中文版 | English
题名

基于DUGKS-LES的槽道湍流大涡模拟研究

其他题名
LARGE EDDY SIMULATION OF TURBULENT CHANNEL FLOW USING DUGKS-LES
姓名
姓名拼音
GUO Lin
学号
12132392
学位类型
硕士
学位专业
0801 力学
学科门类/专业学位类别
08 工学
导师
王连平
导师单位
力学与航空航天工程系
论文答辩日期
2024-05-20
论文提交日期
2024-06-21
学位授予单位
南方科技大学
学位授予地点
深圳
摘要

随着计算机技术和计算方法的快速发展,大涡数值模拟逐渐成为一种研究湍流流动的重要工具,然而在科学研究与工程应用中,基于介观方法的大涡模拟研究相对较少。本文首先通过离散统一气体动理学方法(Discrete unified gas kinetic scheme,简称DUGKS)对槽道湍流展开直接数值模拟,验证了DUGKS的高数值稳定性、非均匀网格实施的便捷性。然后,在并行的DUGKS框架下耦合了两类(壁面模型和壁面自适应模型)大涡模拟方法,并对不同雷诺数下的槽道湍流进行了大涡模拟。从湍流统计特征的角度讨论不同雷诺数下的槽道湍流的流动特性,同时在与相关学者的已有成果对比之后对不同大涡模拟模型在DUGKS框架下的效果展开分析。全文研究的主要内容和结论如下:
(1)为了进一步检验DUGKS方法并为大涡模拟方法提供对照数据,本文首先利用DUGKS对180及395雷诺数的槽道湍流展开了直接数值模拟。结果表明,DUGKS具备较好的数值稳定性,且可以利用非均匀、非各向同性特征突出的网格进行湍流模拟,在较低的网格分辨率下得到准确的数值结果。在流向流域相对槽道宽度较大的工况下,即使使用长宽比大于20的设置,仍然数值稳定。但高雷诺数槽道湍流算例的计算量更大,往往需要较长时间才能进入充分发展阶段,借助低雷诺数下的计算结果建立初始场,可有效减少这一过程所需的时间;
(2)本文通过耦合标准离壁Smagorinsky亚格子模型和Musker壁面模型,实现了第一类DUGKS-LES介观大涡模拟算法。推导了在DUGKS框架下实现大涡模拟有效总应力和修正分布函数非平衡态的关系式;在通过壁面函数逆求解壁面剪切应力时,设计了可以保证收敛性的快速牛顿迭代法,同时利用逆问题的近似解进一步提高了迭代效率。结果表明,算法在不同雷诺数下的槽道湍流算例中均表现良好,流向速度、雷诺应力、脉动速度等湍流统计量的平均相对误差均可以保持在12%以内,与相关文献的结果进行比较时DUGKS-LES方法在准确性上具备明显的优势;
(3)本文利用非均匀网格下的差分格式,在DUGKS中耦合了WALE和Vreman两种壁面自适应亚格子模型,从而实现了第二类DUGKS-LES介观大涡模拟算法。通过与标准Smagorinsky模型结果的比较,验证了这两个模型在近壁区域对涡粘系数有一定的自适应调整特性,且由于不受Musker函数的限制,对数律区域的流向速度模拟效果优于耦合了Musker壁面函数的LES算法。与相关文献相比,本文将算例设置拓展到了更高的湍流雷诺数,结果显示,即使使用较低的网格分辨率仍可以实现较为精确的湍流大涡模拟。 对于雷诺应力和湍流速度脉动,WALE与Vreman模型可以将标准Smagorinsky模型的误差减少50%。
本文的研究为使用DUGKS方法进行湍流大涡模拟提供了多种技术手段;通过对槽道湍流统计特征的分析,总结了常用的大涡模拟模型的性能差异;通过对比不同湍流雷诺数下流场的湍流统计量,增进了对不同雷诺数下槽道湍流物理性质的认识,对于探索复杂流动物理具有一定的科学意义和应用价值。

关键词
语种
中文
培养类别
独立培养
入学年份
2021
学位授予年份
2024-06
参考文献列表

[1] 刘春友, 李作旭, 王连平. 基于格子玻尔兹曼方法的局部网格加密算法——粗细网格间的数据转换[J]. 力学学报, 2023, 55(11): 2480-2503.
