[1] NOETHER E. Invariante variationsprobleme[J]. Nachrichten von der Gesellschaft der Wissenschaftenzu Göttingen, mathematisch-physikalische Klasse, 1918, 1918: 235-257.
[2] ANDERSON P W. More Is Different: Broken symmetry and the nature of the hierarchical structure of science.[J]. Science, 1972, 177(4047): 393-396.
[3] GEIM A K. Graphene: status and prospects[J]. Science, 2009, 324(5934): 1530-1534.
[4] TIWARI S K, SAHOO S, WANG N, et al. Graphene research and their outputs: Status and prospect[J]. Journal of Science: Advanced Materials and Devices, 2020, 5(1): 10-29.
[5] YU W, SISI L, HAIYAN Y, et al. Progress in the functional modification of graphene/graphene oxide: A review[J]. RSC Advances, 2020, 10(26): 15328-15345.
[6] OLABI A G, ABDELKAREEM M A, WILBERFORCE T, et al. Application of graphene in energy storage device–A review[J]. Renewable and Sustainable Energy Reviews, 2021, 135: 110026.
[7] DENG Y, YU Y, SHI M Z, et al. Quantum anomalous Hall effect in intrinsic magnetic topological insulator MnBi2Te4[J]. Science, 2020, 367(6480): 895-900.
[8] OTROKOV M M, KLIMOVSKIKH I I, BENTMANN H, et al. Prediction and observation of an antiferromagnetic topological insulator[J]. Nature, 2019, 576(7787): 416-422.
[9] LI J, LI Y, DU S, et al. Intrinsic magnetic topological insulators in van der Waals layered MnBi2Te4-family materials[J]. Science Advances, 2019, 5(6): eaaw5685.
[10] WU X, LI J, MA X M, et al. Distinct topological surface states on the two terminations of MnBi4Te7[J]. Physical Review X, 2020, 10: 031013.
[11] WANG N, KAPLAN D, ZHANG Z, et al. Quantum-metric-induced nonlinear transport in a topological antiferromagnet[J]. Nature, 2023, 621(7979): 487-492.
[12] LIU C, WANG Y, LI H, et al. Robust axion insulator and Chern insulator phases in a twodimensional antiferromagnetic topological insulator[J]. Nature Materials, 2020, 19(5): 522-527.
[13] HU C, GORDON K N, LIU P, et al. A van der Waals antiferromagnetic topological insulator with weak interlayer magnetic coupling[J]. Nature Communications, 2020, 11(1): 97.
[14] ZUNGER A. Inverse design in search of materials with target functionalities[J]. Nature Reviews Chemistry, 2018, 2(4): 0121.
[15] KLITZING K V, DORDA G, PEPPER M. New method for high-accuracy determination of the fine-structure constant based on quantized Hall resistance[J]. Physical Review Letters, 1980, 45(6): 494.
[16] HALDANE F D M. Model for a quantum Hall effect without Landau levels: Condensed-matter realization of the” parity anomaly”[J]. Physical Review Letters, 1988, 61(18): 2015.
[17] KANE C L, MELE E J. Quantum spin Hall effect in graphene[J]. Physical Review Letters, 2005, 95(22): 226801.
[18] KANE C L, MELE E J. Z2 topological order and the quantum spin Hall effect[J]. Physical Review Letters, 2005, 95(14): 146802.
[19] CHANG C Z, ZHANG J, FENG X, et al. Experimental observation of the quantum anomalous Hall effect in a magnetic topological insulator[J]. Science, 2013, 340(6129): 167-170.
[20] CHANG C Z, LIU C X, MACDONALD A H. Colloquium: Quantum anomalous hall effect[J]. Reviews of Modern Physics, 2023, 95(1): 011002.
[21] LIU C X, QI X L, DAI X, et al. Quantum anomalous Hall effect in Hg1−𝑦Mn𝑦Te quantum wells [J]. Physical Review Letters, 2008, 101(14): 146802.
[22] LI T, JIANG S, SHEN B, et al. Quantum anomalous Hall effect from intertwined moiré bands [J]. Nature, 2021, 600(7890): 641-646.
[23] FU L, KANE C L. Topological insulators with inversion symmetry[J]. Physical Review B, 2007, 76(4): 045302.
