10): 2185-2197.
[38] Zhao Y, Kim A, Wan G, Tee B C K. Design and applications of stretchable and self-healable conductors for soft electronics[J]. Nano Converg, 2019, 6(1): 25.
[39] Lee G H, Woo H, Yoon C, et al. A Personalized Electronic Tattoo for Healthcare Realized by On-the-Spot Assembly of an Intrinsically Conductive and Durable Liquid-Metal Composite[J]. Adv Mater, 2022, 34(32): e2204159.
[40] Chen G, Matsuhisa N, Liu Z, et al. Plasticizing Silk Protein for On-Skin Stretchable Electrodes[J]. Adv Mater, 2018, 30(21): e1800129.
[41] Zheng Y, Li Y, Zhao Y, et al. Ultrathin and highly breathable electronic tattoo for sensing multiple signals imperceptibly on the skin[J]. Nano Energy, 2023, 107.
[42] Wen Y, Wu M, Zhang M, et al. Topological Design of Ultrastrong and Highly Conductive Graphene Films[J]. Adv Mater, 2017, 29(41).
[43] Adly N, Teshima T F, Hassani H, et al. Printed Silk Microelectrode Arrays for Electrophysiological Recording and Controlled Drug Delivery[J]. Adv Healthc Mater, 2023, 12(17): e2202869.
[44] Lu B, Yuk H, Lin S, et al. Pure PEDOT:PSS hydrogels[J]. Nat Commun, 2019, 10(1): 1043.
[45] Luo J, Billep D, Waechtler T, et al. Enhancement of the thermoelectric properties of PEDOT:PSS thin films by post-treatment[J]. Journal of Materials Chemistry A, 2013, 1(26).
[46] Yildirim E, Wu G, Yong X, et al. A theoretical mechanistic study on electrical conductivity enhancement of DMSO treated PEDOT:PSS[J]. Journal of Materials Chemistry C, 2018, 6(19): 5122-5131.
[47] Mahato S, Puigdollers J, Voz C, et al. Near 5% DMSO is the best: A structural investigation of PEDOT: PSS thin films with strong emphasis on surface and interface for hybrid solar cell[J]. Applied Surface Science, 2020, 499.
[48] Alemu D, Wei H-Y, Ho K-C, Chu C-W. Highly conductive PEDOT:PSS electrode by simple film treatment with methanol for ITO-free polymer solar cells[J]. Energy & Environmental Science, 2012, 5(11).
[49] Thomas J P, Zhao L, Mcgillivray D, Leung K T. High-efficiency hybrid solar cells by nanostructural modification in PEDOT:PSS with co-solvent addition[J]. Journal of Materials Chemistry A, 2014, 2(7).
[50] Ganji M, Kaestner E, Hermiz J, et al. Development and Translation of PEDOT:PSS Microelectrodes for Intraoperative Monitoring[J]. Advanced Functional Materials, 2017, 28(12).
[51] Aguzin A, Dominguez-Alfaro A, Criado-Gonzalez M, et al. Direct ink writing of PEDOT eutectogels as substrate-free dry electrodes for electromyography[J]. Mater Horiz, 2023, 10(7): 2516-2524.
[52] Huang X, Chen C, Ma X, et al. In Situ Forming Dual‐Conductive Hydrogels Enable Conformal, Self‐Adhesive and Antibacterial Epidermal Electrodes[J]. Advanced Functional Materials, 2023, 33(38).
[53] Xia M, Liu J, Kim B J, et al. Kirigami-Structured, Low-Impedance, and Skin-Conformal Electronics for Long-Term Biopotential Monitoring and Human-Machine Interfaces[J]. Adv Sci (Weinh), 2024, 11(1): e2304871.
[54] Li T, Qi H, Dong X, et al. Highly Robust Conductive Organo-Hydrogels with Powerful Sensing Capabilities Under Large Mechanical Stress[J]. Adv Mater, 2024, 36(5): e2304145.
[55] Seyedin M Z, Razal J M, Innis P C, Wallace G G. Strain‐Responsive Polyurethane/PEDOT:PSS Elastomeric Composite Fibers with High Electrical Conductivity[J]. Advanced Functional Materials, 2014, 24(20): 2957-2966.
[56] Panwar V, Panwar L S, Anoop G, Park S. Electronic-ionic polymer composite for high output voltage generation[J]. Composites Part B: Engineering, 2022, 232.
[57] Kerdsakundee N, Li W, Martins J P, et al. Multifunctional Nanotube-Mucoadhesive Poly(methyl vinyl ether-co-maleic acid)@Hydroxypropyl Methylcellulose Acetate Succinate Composite for Site-Specific Oral Drug Delivery[J]. Adv Healthc Mater, 2017, 6(20).
[58] Ma X, Zhou N, Zhang T, et al. Self-healing pH-sensitive poly[(methyl vinyl ether)-alt-(maleic acid)]-based supramolecular hydrogels formed by inclusion complexation between cyclodextrin and adamantane[J]. Mater Sci Eng C Mater Biol Appl, 2017, 73: 357-365.
[59] Liang L, Zhang S, Goenaga G A, et al. Chemically Cross-Linked Cellulose Nanocrystal Aerogels for Effective Removal of Cation Dye[J]. Front Chem, 2020, 8: 570.
[60] Reis Carneiro M, Majidi C, Tavakoli M. Multi‐Electrode Printed Bioelectronic Patches for Long‐Term Electrophysiological Monitoring[J]. Advanced Functional Materials, 2022, 32(43).
[61] Tang L, Mou L, Zhang W, Jiang X. Large-Scale Fabrication of Highly Elastic Conductors on a Broad Range of Surfaces[J]. ACS Appl Mater Interfaces, 2019, 11(7): 7138-7147.
[62] Wang Y, Li J, Sun L, et al. Liquid Metal Droplets-Based Elastomers from Electric Toothbrush-Inspired Revolving Microfluidics[J]. Adv Mater, 2023, 35(20): e2211731.
[63] Hang C, Ding L, Cheng S, et al. A Soft and Absorbable Temporary Epicardial Pacing Wire[J]. Adv Mater, 2021, 33(36): e2101447.
[64] Ge Z, Guo W, Tao Y, et al. Wireless and Closed-Loop Smart Dressing for Exudate Management and On-Demand Treatment of Chronic Wounds[J]. Adv Mater, 2023, 35(47): e2304005.
[65] Tang L, Cheng S, Zhang L, et al. Printable Metal-Polymer Conductors for Highly Stretchable Bio-Devices[J]. iScience, 2018, 4: 302-31.
修改评论