[2] SHI B J, HE G W, WANG S Z. Large-eddy simulation of flows with complex geometries by using the slip-wall model[J]. 力学学报, 2019, 51(3): 754-766.
[3] HU B, JHAVAR R, SINGH S, et al. Combustion modeling of diesel combustion with partially premixed conditions[R]. SAE Technical Paper, 2007.
[4] TSENG Y H, MENEVEAU C, PARLANGE M B. Modeling flow around bluff bodies and predicting urban dispersion using large eddy simulation[J]. Environmental science & technology, 2006, 40(8): 2653-2662.
[5] ZHANG H, SHI W D, BIN C, et al. Experimental study of flow field in interference area between impeller and guide vane of axial flow pump[J]. Journal of Hydrodynamics, Ser. B, 2015, 26(6): 894-901.
[6] GOC K A, MOIN P, BOSE S T, et al. Wind tunnel and grid resolution effects in large-eddy simulations of the high-lift common research model[J]. Journal of Aircraft, 2024, 61(1): 267-279.
[7] YAN Z Z, CHEN R L, CAI X C. Large eddy simulation of the wind flow in a realistic full-scale urban community with a scalable parallel algorithm[J]. Computer Physics Communications, 2022, 270: 108170.
[8] ALJURE D, CALAFELL J, BAEZ A, et al. Flow over a realistic car model: Wall modeled large eddy simulations assessment and unsteady effects[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2018, 174: 225-240.
[9] POGORELOV A, MEINKE M, SCHRÖDER W. Large-eddy simulation of the unsteady full 3D rim seal flow in a one-stage axial-flow turbine[J]. Flow, turbulence and combustion, 2019, 102: 189-220.
[10] CHEN S Y, DOOLEN G D. Lattice Boltzmann method for fluid flows[J]. Annual review of fluid mechanics, 1998, 30(1): 329-364.
[11] GUO Z L, XU K, WANG L P, et al. Discrete unified gas kinetic scheme for all Knudsen number flows: Low-speed isothermal case[J]. Physical Review E, 2013, 88(3): 033305.
[12] YANG Z Y. Large-eddy simulation: Past, present and the future[J]. Chinese journal of Aeronautics, 2015, 28(1): 11-24.
[13] PREMNATH K N, PATTISON M J, BANERJEE S. Dynamic subgrid scale modeling of turbulent flows using lattice-Boltzmann method[J]. Physica A: Statistical Mechanics and its Applications, 2009, 388(13): 2640-2658.
[14] PREMNATH K N, PATTISON M J, BANERJEE S. Generalized lattice Boltzmann equation with forcing term for computation of wall-bounded turbulent flows[J]. Physical Review E, 2009, 79(2): 026703.
[15] MOIN P, MAHESH K. Direct numerical simulation: a tool in turbulence research[J]. Annual review of fluid mechanics, 1998, 30(1): 539-578.
[16] SPALART P R. Comments on the Feasibility of LES for Wings and on the Hybrid RANS/LES Approach[C]//Proceedings of the First AFOSR International Conference on DNS/LES, 1997. 1997: 137-147.
[17] FERZIGER J H. Large eddy simulation: its role in turbulence research[M]//Theoretical approaches to turbulence. Springer, 1985: 51-72.
[18] SMAGORINSKY J. General circulation experiments with the primitive equations: I. The basic experiment[J]. Monthly weather review, 1963, 91(3): 99-164.
[19] DEARDORFF J W. A numerical study of three-dimensional turbulent channel flow at large Reynolds numbers[J]. Journal of Fluid Mechanics, 1970, 41(2): 453-480.
[20] REYNOLDS W C. Computation of turbulent flows[J]. Annual Review of Fluid Mechanics, 1976, 8(1): 183-208.
[21] KRAICHNAN R H. Eddy viscosity in two and three dimensions[J]. Journal of Atmospheric Sciences, 1976, 33(8): 1521-1536.
[22] LUMLEY J L, YAGLOM A M. A century of turbulence[J]. Flow, turbulence and combustion, 2001, 66: 241-286.
