中文版 | English
题名

尤卡坦撞击事件地震波场影响及启示

其他题名
The seismic wave field influence and inspiration of the Yucatan impact event
姓名
姓名拼音
LI Changcheng
学号
11930785
学位类型
博士
学位专业
0801 力学
学科门类/专业学位类别
08 工学
导师
陈晓非
导师单位
地球与空间科学系
论文答辩日期
2024-03-28
论文提交日期
2024-06-20
学位授予单位
南方科技大学
学位授予地点
深圳
摘要

回顾地球最近5亿年历史,总共发生了5次著名的生物大灭绝事件,其中距离我们最近的是6600万年前的恐龙大灭绝事件。自大灭绝假说提出以来,关于此次灭绝事件研究已经得到初步结论,即陨石撞击导致地球环境恶化,从而引发生物大规模灭绝。但是,美洲人类亲缘物种灵长类动物的严重匮乏告诉我们这次灭绝事件对于全球不同地区生物的影响可能并不一样。该次撞击事件对固体地球及其上生物产生了怎样直接影响以及对我们现在有何种启示呢?为了帮助我们理解该次事件对地球生物以及固体地球的影响,本研究首先利用地震学方法探究了该次事件产生的地震波场效应对固体地球及其上生物的直接影响。

为了利用地震学方法研究6600万年前陨石撞击事件产生的地震波对固体地球造成的影响,需要确定该撞击事件的震源时间函数,为此,作者提出了地震体波方程高效求解方法,然后利用该方法从陨石坑多圆环结构中反演出震源参数。反演结果表明,该次地震事件是一次低频地震事件,反演得到的震源时间函数主频约为0.15Hz,震源深度约为20km。

得到完整震源参数后,本研究利用成熟的谱元法全球地震波场数值模拟方法模拟了该次地震事件波场传播特征,并计算了地表地震位移、峰值位移、地震烈度等相关地震参数。对计算结果研究分析表明,这次事件中,不同地区生物灭绝情况并不一样。根据计算研究,得到的结果如下:

1、全球不同地区生物,在这次地震事件中死亡率并不一样。美洲地区生物在这次事件中因为撞击产生的地震波动效应在短时间内无差别直接死亡,地震中心死亡率接近百分之百,这一结果有可能是后期美洲古灵长类生物匮乏的原因。

2、陨石撞击产生的强烈地震波动效应有可能导致印度洋地区形成了破裂,从而诱发了该地区地球板块构造的产生。

3、当波场传播到地球内部时,强大地震体波能量传播到地球外核,从而有可能导致在核幔边界处形成地幔柱等自然现象。

接着,本研究利用陨石具体参数计算探讨了该次撞击事件对地球磁场变化的影响,研究结果表明,该次撞击导致了地球磁极线速度发生了0.0243cm/s-0.027cm/s变化。

最后,探讨了应对陨石撞击这类极端灾害的方法和策略,讨论了行星探测在预防该问题中的重要性,并探究了地震学方法在其中的应用。

对于行星探测而言,地震学方法的主要作用是探测行星内部结构,为资源探测,以及探索行星宜居性等提供科学依据,同时也可以起到监测行星内外部环境的作用。但是由于高昂的仪器研发和布设成本,我们通常仅能在地外行星上布设单个或少量地震仪。因此,本文提出了基于单个地震台站与震源组合的数据采集方法,研发了汉克尔函数高精度面波频散曲线提取方法。同时,为了给行星内部结构探测提供更多方法储备,本研究将全波形反演的高精度特点与背景噪声不依赖于源的特点相结合,在此基础上研发了背景噪声面波多尺度成像方法。并基于两个地震台站验证了方法可行性,为未来发展高精度面波成像方法提供了基础,同时为行星内部结构探测提供了更多可选择的方法。由于多个地震台站是由单个和两个地震台站组合而成,因此,理论方法同样可以推广于多个地震台站方法的研究。