[24] PO H C, VISHWANATH A, WATANABE H. Symmetry-based indicators of band topology in the 230 space groups[J]. Nature Communications, 2017, 8(1): 50.
[25] BRADLYN B, ELCORO L, CANO J, et al. Topological quantum chemistry[J]. Nature, 2017, 547(7663): 298-305.
[26] SONG Z, ZHANG T, FANG Z, et al. Quantitative mappings between symmetry and topology in solids[J]. Nature Communications, 2018, 9(1): 3530.
[27] WATANABE H, PO H C, VISHWANATH A. Structure and topology of band structures in the 1651 magnetic space groups[J]. Science Advances, 2018, 4(8): eaat8685.
[28] ELCORO L, WIEDER B J, SONG Z, et al. Magnetic topological quantum chemistry[J]. Nature Communications, 2021, 12(1): 5965.
[29] ZHANG T, JIANG Y, SONG Z, et al. Catalogue of topological electronic materials[J]. Nature, 2019, 566(7745): 475-479.
[30] TANG F, PO H C, VISHWANATH A, et al. Comprehensive search for topological materials using symmetry indicators[J]. Nature, 2019, 566(7745): 486-489.
[31] XU Y, ELCORO L, SONG Z D, et al. High-throughput calculations of magnetic topological materials[J]. Nature, 2020, 586(7831): 702-707.
[32] OHNO H, CHIBA D, MATSUKURA F, et al. Electric-field control of ferromagnetism[J]. Nature, 2000, 408(6815): 944-946.
[33] CHAPPERT C, FERT A, VAN DAU F N. The emergence of spin electronics in data storage[J]. Nature Materials, 2007, 6(11): 813-823.
[34] WUNDERLICH J, PARK B G, IRVINE A C, et al. Spin Hall effect transistor[J]. Science, 2010, 330(6012): 1801-1804.
[35] WANG K L, KOU X F, UPADHYAYA P, et al. Electric-field control of spin-orbit interaction for low-power spintronics[J]. Proceedings of the Ieee, 2016, 104(10): 1974-2008
[36] DATTA S, DAS B. Electronic analog of the electro‐optic modulator[J]. Applied Physics Letters, 1990, 56(7): 665-667.
[37] KOO H C, KWON J H, EOM J, et al. Control of spin precession in a spin-injected field effect transistor[J]. Science, 2009, 325(5947): 1515-1518.
[38] GANICHEV S D. Spin-galvanic effect and spin orientation by current in non-magnetic semiconductors[J]. International Journal of Modern Physics B, 2008, 22(1-2): 1-26.
[39] SLONCZEWSKI J C. Current-driven excitation of magnetic multilayers[J]. Journal of Magnetism and Magnetic Materials, 1996, 159(1-2): L1-L7.
[40] ŠMEJKAL L, SINOVA J, JUNGWIRTH T. Beyond conventional ferromagnetism and antiferromagnetism: A phase with nonrelativistic spin and crystal rotation symmetry[J]. Physical Review X, 2022, 12(3): 031042.
[41] GONZÁLEZ-HERNÁNDEZ R, ŠMEJKAL L, VỲBORNỲ K, et al. Efficient electrical spin splitter based on nonrelativistic collinear antiferromagnetism[J]. Physical Review Letters, 2021, 126(12): 127701.
[42] BAI H, HAN L, FENG X, et al. Observation of spin splitting torque in a collinear antiferromagnet RuO2[J]. Physical Review Letters, 2022, 128(19): 197202.
[43] BAI H, ZHANG Y, ZHOU Y, et al. Efficient Spin-to-Charge Conversion via Altermagnetic Spin Splitting Effect in Antiferromagnet RuO2[J]. Physical Review Letters, 2023, 130(21): 216701.
[44] BOSE A, SCHREIBER N J, JAIN R, et al. Tilted spin current generated by the collinear antiferromagnet ruthenium dioxide[J]. Nature Electronics, 2022, 5(5): 267-274.
[45] ŠMEJKAL L, HELLENES A B, GONZÁLEZ-HERNÁNDEZ R, et al. Giant and tunneling magnetoresistance in unconventional collinear antiferromagnets with nonrelativistic spinmomentum coupling[J]. Physical Review X, 2022, 12(1): 011028.