[23] SCHUMANN U. Subgrid scale model for finite difference simulations of turbulent flows in plane channels and annuli[J]. Journal of computational physics, 1975, 18(4): 376-404.
[24] LESIEUR M, MÉTAIS O, COMTE P. Large-eddy simulations of turbulence[M]. Cambridge university press, 2005.
[25] BARDINA J. Improved turbulence models based on large eddy simulation of homogeneous, incompressible, turbulent flows[M]. Stanford University, 1983.
[26] HORIUTI K. Large eddy simulation of turbulent channel flow by one-equation modeling[J]. Journal of the Physical Society of Japan, 1985, 54(8): 2855-2865.
[27] YOSHIZAWA A. Statistical theory for compressible turbulent shear flows, with the application to subgrid modeling[J]. The Physics of fluids, 1986, 29(7): 2152-2164.
[28] SPEZIALE C G, ERLEBACHER G, ZANG T, et al. The subgrid-scale modeling of compressible turbulence[J]. The Physics of fluids, 1988, 31(4): 940-942.
[29] MOIN P, KIM J. Numerical investigation of turbulent channel flow[J]. Journal of fluid mechanics, 1982, 118: 341-377.
[30] PIOMELLI U, ZANG T A, SPEZIALE C G, et al. On the large-eddy simulation of transitional wall-bounded flows[J]. Physics of Fluids A: Fluid Dynamics, 1990, 2(2): 257-265.
[31] PIOMELLI U, CABOT W H, MOIN P, et al. Subgrid-scale backscatter in turbulent and transitional flows[J]. Physics of Fluids A: Fluid Dynamics, 1991, 3(7): 1766-1771.
[32] KRAUSE M J, KUMMERLÄNDER A, AVIS S J, et al. OpenLB—Open source lattice Boltzmann code[J]. Computers & Mathematics with Applications, 2021, 81: 258-288.
[33] GERMANO M, PIOMELLI U, MOIN P, et al. A dynamic subgrid-scale eddy viscosity model[J]. Physics of Fluids A: Fluid Dynamics, 1991, 3(7): 1760-1765.
[34] LILLY D K. A proposed modification of the Germano subgrid-scale closure method[J]. Physics of Fluids A: Fluid Dynamics, 1992, 4(3): 633-635.
[35] VREMAN B, GEURTS B, KUERTEN H. A priori tests of large eddy simulation of the compressible plane mixing layer[J]. Journal of engineering mathematics, 1995, 29(4): 299-327.
[36] NICOUD F, DUCROS F. Subgrid-scale stress modelling based on the square of the velocity gradient tensor[J]. Flow, turbulence and Combustion, 1999, 62(3): 183-200.
[37] PARK N, LEE S, LEE J, et al. A dynamic subgrid-scale eddy viscosity model with a global model coefficient[J]. Physics of Fluids, 2006, 18(12).
[38] YOU D, MOIN P. A dynamic global-coefficient subgrid-scale model for large-eddy simulation of turbulent scalar transport in complex geometries[J]. Physics of Fluids, 2009, 21(4).
[39] MONKEWITZ P A, CHAUHAN K A, NAGIB H M. Self-consistent high-Reynolds-number asymptotics for zero-pressure-gradient turbulent boundary layers[J]. Physics of Fluids, 2007, 19(11).
[40] MUSKER A J. Explicit expression for the smooth wall velocity distribution in a turbulent boundary layer[J]. AIAA Journal, 1979, 17(6): 655-657.
[41] WERNER H, WENGLE H. Large-eddy simulation of turbulent flow over and around a cube in a plate channel[C]//Turbulent Shear Flows 8: Selected Papers from the Eighth International Symposium on Turbulent Shear Flows, Munich, Germany, September 9–11, 1991. Springer, 1993: 155-168.
[42] GRIEBEL M, DORNSEIFER T, NEUNHOEFFER T. Numerical simulation in fluid dynamics: a practical introduction[M]. SIAM, 1998.
[43] MALASPINAS O, SAGAUT P. Wall model for large-eddy simulation based on the lattice Boltzmann method[J]. Journal of Computational Physics, 2014, 275: 25-40.