本文研究对于提升我们对大型陨石撞击对地球生物和固体地球本身的影响的认识,以及启发后人有效应对该种灾害具有重要意义。

其他摘要

Looking back at the history of the earth in the last 500 million years, there have been a total of five famous mass extinction events, of which the closest to us was the mass extinction of the dinosaurs 66 million years ago. Since the proposal of the mass extinction hypothesis, studies on this extinction event have reached a preliminary conclusion; that is, the meteorite impact caused the deterioration of the Earth’s environment, thus triggering mass extinction. However, the severe shortage of human relatives primates in the Americas tells us that this extinction event may have had different impacts on organisms in different parts of the world. What kind of direct impact did this impact event have on the solid Earth and the life forms on it, and what enlightenment does it have for us now? To help us understand the impact of this event on Earth’s organisms and the solid Earth, this study first used the seismological method to investigate the direct impact of the seismic wave field effect generated by the event on both the solid Earth and the surrounding organisms.
 
 To study meteorite impact events 66 million years ago, we first proposed an efficient solution method for the seismic volume wave equation and then used this method to invert the focal parameters from the multiring structure of the crater. The inversion results reveal that this seismic event was a low-frequency seismic event; the dominant frequency of the focal time function obtained from the inversion was approximately 0.15 Hz, and the focal depth was approximately 20 km.
 
 After obtaining the complete focal parameters, this study used the spectral element method (SEM) for global seismic wave field numerical simulation to simulate the wave field propagation characteristics of seismic events and calculated relevant seismic parameters such as seismic displacement, peak displacement, and seismic intensity according to the China Seismic Intensity Scale. Analysis of the calculation results showed that during this event, the extinction levels of organisms in different areas were different. Based on the quantitative calculations, the results are as follows:
 
 1. The mortality rate of organisms in different regions of the world differed during this earthquake event. In this event, the organisms in the Americas died indiscriminately in a short period of time due to the seismic fluctuation effect generated by the impact, and the mortality in the seismic center was close to 100\%. This result may also explain the scarcity of ancient primates in the Americas.
 
 2. The strong seismic fluctuations generated by meteorite impacts may have created a rupture in the Indian Ocean region, thus inducing tectonic motion in this region.
 
 3. When the wave field propagates into the Earth's interior, the energy of powerful seismic volume waves propagates to the Earth's outer core, which may lead to natural phenomena such as the formation of a mantle plume at the core-mantle boundary.
 
 Next, this study used meteorite-specific parameters to quantitatively calculate the effect of the impact event on the changes in the Earth’s magnetic field. The results showed that the impact caused a change in the Earth’s magnetic pole linear velocity of 0.0243 cm/s-0.027 cm/s.
 
 Finally, we consider methods and strategies for addressing extreme disasters such as meteorite impacts, the importance of planetary exploration in the prevention of these problems, and the application of seismological methods.
 
 For seismology, its main purpose in planetary exploration is to detect the internal structure of the planet, to provide scientific bases for resource detection and the exploration of the habitability of the planet, as well as to monitor the internal and external environments of the planet. However, due to the high cost of instrument development and deployment, we can usually deploy only a single or a small number of seismometers on exoplanets. Therefore, this paper proposes a data acquisition method based on the combination of a single seismic station and seismic source and develops a method for extracting high-precision surface wave dispersion curves from the Hankel function. Moreover, to provide additional space for the detection of planet internal structures, this study combined the high precision of full waveform retrieval with the fact that background noise is independent of the source and developed a multiscale imaging method for background noise on this basis. The feasibility of the method was validated at two seismic stations, which provided the basis for the future development of high-precision surface wave imaging methods and, at the same time, provided additional options for detecting planetary interior structures. Since multiple seismic stations are formed by the combination of a single seismic station or two seismic stations, the theoretical method can also be extended to the study of multiple seismic stations.
 
 The results of this study are important for improving the understanding of the impacts of large meteorites on Earth’s organisms and the solid Earth itself and for inspiring future generations to effectively respond to this type of disaster.