[46] TSAI H, HIGO T, KONDOU K, et al. Electrical manipulation of a topological antiferromagnetic state[J]. Nature, 2020, 580(7805): 608-613.
[47] HIGO T, KONDOU K, NOMOTO T, et al. Perpendicular full switching of chiral antiferromagnetic order by current[J]. Nature, 2022, 607(7919): 474-479.
[48] DRESSELHAUS G. Spin-Orbit Coupling Effects in Zinc Blende Structures[J]. Physical Review, 1955, 100(2): 580-586.
[49] RASHBA E I. Properties of semiconductors with an Extremum Loop .1. cyclotron and combinational resonance in a magnetic field perpendicular to the plane of the loop[J]. Soviet Physics-Solid State, 1960, 2(6): 1109-1122.
[50] ISHIZAKA K, BAHRAMY M, MURAKAWA H, et al. Giant Rashba-type spin splitting in bulk BiTeI[J]. Nature Materials, 2011, 10(7): 521-526.
[51] EREMEEV S V, NECHAEV I A, KOROTEEV Y M, et al. Ideal two-dimensional electron systems with a giant Rashba-type spin splitting in real materials: surfaces of bismuth tellurohalides [J]. Physical Review Letters, 2012, 108(24): 246802.
[52] BAHRAMY M, ARITA R, NAGAOSA N. Origin of giant bulk Rashba splitting: Application to BiTeI[J]. Physical Review B, 2011, 84(4): 041202.
[53] LIEBMANN M, RINALDI C, DI SANTE D, et al. Giant Rashba-type spin splitting in ferroelectric GeTe (111)[J]. Advanced Materials, 2016, 28(3): 560-565.
[54] DI SANTE D, BARONE P, BERTACCO R, et al. Electric control of the giant Rashba effect in bulk GeTe[J]. Advanced Materials (Deerfield Beach, Fla.), 2012, 25(4): 509-513.
[55] ACOSTA C M, YUAN L D, DALPIAN G M, et al. Different shapes of spin textures as a journey through the Brillouin zone[J]. Physical Review B, 2021, 104(10): 104408.
[56] ZHANG X W, LIU Q H, LUO J W, et al. polarization in inversion-symmetric bulk crystals[J]. Nature Physics, 2014, 10(5): 387-393.
[57] LIU Q H, GUO Y Z, FREEMAN A J. Tunable Rashba effect in two-dimensional LaOBiS2 films: ultrathin candidates for spin field effect transistors[J]. Nano Letters, 2013, 13(11): 5264-5270.
[58] ŽELEZNỲ J, GAO H, VỲBORNỲ K, et al. Relativistic Néel-order fields induced by electrical current in antiferromagnets[J]. Physical Review Letters, 2014, 113(15): 157201.
[59] WADLEY P, HOWELLS B, ŽELEZNý J, et al. Electrical switching of an antiferromagnet[J]. Science, 2016, 351(6273): 587-590.
[60] ZHANG K, ZHAO S X, HAO Z Y, et al. Observation of spin-momentum-layer locking in a centrosymmetric crystal[J]. Physical Review Letters, 2021, 127(12): 126402.
[61] CHEN W Z, GU M Q, LI J Y, et al. Role of Hidden Spin Polarization in Nonreciprocal Transport of Antiferromagnets[J]. Physical Review Letters, 2022, 129(27): 276601.
[62] LI Y L, LUDWIG J, LOW T, et al. Valley Splitting and Polarization by the Zeeman Effect in Monolayer MoSe2[J]. Physical Review Letters, 2014, 113(26): 266804.
[63] MERA ACOSTA C, FAZZIO A, DALPIAN G M. Zeeman-type spin splitting in nonmagnetic three-dimensional compounds[J]. npj Quantum Materials, 2019, 4(1): 41.
[64] ZHAO H J, NAKAMURA H, ARRAS R, et al. Purely cubic spin splittings with persistent spin textures[J]. Physical Review Letters, 2020, 125(21): 216405.
[65] BRADLEY C, CRACKNELL A. The mathematical theory of symmetry in solids: representation theory for point groups and space groups[M]. Oxford University Press, 2010.
[66] EVARESTOV R A, SMIRNOV V P. Site symmetry in crystals: theory and applications: Vol. 108[M]. Springer Science & Business Media, 2012.