[44] HAUSSMANN M, BARRETO A C, KOUYI G L, et al. Large-eddy simulation coupled with wall models for turbulent channel flows at high Reynolds numbers with a lattice Boltzmann method—Application to Coriolis mass flowmeter[J]. Computers & Mathematics with Applications, 2019, 78(10): 3285-3302.
[45] SALVETTI M V, BANERJEE S. A priori tests of a new dynamic subgrid-scale model for finite-difference large-eddy simulations[J]. Physics of Fluids, 1995, 7(11): 2831-2847.
[46] SAGAUT P. Large eddy simulation for incompressible flows: an introduction[M]. Springer Science & Business Media, 2005.
[47] RIVLIN R S. The relation between the flow of non-Newtonian fluids and turbulent Newtonian fluids[J]. Quarterly of Applied Mathematics, 1957, 15(2): 212-215.
[48] LUMLEY J L. Toward a turbulent constitutive relation[J]. Journal of Fluid Mechanics, 1970, 41(2): 413-434.
[49] WONG V. A proposed statistical-dynamic closure method for the linear or nonlinear subgridscale stresses[J]. Physics of Fluids A: Fluid Dynamics, 1992, 4(5): 1080-1082.
[50] KOSOVIĆ B, PULLIN D I, SAMTANEY R. Subgrid-scale modeling for large-eddy simulations of compressible turbulence[J]. Physics of Fluids, 2002, 14(4): 1511-1522.
[51] WANG B C, BERGSTROM D J. A dynamic nonlinear subgrid-scale stress model[J]. Physics of Fluids, 2005, 17(3).
[52] FAKHARI A, LI Y, BOLSTER D, et al. A phase-field lattice Boltzmann model for simulating multiphase flows in porous media: Application and comparison to experiments of CO2 sequestration at pore scale[J]. Advances in water resources, 2018, 114: 119-134.
[53] MAGGIOLO D, PICANO F, ZANINI F, et al. Solute transport and reaction in porous electrodes at high Schmidt numbers[J]. Journal of Fluid Mechanics, 2020, 896: A13.
[54] HE Y L, LIU Q, LI Q, et al. Lattice Boltzmann methods for single-phase and solid-liquid phase-change heat transfer in porous media: A review[J]. International Journal of Heat and Mass Transfer, 2019, 129: 160-197.
[55] HE X Y, CHEN S Y, ZHANG R Y. A lattice Boltzmann scheme for incompressible multiphase flow and its application in simulation of Rayleigh–Taylor instability[J]. Journal of computational physics, 1999, 152(2): 642-663.
[56] DUGAST F, FAVENNEC Y, JOSSET C. Reactive fluid flow topology optimization with the multi-relaxation time lattice Boltzmann method and a level-set function[J]. Journal of Computational Physics, 2020, 409: 109252.
[57] LALLEMAND P, LUO L S. Lattice Boltzmann equation with Overset method for moving objects in two-dimensional flows[J]. Journal of Computational Physics, 2020, 407: 109223.
[58] WANG L P, PENG C, GUO Z L, et al. Lattice Boltzmann simulation of particle-laden turbulent channel flow[J]. Computers & Fluids, 2016, 124: 226-236.
[59] GAO H, LI H, WANG L P. Lattice Boltzmann simulation of turbulent flow laden with finite-size particles[J]. Computers & Mathematics with Applications, 2013, 65(2): 194-210.
[60] WANG L P, AYALA O, GAO H, et al. Study of forced turbulence and its modulation by finitesize solid particles using the lattice Boltzmann approach[J]. Computers & Mathematics with Applications, 2014, 67(2): 363-380.
[61] DE MOTTA J B, COSTA P, DERKSEN J J, et al. Assessment of numerical methods for fully resolved simulations of particle-laden turbulent flows[J]. Computers & Fluids, 2019, 179: 1-14.
[62] LALLEMAND P, LUO L S. Theory of the lattice Boltzmann method: Dispersion, dissipation,isotropy, Galilean invariance, and stability[J]. Physical review E, 2000, 61(6): 6546.