关键词
语种
中文
培养类别
独立培养
入学年份
2019
学位授予年份
2024-06
参考文献列表

[1] ALVAREZ L W, ALVAREZ W, ASARO F, et al. Extraterrestrial cause for the Cretaceous-Tertiary extinction[J]. Science, 1980, 208(4448): 1095-1108.
[2] KELLER G, SAHNI A, BAJPAI S. Deccan volcanism, the KT mass extinction and dinosaurs[J]. Journal of biosciences, 2009, 34: 709-728.
[3] KELLER G. The Cretaceous–Tertiary mass extinction, Chicxulub impact, and Deccan volcan-ism[J]. Earth and Life: Global Biodiversity, Extinction Intervals and Biogeographic Perturba-tions Through Time, 2012: 759-793.
[4] GAO T, YIN X, SHIH C, et al. New insects feeding on dinosaur feathers in mid-Cretaceousamber[J]. Nature Communications, 2019, 10(1): 5424.
[5] POINAR G, POINAR R. What bugged the dinosaurs?[M]. Princeton University Press, 2010.
[6] 汪晓伟, 姚肖永, 徐学义. 河南西峡晚白垩世恐龙蛋化石壳微量元素组成及其对恐龙灭绝的指示意义[J]. 岩矿测试, 2015, 34(5): 520-527.
[7] SCHOENE B, SAMPERTON K M, EDDY M P, et al. U-Pb geochronology of the Deccan Traps and relation to the end-Cretaceous mass extinction[J]. Science, 2015, 347(6218): 182-184.
[8] 赵梦婷, 马明明, 何梅, 等. 南雄盆地白垩纪-古近纪 (K-Pg) 界线位置探讨——来自火山活动及古气候演化的证据[J]. 中国科学: 地球科学, 2021, 51(5): 741-752.
[9] CHIARENZA A A, FARNSWORTH A, MANNION P D, et al. Asteroid impact, not volcanism, caused the end-Cretaceous dinosaur extinction[J]. Proceedings of the National Academy of Sciences, 2020, 117(29): 17084-17093.
[10] RICHARDS M A, ALVAREZ W, SELF S, et al. Triggering of the largest Deccan eruptions by the Chicxulub impact (vol 127, pg 1507, 2015)[J]. Geological Society of America Bulletin, 2015, 127(11-12): 1520-1520.
[11] DOLE G, PATIL PILLAI S, UPASANI D, et al. Triggering of the largest Deccan eruptions by the Chicxulub impact: Comment[J]. Bulletin, 2017, 129(1-2): 253-255.
[12] NORRIS R, HUBER B, SELF-TRAIL J. Synchroneity of the KT oceanic mass extinction and meteorite impact: Blake Nose, western North Atlantic[J]. Geology, 1999, 27(5): 419-422.
[13] KRING D A, DURDA D D. Trajectories and distribution of material ejected from the Chicxu-lub impact crater: Implications for postimpact wildfires[J]. Journal of Geophysical Research: Planets, 2002, 107(E8): 6-1.
[14] MORGAN J V, BRALOWER T J, BRUGGER J, et al. The Chicxulub impact and its environ-mental consequences[J]. Nature Reviews Earth & Environment, 2022, 3(5): 338-354.
[15] CARVALHO M R, JARAMILLO C, DE LA PARRA F, et al. Extinction at the end-Cretaceous and the origin of modern Neotropical rainforests[J]. Science, 2021, 372(6537): 63-68.
[16] BEYER R M, KRAPP M, ERIKSSON A, et al. Climatic windows for human migration out of Africa in the past 300,000 years[J]. Nature communications, 2021, 12(1): 4889.
[17] WU D D, QI X G, YU L, et al. Initiation of the primate genome project[J]. Zoological research, 2022, 43(2): 147.
[18] OSINSKI G, COCKELL C, PONTEFRACT A, et al. The role of meteorite impacts in the origin of life[J]. Astrobiology, 2020, 20(9): 1121-1149.
[19] MONNARD P A, DEAMER D W. Membrane self-assembly processes: Steps toward the first cellular life[J]. The Anatomical Record: An Official Publication of the American Association of Anatomists, 2002, 268(3): 196-207.