[67] CRACKNELL A P. Corepresentations of magnetic point groups[J]. Progress of Theoretical Physics, 1966, 35(2): 196-213.
[68] XIAO Z, ZHAO J, LI Y, et al. Spin space groups: full classification and applications[A]. 2023, arXiv:2307.10364.
[69] REN J, CHEN X, ZHU Y, et al. Enumeration and representation of spin space groups[A]. 2023, arXiv:2307.10369.
[70] JIANG Y, SONG Z, ZHU T, et al. Enumeration of spin-space groups: Towards a complete description of symmetries of magnetic orders[A]. 2023, arXiv:2307.10371.
[71] DRESSELHAUS M S, DRESSELHAUS G, JORIO A. Group theory: application to the physics of condensed matter[M]. Springer Science & Business Media, 2007.
[72] BORN M, OPPENHEIMER R. Zur Quantentheorie der Molekeln Annalen der Physik, v. 84 [Z]. 1927.
[73] HOHENBERG P, KOHN W. Inhomogeneous electron gas[J]. Physical Review, 1964, 136(3B): B864.
[74] KOHN W, SHAM L J. Self-consistent equations including exchange and correlation effects[J]. Physical Review, 1965, 140(4A): A1133.
[75] THOMAS L H. The calculation of atomic fields[J]. Mathematical Proceedings of the Cambridge Philosophical Society, 1927, 23(5): 542–548.
[76] FERMI E. Un metodo statistico per la determinazione di alcune priorieta dell’atome[J]. Rend. Accad. Naz. Lincei, 1927, 6(602-607): 32.
[77] CEPERLEY D M, ALDER B J. Ground state of the electron gas by a stochastic method[J]. Physical Review Letters, 1980, 45(7): 566.
[78] PERDEW J P, ZUNGER A. Self-interaction correction to density-functional approximations for many-electron systems[J]. Physical Review B, 1981, 23(10): 5048.
[79] HEDIN L, LUNDQVIST B I. Explicit local exchange-correlation potentials[J]. Journal of Physics C: Solid State Physics, 1971, 4(14): 2064.
[80] PERDEW J P, WANG Y. Accurate and simple analytic representation of the electron-gas correlation energy[J]. Physical Review B, 1992, 45(23): 13244.
[81] PERDEW J P, BURKE K, ERNZERHOF M. Generalized gradient approximation made simple [J]. Physical Review Letters, 1996, 77(18): 3865.
[82] PERDEW J P, BURKE K, ERNZERHOF M. Generalized gradient approximation made simple [Phys. Rev. Lett. 77, 3865 (1996)][J]. Physical Review Letters, 1997, 78: 1396-1396.
[83] NAGAOSA N, SINOVA J, ONODA S, et al. Anomalous hall effect[J]. Reviews of Modern Physics, 2010, 82(2): 1539.
[84] LIU C X, ZHANG S C, QI X L. The quantum anomalous Hall effect: theory and experiment [J]. Annual Review of Condensed Matter Physics, 2016, 7: 301-321.
[85] SERLIN M, TSCHIRHART C, POLSHYN H, et al. Intrinsic quantized anomalous Hall effect in a moiré heterostructure[J]. Science, 2020, 367(6480): 900-903.
[86] JUNGWIRTH T, MARTI X, WADLEY P, et al. Antiferromagnetic spintronics[J]. Nature Nanotechnology, 2016, 11(3): 231-241.
[87] ŽELEZNỲ J, WADLEY P, OLEJNÍK K, et al. Spin transport and spin torque in antiferromagnetic devices[J]. Nature Physics, 2018, 14(3): 220-228.
[88] HAYAMI S, YANAGI Y, KUSUNOSE H. Momentum-dependent spin splitting by collinear antiferromagnetic ordering[J]. Journal of the Physical Society of Japan, 2019, 88(12): 123702.
[89] YUAN L D, WANG Z, LUO J W, et al. Giant momentum-dependent spin splitting in centrosymmetric low-Z antiferromagnets[J]. Physical Review B, 2020, 102(1): 014422.
[90] CHEN H, NIU Q, MACDONALD A H. Anomalous Hall effect arising from noncollinear antiferromagnetism[J]. Physical Review Letters, 2014, 112(1): 017205.