[63] D’HUMIÈRES D. Multiple–relaxation–time lattice Boltzmann models in three dimensions[J].Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physicaland Engineering Sciences, 2002, 360(1792): 437-451.
[64] SHAN X W. Central-moment-based Galilean-invariant multiple-relaxation-time collisionmodel[J]. Physical Review E, 2019, 100(4): 043308.
[65] GEIER M, GREINER A, KORVINK J G. A factorized central moment lattice Boltzmannmethod[J]. The European Physical Journal Special Topics, 2009, 171(1): 55-61.
[66] CHIKATAMARLA S, ANSUMALI S, KARLIN I V. Entropic lattice Boltzmann models forhydrodynamics in three dimensions[J]. Physical review letters, 2006, 97(1): 010201.
[67] GEIER M, SCHÖNHERR M, PASQUALI A, et al. The cumulant lattice Boltzmann equationin three dimensions: Theory and validation[J]. Computers & Mathematics with Applications,2015, 70(4): 507-547.
[68] SUCCI S. Lattice boltzmann 2038[J]. Europhysics Letters, 2015, 109(5): 50001.
[69] XU K. A gas-kinetic BGK scheme for the Navier–Stokes equations and its connection withartificial dissipation and Godunov method[J]. Journal of Computational Physics, 2001, 171(1):289-335.
[70] XU K, HE X Y. Lattice Boltzmann method and gas-kinetic BGK scheme in the low-Machnumber viscous flow simulations[J]. Journal of Computational Physics, 2003, 190(1): 100-117.
[71] SU M D, XU K, GHIDAOUI M S. Low-speed flow simulation by the gas-kinetic scheme[J].Journal of Computational Physics, 1999, 150(1): 17-39.
[72] CHEN S Z, JIN C Q, LI C B, et al. Gas-kinetic scheme with discontinuous derivative for lowspeed flow computation[J]. Journal of Computational Physics, 2011, 230(5): 2045-2059.
[73] GUO Z L, ZHAO T S, SHI Y. Physical symmetry, spatial accuracy, and relaxation time of thelattice Boltzmann equation for microgas flows[J]. Journal of Applied physics, 2006, 99(7).
[74] SHAN X W, YUAN X F, CHEN H D. Kinetic theory representation of hydrodynamics: a waybeyond the Navier–Stokes equation[J]. Journal of Fluid Mechanics, 2006, 550: 413-441.
[75] XU K, HUANG J C. A unified gas-kinetic scheme for continuum and rarefied flows[J]. Journalof Computational Physics, 2010, 229(20): 7747-7764.
[76] HUANG J C, XU K, YU P B. A unified gas-kinetic scheme for continuum and rarefied flows II:multi-dimensional cases[J]. Communications in Computational Physics, 2012, 12(3): 662-690.
[77] CHEN H D, FILIPPOVA O, HOCH J, et al. Grid refinement in lattice Boltzmann methods basedon volumetric formulation[J]. Physica A: Statistical Mechanics and its Applications, 2006, 362(1): 158-167.
[78] YU D, MEI R W, SHYY W. A multi-block lattice Boltzmann method for viscous fluid flows[J]. International journal for numerical methods in fluids, 2002, 39(2): 99-120.
[79] GENDRE F, RICOT D, FRITZ G, et al. Grid refinement for aeroacoustics in the lattice Boltzmannmethod: A directional splitting approach[J]. Physical Review E, 2017, 96(2): 023311.
[80] WANG P, ZHU L H, GUO Z L, et al. A comparative study of LBE and DUGKS methodsfor nearly incompressible flows[J]. Communications in Computational Physics, 2015, 17(3):657-681.
[81] WU C, SHI B C, CHAI Z H, et al. Discrete unified gas kinetic scheme with a force term forincompressible fluid flows[J]. Computers & Mathematics with Applications, 2016, 71(12):2608-2629.
[82] DONG Z Q, WANG L P, PENG C, et al. A systematic study of hidden errors in the bouncebackscheme and their various effects in the lattice Boltzmann simulation of viscous flows[J].Physics of Fluids, 2022, 34(9).