[20] 欧阳自远, 管云彬. 巨大撞击对地球演化的系统灾变效应[J]. 地球科学进展, 1992, 7(1): 6.
[21] SEYFERT C. Tectonic Evolution of the Moon and Terrestrial Planets[C]//LUNAR AND PLAN-ETARY SCIENCE XV, P. 754-755. Abstract.: volume 15. 1984: 754-755.
[22] RUIZ J. Giant impacts and the initiation of plate tectonics on terrestrial planets[J]. Planetary and Space Science, 2011, 59(8): 749-753.
[23] YIN A. An episodic slab-rollback model for the origin of the Tharsis rise on Mars: Implications for initiation of local plate subduction and final unification of a kinematically linked global plate-tectonic network on Earth[J]. Lithosphere, 2012, 4(6): 553-593.
[24] 刘广润, 张宏泰, 唐辉明. 星地碰撞的板块构造效应[J]. 地球科学 (中国地质大学学报),2007: 381-388.
[25] ZHENG Y F. Fifty years of plate tectonics[J]. National Science Review, 2018, 5(2): 119-119.
[26] ANEESHKUMAR V, INDU G, SANTOSH M, et al. Terrestrial impact craters track the voyageof lithospheric plates[J]. Geological Journal, 2022, 57(9): 3769-3780.
[27] 刘广润, 张宏泰. 大陆褶皱造山运动的星地碰撞成因[J]. 地球科学 (中国地质大学学报),2007, 32(1): 63-70.
[28] 刘广润, 张宏泰. 地球磁极倒转的星地碰撞成因[J]. 地球科学 (中国地质大学学报), 2005,30(3): 371-376.
[29] 李永祥, 刘欣宇. 古地磁场研究: 挑战与机遇[J]. 地质学报, 2021, 95(1): 11.
[30] 朱日祥, 刘青松, 潘永信. 地磁极性倒转与全球性地质事件的相关性[J]. Chinese ScienceBulletin, 1999, 44(15): 1582-1589.
[31] BONO R K, TARDUNO J A, NIMMO F, et al. Young inner core inferred from Ediacaranultra-low geomagnetic field intensity[J]. Nature Geoence, 2019.
[32] XIAOKE Q, XINWEN X, TING C, et al. Spatial characteristics and influencing factors of Matuyama-Brunhes polarity reversal boundary(MBB)in eolian sequences from the Chinese Loess Plateau[J]. Quaternary Sciences, 2016, 36(5).
[33] PAN Y, LI J. On the biospheric effects of geomagnetic reversals[J]. National Science Review, 2023, 10(6): nwad070.
[34] ERDMANN W, KMITA H, KOSICKI J Z, et al. How the Geomagnetic Field Influences Life on Earth - An Integrated Approach to Geomagnetobiology.[J]. Origins of Life and Evolution of Biospheres, 2021(3).
[35] WEI Y, PU Z, ZONG Q, et al. Oxygen escape from the Earth during geomagnetic reversals: Implications to mass extinction[J]. Earth and Planetary Science Letters, 2014, 394: 94-98.
[36] 张少泉. 地球物理学概论[M]. 地震出版社, 1986.
[37] KENKMANN T. The terrestrial impact crater record: A statistical analysis of morphologies, structures, ages, lithologies, and more[J]. Meteoritics & Planetary Science, 2021, 56(5): 1024-1070.
[38] S. J, R. C S, M. S, et al. Meteorite impact craters as hotspots for mineral resources and energy fuels: A global review[J]. Energy Geoscience, 2022, 3: 136-146.
[39] GRIEVE R A. Economic natural resource deposits at terrestrial impact structures[J]. Geological Society, London, Special Publications, 2005, 248(1): 1-29.
[40] LOVERING T S. Epigenetic, diplogenetic, syngenetic, and lithogene deposits[J]. Economic Geology, 1963, 58(3): 315-331.
[41] REIMOLD W U, KOEBERL C. Impact structures in Africa: A review[J]. Journal of African Earth Sciences, 2014, 93: 57-175.
[42] 成秋明. 什么是数学地球科学及其前沿领域?[J]. 地学前缘, 2021, 28(3): 6.