[91] ŠMEJKAL L, GONZÁLEZ-HERNÁNDEZ R, JUNGWIRTH T, et al. Crystal time-reversal symmetry breaking and spontaneous Hall effect in collinear antiferromagnets[J]. Science Advances, 2020, 6(23): eaaz8809.
[92] NÉEL L. Propriétés magnétiques des ferrites ; ferrimagnétisme et antiferromagnétisme[J]. Annales De Physique, 1948, 12(3): 137-198.
[93] COEY J M. Magnetism and magnetic materials[M]. Cambridge university press, 2010.
[94] MAZIN I, et al. Altermagnetism—a new punch line of fundamental magnetism[J]. Physical Review X, 2022, 12(4): 040002.
[95] FINLEY J, LIU L. Spintronics with compensated ferrimagnets[J]. Applied Physics Letters, 2020, 116(11).
[96] KIM S K, BEACH G S, LEE K J, et al. Ferrimagnetic spintronics[J]. Nature Materials, 2022, 21(1): 24-34.
[97] ZHOU P, SUN C, SUN L. Two dimensional antiferromagnetic Chern insulator: NiRuCl6[J]. Nano Letters, 2016, 16(10): 6325-6330.
[98] WANG J. Antiferromagnetic Dirac semimetals in two dimensions[J]. Physical Review B, 2017, 95(11): 115138.
[99] JIANG K, ZHOU S, DAI X, et al. Antiferromagnetic Chern insulators in noncentrosymmetric systems[J]. Physical Review Letters, 2018, 120(15): 157205.
[100] JAIN A, ONG S P, HAUTIER G, et al. Commentary: The Materials Project: A materials genome approach to accelerating materials innovation[J]. Apl Materials, 2013, 1(1): 011002.
[101] LIU P F, LI J Y, HAN J Z, et al. Spin-group symmetry in magnetic materials with negligible spin-orbit coupling[J]. Physical Review X, 2022, 12(2): 021016.
[102] REN Y, ZENG J, DENG X, et al. Quantum anomalous Hall effect in atomic crystal layers from in-plane magnetization[J]. Physical Review B, 2016, 94(8): 085411.
[103] LIU Z, ZHAO G, LIU B, et al. Intrinsic quantum anomalous Hall effect with in-plane magnetization: searching rule and material prediction[J]. Physical Review Letters, 2018, 121(24): 246401.
[104] GEORGIOU T, JALIL R, BELLE B D, et al. Vertical field-effect transistor based on graphene–WS2 heterostructures for flexible and transparent electronics[J]. Nature Nanotechnology, 2013, 8(2): 100-103.
[105] LEE G H, YU Y J, CUI X, et al. Flexible and transparent MoS2 field-effect transistors on hexagonal boron nitride-graphene heterostructures[J]. ACS Nano, 2013, 7(9): 7931-7936.
[106] KOSKINEN P, FAMPIOU I, RAMASUBRAMANIAM A. Density-functional tight-binding simulations of curvature-controlled layer decoupling and band-gap tuning in bilayer MoS2[J]. Physical Review Letters, 2014, 112(18): 186802.
[107] KRESSE G, FURTHMÜLLER J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set[J]. Physical review B, 1996, 54(16): 11169.
[108] KRESSE G, JOUBERT D. From ultrasoft pseudopotentials to the projector augmented-wave method[J]. Physical Review B, 1999, 59(3): 1758.
[109] MOSTOFI A A, YATES J R, LEE Y S, et al. Wannier90: A tool for obtaining maximallylocalised Wannier functions[J]. Computer Physics Communications, 2008, 178(9): 685-699.
[110] MARZARI N, MOSTOFI A A, YATES J R, et al. Maximally localized Wannier functions: Theory and applications[J]. Reviews of Modern Physics, 2012, 84(4): 1419.
[111] WU Q, ZHANG S, SONG H F, et al. WannierTools: An open-source software package for novel topological materials[J]. Computer Physics Communications, 2018, 224: 405-416.
[112] THOULESS D J, KOHMOTO M, NIGHTINGALE M P, et al. Quantized Hall conductance in a two-dimensional periodic potential[J]. Physical Review Letters, 1982, 49(6): 405.
[113] XIAO D, CHANG M C, NIU Q. Berry phase effects on electronic properties[J]. Reviews ofModern Physics, 2010, 82(3): 1959.