[83] GUO Z L, WANG R J, XU K. Discrete unified gas kinetic scheme for all Knudsen numberflows. II. Thermal compressible case[J]. Physical Review E, 2015, 91(3): 033313.
[84] ZHANG Y, ZHU L H, WANG R J, et al. Discrete unified gas kinetic scheme for all Knudsennumber flows. III. Binary gas mixtures of Maxwell molecules[J]. Physical Review E, 2018, 97(5): 053306.
[85] ZHU L H, GUO Z L, XU K. Discrete unified gas kinetic scheme on unstructured meshes[J].Computers & Fluids, 2016, 127: 211-225.
[86] WANG P, WANG L P, GUO Z L. Comparison of the LBE and DUGKS methods for DNS ofdecaying homogeneous isotropic turbulence[A]. 2016.
[87] MARUSIC I, MCKEON B J, MONKEWITZ P A, et al. Wall-bounded turbulent flows at highReynolds numbers: Recent advances and key issues[J]. Physics of fluids, 2010, 22(6).
[88] MARUSIC I, MATHIS R, HUTCHINS N. High Reynolds number effects in wall turbulence[J]. International Journal of Heat and Fluid Flow, 2010, 31(3): 418-428.
[89] PIROZZOLI S, BERNARDINI M. Probing high-Reynolds-number effects in numerical boundarylayers[J]. Physics of Fluids, 2013, 25(2).
[90] KIM J, MOIN P, MOSER R. Turbulence statistics in fully developed channel flow at lowReynolds number[J]. Journal of fluid mechanics, 1987, 177: 133-166.
[91] JAFARI S, RAHNAMA M. Shear-improved Smagorinsky modeling of turbulent channel flowusing generalized Lattice Boltzmann equation[J]. International Journal for Numerical Methodsin Fluids, 2011, 67(6): 700-712.
[92] KERMANI M S, JAFARI S, RAHNAMA M, et al. Particle Tracking in Large Eddy SimulatedTurbulent Channel Flow Using Generalized Lattice Boltzmann Method[J]. Particulate Scienceand Technology, 2014, 32(4): 404-411.
[93] HAN M T, OOKA R, KIKUMOTO H. A wall function approach in lattice Boltzmann method:algorithm and validation using turbulent channel flow[J]. Fluid Dynamics Research, 2021, 53(4): 045506.
[94] RASAM A, BRETHOUWER G, SCHLATTER P, et al. Effects of modelling, resolution andanisotropy of subgrid-scales on large eddy simulations of channel flow[J]. Journal of turbulence,2011(12): N10.
[95] WEICKERT M, TEIKE G, SCHMIDT O, et al. Investigation of the LES WALE turbulencemodel within the lattice Boltzmann framework[J]. Computers & Mathematics with Applications,2010, 59(7): 2200-2214.
[96] LIU M, CHEN X P, PREMNATH K N. Comparative study of the large eddy simulations withthe lattice Boltzmann method using the wall-adapting local eddy-viscosity and Vreman subgridscale models[J]. Chinese Physics Letters, 2012, 29(10): 104706.
[97] REN F, SONG B W, HU H B. Lattice Boltzmann simulations of turbulent channel flow andheat transport by incorporating the Vreman model[J]. Applied Thermal Engineering, 2018, 129:463-471.
[98] ZHUO C S, ZHONG C W. LES-based filter-matrix lattice Boltzmann model for simulating fullydeveloped turbulent channel flow[J]. International Journal of Computational Fluid Dynamics,2016, 30(7-10): 543-553.
[99] ZHANG R, ZHONG C W, LIU S, et al. Large-eddy simulation of wall-bounded turbulent flowwith high-order discrete unified gas-kinetic scheme[J]. Advances in Aerodynamics, 2020, 2:1-27.
[100] MOSER R D, KIM J, MANSOUR N N. Direct numerical simulation of turbulent channel flowup to 𝑅𝑒𝜏 = 590[J]. Physics of fluids, 1999, 11(4): 943-945.
[101] ZHU L H, WANG P, GUO Z L. Performance evaluation of the general characteristics basedoff-lattice Boltzmann scheme and DUGKS for low speed continuum flows[J]. Journal of ComputationalPhysics, 2017, 333: 227-246.