[43] GRYGA M Y, BAGRIY I, STARODUBETS K, et al. Geochemical data analysis and prediction of hydrocarbon accumulation in the territory of Rotmistrovka impact structure[C]//15th EAGEInternational Conference on Geoinformatics-Theoretical and Applied Aspects: volume 2016.European Association of Geoscientists & Engineers, 2016: 1-5.
[44] BARTON R, BIRD K, HERNÁNDEZ J G, et al. High-impact reservoirs[J]. Oilfield Review,2009, 21(4): 14-29.
[45] ROBERTSON D S, LEWIS W M, SHEEHAN P M, et al. K-Pg extinction: Reevaluation of the heat-fire hypothesis[J]. Journal of Geophysical Research: Biogeosciences, 2013, 118(1):329-336.
[46] RANGE M M, ARBIC B K, JOHNSON B C, et al. The Chicxulub impact produced a powerful global tsunami[J]. AGU Advances, 2022, 3(5): e2021AV000627.
[47] BARDEEN C G, GARCIA R R, TOON O B, et al. On transient climate change at theCretaceous- Paleogene boundary due to atmospheric soot injections[J]. Proceedings of the Na-tional Academy of Sciences, 2017, 114(36): E7415-E7424.
[48] BRUGGER J, FEULNER G, PETRI S. Baby, it’s cold outside: Climate model simulations of the effects of the asteroid impact at the end of the Cretaceous[J]. Geophysical Research Letters,2017, 44(1): 419-427.
[49] SENEL C, TEMEL O, KASKES P, et al. Relative roles of impact-generated aerosols on pho-tosynthetic activity following the Chicxulub asteroid impact[J]. GSA Connects, 2021, 53: 6.
[50] MANGA M, BRODSKY E. Seismic Triggering of Eruptions in the Far Field: Volcanoes and Geysers[J]. Annual Review of Earth and Planetary Sciences, 2006, 34(1): 263-291.
[51] NI SIDAO A T J. Surface motion of a fluid planet induced by impacts[J]. Geophysical Journal International, 2006, 167(445-452).
[52] MESCHEDE M A, MYHRVOLD C L, JEROEN T. Antipodal focusing of seismic waves due to large meteorite impacts on Earth[J]. Geophysical Journal International, 2011(1): 529-537.
[53] TEANBY N, WOOKEY J. Seismic detection of meteorite impacts on Mars[J]. Physics of the Earth and Planetary Interiors, 2011, 186(1-2): 70-80.
[54] HU J, GURNIS M, RUDI J, et al. Dynamics of the abrupt change in Pacific Plate motion around 50 million years ago[J]. Nature Geoscience, 2022, 15.
[55] DE MACEDO I A, DE FIGUEIREDO J J S, DE SOUSA M C, et al. Estimation of the seismic wavelet through homomorphic deconvolution and well log data: application on well-to-seismic tie procedure[J]. Geophysical Prospecting, 2020, 68(4): 1328-1340.
[56] HILDEBRAND A R, PENFIELD G T, KRING D A, et al. Chicxulub crater: a possible Cre-taceous/Tertiary boundary impact crater on the Yucatan Peninsula, Mexico[J]. Geology, 1991,19(9): 867-871.
[57] COLLINS G S, MELOSH H J, MARCUS R A. Earth impact effects program: A web-based computer program for calculating the regional environmental consequences of a meteoroid im-pact on Earth[J]. Meteoritics & planetary science, 2005, 40(6): 817-840.
[58] SVETSOV V, SHUVALOV V. Thermal radiation from impact plumes[J]. Meteoritics & Plan-etary Science, 2019, 54(1): 126-141.
[59] KRING D A. The Chicxulub impact event and its environmental consequences at the Cretaceous–Tertiary boundary[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2007,255(1-2): 4-21.