[114] BIANCO R, RESTA R. Mapping topological order in coordinate space[J]. Physical Review B,2011, 84(24): 241106.
[115] CAIO M D, MÖLLER G, COOPER N R, et al. Topological marker currents in Chern insulators[J]. Nature Physics, 2019, 15(3): 257-261.
[116] ZAK J. Band representations of space-groups[J]. Physical Review B, 1982, 26(6): 3010-3023.
[117] XU Y, ELCORO L, LI G, et al. Three-dimensional real space invariants, obstructed atomicinsulators and a new principle for active catalytic sites[A]. 2021, arXiv:2111.02433.
[118] XU Y, ELCORO L, SONG Z D, et al. Filling-enforced obstructed atomic insulators[A]. 2021,arXiv:2106.10276.
[119] SONG Z, FANG Z, FANG C. (d-2)-dimensional edge states of rotation symmetry protectedtopological states[J]. Physical Review Letters, 2017, 119(24): 246402.
[120] WU H, WANG Y, XU Y, et al. The field-free Josephson diode in a van der Waals heterostructure[J]. Nature, 2022, 604(7907): 653-656.
[121] LI G, XU Y, SONG Z, et al. Obstructed surface states as the descriptor for predicting catalyticactive sites in inorganic crystalline materials[J]. Advanced Materials, 2022, 34(26): 2201328.
[122] JUNG J H, PARK C H, IHM J. A rigorous method of calculating exfoliation energies from firstprinciples[J]. Nano Letters, 2018, 18(5): 2759-2765.
[123] YUAN L D, WANG Z, LUO J W, et al. Giant momentum-dependent spin splitting in centrosymmetriclow-Z antiferromagnets[J]. Physical Review B, 2020, 102(1): 014422.
[124] YUAN L D, WANG Z, LUO J W, et al. Prediction of low-Z collinear and noncollinear antiferromagneticcompounds having momentum-dependent spin splitting even without spin-orbitcoupling[J]. Physical Review Materials, 2021, 5(1): 014409.
[125] ZHU Y P, CHEN X, LIU X R, et al. Observation of plaid-like spin splitting in a noncoplanarantiferromagnet[J]. Nature, 2024, 626(7999): 523-528.
[126] ROLAND W. Spin-orbit coupling effects in two-dimensional electron and hole systems[J].Springer Tracts in Modern Physiscs: Springer, Berlin, Heidelberg, 2003, 191.
[127] EDELSTEIN V M. Spin polarization of conduction electrons induced by electric current intwo-dimensional asymmetric electron systems[J]. Solid State Communications, 1990, 73(3):233-235.99参考文献
[128] MURAKAMI S, NAGAOSA N, ZHANG S C. Dissipationless quantum spin current at roomtemperature[J]. Science, 2003, 301(5638): 1348-1351.
[129] WUNDERLICH J, KAESTNER B, SINOVA J, et al. Experimental observation of the spin-Hall effect in a two-dimensional spin-orbit coupled semiconductor system[J]. Physical ReviewLetters, 2005, 94(4): 047204.
[130] BERNEVIG B A, VAFEK O. Piezo-magnetoelectric effects in p-doped semiconductors[J].Physical Review B, 2005, 72(3): 033203.
[131] MANCHON A, ZHANG S. Theory of nonequilibrium intrinsic spin torque in a single nanomagnet[J]. Physical Review B, 2008, 78(21): 212405.
[132] MIRON I M, GARELLO K, GAUDIN G, et al. Perpendicular switching of a single ferromagneticlayer induced by in-plane current injection[J]. Nature, 2011, 476(7359): 189-U88.
[133] ISHIZAKA K, BAHRAMY M S, MURAKAWA H, et al. Giant Rashba-type spin splitting inbulk BiTeI[J]. Nature Materials, 2011, 10(7): 521-526.
[134] BERNEVIG B A, ORENSTEIN J, ZHANG S C. Exact SU(2) symmetry and persistent spinhelix in a spin-orbit coupled system[J]. Physical Review Letters, 2006, 97(23): 236601.
[135] KORALEK J D, WEBER C P, ORENSTEIN J, et al. Emergence of the persistent spin helix insemiconductor quantum wells[J]. Nature, 2009, 458(7238): 610-613.