[102] BHATNAGAR P L, GROSS E P, KROOK M. A model for collision processes in gases. I. Smallamplitude processes in charged and neutral one-component systems[J]. Physical review, 1954,94(3): 511.
[103] QIAN Y H, D’HUMIÈRES D, LALLEMAND P. Lattice BGK models for Navier-Stokes equation[J]. Europhysics letters, 1992, 17(6): 479.
[104] LEKKER H N, POON W K, PUSEY P N, et al. Phase behaviour of colloid+ polymer mixtures[J]. Europhysics Letters, 1992, 20(6): 559.
[105] GUO Z L, ZHENG C G, SHI B C. Discrete lattice effects on the forcing term in the latticeBoltzmann method[J]. Physical review E, 2002, 65(4): 046308.
[106] HE X Y, LUO L S. Lattice Boltzmann model for the incompressible Navier–Stokes equation[J]. Journal of statistical Physics, 1997, 88: 927-944.
[107] HE X Y, SHAN X W, DOOLEN G D. Discrete Boltzmann equation model for nonideal gases[J]. Physical Review E, 1998, 57(1): R13.
[108] BO Y T, WANG P, GUO Z L, et al. DUGKS simulations of three-dimensional Taylor–Greenvortex flow and turbulent channel flow[J]. Computers & Fluids, 2017, 155: 9-21.
[109] GUO Z L, SHU C. Lattice Boltzmann method and its application in engineering: Vol. 3[M].World Scientific, 2013.
[110] ZENDEHALI N, EMDAD H, ABOUALI O. Developing a CPU-GPU LES Parallel Solverfor Canonical Turbulent Flows[J]. Iranian Journal of Science and Technology, Transactions ofMechanical Engineering, 2023, 47(4): 1535-1551.
[111] SAGAUT P, TERRACOL M, DECK S. Multiscale and multiresolution approaches inturbulence-LES, DES and Hybrid RANS/LES Methods: Applications and Guidelines[M].World Scientific, 2013.
[112] SAGAUT P, CAMBON C. Homogeneous turbulence dynamics: Vol. 10[M]. Springer, 2008.
[113] 张兆顺, 崔桂香, 许春晓. 湍流理论与模拟[M]. 清华大学出版社有限公司, 2005.
[114] 张兆顺, 崔桂香, 许春晓. 湍流大涡数值模拟的理论和应用[M]. 清华大学出版社, 2008.
[115] 崔桂香, 许春晓, 张兆顺. 湍流大涡数值模拟进展[J]. 空气动力学学报, 2004, 22(2): 121-129.
[116] DONG Y H, SAGAUT P. A study of time correlations in lattice Boltzmann-based large-eddysimulation of isotropic turbulence[J]. Physics of Fluids, 2008, 20(3).
[117] KOLMOGOROV A N. The local structure of turbulence in incompressible viscous fluid forvery large Reynolds[J]. Numbers. In Dokl. Akad. Nauk SSSR, 1941, 30: 301.
[118] PRANDTL L. Bericht über Untersuchungen zur ausgebildeten Turbulenz[J]. ZAMM-Journal ofApplied Mathematics and Mechanics/Zeitschrift für Angewandte Mathematik und Mechanik,1925, 5(2): 136-139.
[119] LILLY D K. The representation of small-scale turbulence in numerical simulation experiments[C]//Proc. IBM Sci. Comput. Symp. on Environmental Science. 1967: 195-210.
[120] DOPAZO C, O’BRIEN E. Statistical treatment of non-isothermal chemical reactions in turbulence[J]. Combustion Science and Technology, 1976, 13(1-6): 99-122.
[121] VERSTAPPEN R, VELDMAN A. Symmetry-preserving discretization of turbulent flow[J].Journal of Computational Physics, 2003, 187(1): 343-368.
[122] BRUN C, PETROVAN BOIARCIUC M, HABERKORN M, et al. Large eddy simulation ofcompressible channel flow: Arguments in favour of universality of compressible turbulent wallbounded flows[J]. Theoretical and Computational Fluid Dynamics, 2008, 22: 189-212.