[136] TAO L, TSYMBAL E Y. Persistent spin texture enforced by symmetry[J]. Nature Communications,2018, 9(1): 2763.
[137] XIAO D, LIU G B, FENG W X, et al. Coupled spin and valley physics in monolayers of MoS2and other group-VI dichalcogenides[J]. Physical Review Letters, 2012, 108(19): 196802.
[138] ZHANG H J, LIU C X, ZHANG S C. Spin-orbital texture in topological insulators[J]. PhysicalReview Letters, 2013, 111(6): 066801.
[139] ZHAO H J, LIU X R, WANG Y C, et al. Zeeman effect in centrosymmetric antiferromagneticsemiconductors controlled by an electric field[J]. Physical Review Letters, 2022, 129(18): 187602.
[140] LIN M, ROBREDO I, SCHRöETER N B M, et al. Spin-momentum locking from topologicalquantum chemistry: Applications to multifold fermions[J]. Physical Review B, 2022, 106(24):245101.
[141] CAO T, WANG G, HAN W, et al. Valley-selective circular dichroism of monolayer molybdenumdisulphide[J]. Nature Communications, 2012, 3(1): 887.
[142] MAK K F, HE K L, SHAN J, et al. Control of valley polarization in monolayer MoS2 by opticalhelicity[J]. Nature Nanotechnology, 2012, 7(8): 494-498.
[143] ZENG H L, DAI J F, YAO W, et al. Valley polarization in MoS2 monolayers by optical pumping[J]. Nature Nanotechnology, 2012, 7(8): 490-493.
[144] CAO Y, WAUGH J A, ZHANG X W, et al. Mapping the orbital wavefunction of the surfacestates in three-dimensional topological insulators[J]. Nature Physics, 2013, 9(8): 499-504.
[145] CANO J, BRADLYN B, WANG Z J, et al. Building blocks of topological quantum chemistry:Elementary band representations[J]. Physical Review B, 2018, 97(3): 035139.100参考文献
[146] LUTTINGER J M. Quantum theory of cyclotron resonance in semiconductors: General theory[J]. Physical Review, 1956, 102(4): 1030.
[147] PARK S R, HAN J, KIM C, et al. Chiral orbital-angular momentum in the surface states ofBi2Se3[J]. Physical Review Letters, 2012, 108(4): 046805.
[148] ZHU Z H, VEENSTRA C N, LEVY G, et al. Layer-by-layer entangled spin-orbital texture ofthe topological surface state in Bi2Se3[J]. Physical Review Letters, 2013, 110(21): 216401.
[149] BERRY M V. Quantal Phase Factors Accompanying Adiabatic Changes[J]. Proceedings ofthe Royal Society of London Series a-Mathematical and Physical Sciences, 1984, 392(1802):45-57.
[150] XIAO D, CHANG M C, NIU Q. Berry phase effects on electronic properties[J]. Reviews ofModern Physics, 2010, 82(3): 1959-2007.
[151] ŠMEJKAL L, SINOVA J, JUNGWIRTH T. Beyond conventional ferromagnetism and antiferromagnetism:a phase with nonrelativistic spin and crystal rotation symmetry[J]. PhysicalReview X, 2022, 12(3): 031042.
[152] LITVIN D B. Spin point groups[J]. Acta Crystallographica Section A: Crystal Physics, Diffraction,Theoretical and General Crystallography, 1977, 33(2): 279-287.
[153] GALLEGO S V, PEREZ-MATO J M, ELCORO L, et al. MAGNDATA: towards a database ofmagnetic structures. I. The commensurate case[J]. Journal of Applied Crystallography, 2016,49(5): 1750-1776.
[154] GALLEGO S V, PEREZ-MATO J M, ELCORO L, et al. MAGNDATA: towards a databaseof magnetic structures. II. The incommensurate case[J]. Journal of Applied Crystallography,2016, 49(6): 1941-1956.
[155] HAYAMI S, KUSUNOSE H. Spin-orbital-momentum locking under odd-parity magneticquadrupole ordering[J]. Physical Review B, 2021, 104(4): 045117.
[156] YAO W, WANG E, HUANG H, et al. Direct observation of spin-layer locking by local Rashbaeffect in monolayer semiconducting PtSe2 film[J]. Nature Communications, 2017, 8(1): 14216.101
修改评论