[123] VAN DRIEST E R. On turbulent flow near a wall[J]. Journal of the aeronautical sciences, 1956,23(11): 1007-1011.
[124] MOSER R D, HAERING S W, YALLA G R. Statistical properties of subgrid-scale turbulencemodels[J]. Annual Review of Fluid Mechanics, 2021, 53: 255-286.
[125] AXLER S. Linear algebra done right[M]. Springer Nature, 2023.
[126] WRAY A, HUNT J. Algorithms for classification of turbulent structures[J]. Topological fluidmechanics, 1990: 95-104.
[127] BASSO F O, FRANCO A T, PITZ D B. Large-eddy simulation of turbulent pipe flow ofHerschel-Bulkley fluids-Assessing subgrid-scale models[J]. Computers & Fluids, 2022, 244:105522.
[128] VREMAN A. An eddy-viscosity subgrid-scale model for turbulent shear flow: Algebraic theoryand applications[J]. Physics of fluids, 2004, 16(10): 3670-3681.
[129] ZHOU Y. Rayleigh–Taylor and Richtmyer–Meshkov instability induced flow, turbulence, andmixing. II[J]. Physics Reports, 2017, 723: 1-160.
[130] 曹平川, 褚学森, 王建春, 等. 基于格子Boltzmann 法的槽道流DNS/LES 模拟[J]. 气动研究与实验, 2023(6): 105-111.
[131] YANG F, XIE C, LIU C. Research progress of computational model for rotating turbulent flowin fluid machinery[J]. Nongye Jixie Xuebao/Transactions of the Chinese Society of AgriculturalMachinery, 2016, 47(2).
[132] ADRIAN R, CHRISTENSEN K, LIU Z C. Analysis and interpretation of instantaneous turbulentvelocity fields[J]. Experiments in fluids, 2000, 29(3): 275-290.
[133] KIM J, MOIN P, MOSER R. Turbulence statistics in fully developed channel flow at lowReynolds number[J]. Journal of fluid mechanics, 1987, 177: 133-166.
[134] LEE M, MOSER R D. Direct numerical simulation of turbulent channel flow up to 𝑅𝑒𝜏 ≈ 5200[J]. Journal of fluid mechanics, 2015, 774: 395-415.
[135] HOYAS S, JIMÉNEZ J. Scaling of the velocity fluctuations in turbulent channels up to 𝑅𝑒𝜏 =2003[J]. Physics of fluids, 2006, 18(1).
[136] SMAGORINSKY J. Numerical simulation of mesoscale convection’[J]. Monthly Weather Rev,1963, 91: 99.
[137] TEIXEIRA C M. Incorporating turbulence models into the lattice-Boltzmann method[J]. InternationalJournal of Modern Physics C, 1998, 9(08): 1159-1175.
[138] CHEN H D, SUCCI S, ORSZAG S. A mesoscopic representation of turbulence[C]//APS Divisionof Fluid Dynamics Meeting Abstracts. 1998: BK-08.
[139] YU H D, LUO L S, GIRIMAJI S S. LES of turbulent square jet flow using an MRT latticeBoltzmann model[J]. Computers & Fluids, 2006, 35(8-9): 957-965.
[140] GUO Z L, ZHENG C G, SHI B C. Non-equilibrium extrapolation method for velocity andpressure boundary conditions in the lattice Boltzmann method[J]. Chinese physics, 2002, 11(4): 366.
[141] GUO Z L, ZHENG C G, SHI B C. An extrapolation method for boundary conditions in latticeBoltzmann method[J]. Physics of fluids, 2002, 14(6): 2007-2010.

所在学位评定分委会
力学
国内图书分类号
O357.5
来源库
人工提交
成果类型学位论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/765778
专题南方科技大学
工学院_力学与航空航天工程系
推荐引用方式
GB/T 7714
郭琳. 基于DUGKS-LES的槽道湍流大涡模拟研究[D]. 深圳. 南方科技大学,2024.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可 操作
12132392-郭琳-力学与航空航天工(10393KB)----限制开放--请求全文
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[郭琳]的文章
百度学术
百度学术中相似的文章
[郭琳]的文章
必应学术
必应学术中相似的文章
[郭琳]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。