[60] PIERAZZO E, GARCIA R, KINNISON D, et al. Ozone perturbation from medium-size asteroid impacts in the ocean[J]. Earth and Planetary Science Letters, 2010, 299(3-4): 263-272.
[61] THIERSTEIN H R. Terminal Cretaceous plankton extinctions: A critical assessment[J]. Geo-logical implications of impacts of large asteroids and comets on the earth, 1982, 190: 385-399.
[62] SHEEHAN P M, FASTOVSKY D E. Major extinctions of land-dwelling vertebrates at the Cretaceous-Tertiary boundary, eastern Montana[J]. Geology, 1992, 20(6): 556-560.
[63] D’HONDT S. Consequences of the Cretaceous/Paleogene mass extinction for marine ecosys-tems[J]. Annu. Rev. Ecol. Evol. Syst., 2005, 36: 295-317.
[64] THOMAS E. Cenozoic mass extinctions in the deep sea: What perturbs the largest habitat on Earth?[M/OL]//Large Ecosystem Perturbations: Causes and Consequences. Geological Society of America, 2007. https://doi.org/10.1130/2007.2424(01).
[65] SESSA J A, BRALOWER T J, PATZKOWSKY M E, et al. Environmental and biological con-trols on the diversity and ecology of Late Cretaceous through early Paleogene marine ecosys-tems in the US Gulf Coastal Plain[J]. Paleobiology, 2012, 38(2): 218-239.
[66] SHEEHAN P M, HANSEN T A. Detritus feeding as a buffer to extinction at the end of the Cretaceous[J]. Geology, 1986, 14(10): 868-870.
[67] ROBERTSON D S, MCKENNA M C, TOON O B, et al. Survival in the first hours of the Cenozoic[J]. Geological Society of America Bulletin, 2004, 116(5-6): 760-768.
[68] LOWERY C M, BOWN P R, FRAASS A J, et al. Ecological response of plankton to environ-mental change: thresholds for extinction[J]. Annual Review of Earth and Planetary Sciences,2020, 48: 403-429.
[69] D’HONDT S, DONAGHAY P, ZACHOS J C, et al. Organic carbon fluxes and ecological recovery from the Cretaceous-Tertiary mass extinction[J]. Science, 1998, 282(5387): 276-279.
[70] COXALL H K, D’HONDT S, ZACHOS J C. Pelagic evolution and environmental recovery after the Cretaceous-Paleogene mass extinction[J]. Geology, 2006, 34(4): 297-300.
[71] DENG. Recent progress of geophysical exploration in Earth’s impact craters[J]. Reviews of Geophysics and Planetary Physics, 2023, 54(0): 1-11.
[72] COLLINS G S, PATEL N, DAVISON T M, et al. A steeply-inclined trajectory for the Chicxulub impact[J]. Nature communications, 2020, 11(1): 1480.
[73] 东方力夫 . 地球能再次被撞破吗?[J]. 大科技 (科学之谜), 2013.
[74] BOTTKE W F, VOKROUHLICKỲ D, NESVORNỲ D. An asteroid breakup 160 Myr ago as the probable source of the K/T impactor[J]. Nature, 2007, 449(7158): 48-53.
[75] MORGAN J, WARNER M, GROUP C W, et al. Size and morphology of the Chicxulub impact crater[J]. Nature, 1997, 390(6659): 472-476.
[76] MORGAN J, WARNER M, COLLINS G, et al. Peak-ring formation in large impact craters: Geophysical constraints from Chicxulub[J]. Earth and Planetary Science Letters, 2000, 183 (3-4): 347-354.
[77] HILDEBRAND A, PILKINGTON M, ORTIZ-ALEMAN C, et al. Mapping Chicxulub crater structure with gravity and seismic reflection data[J]. Geological Society, London, Special Pub-lications, 1998, 140(1): 155-176.
[78] CHRISTESON G, MORGAN J, GULICK S. Mapping the Chicxulub impact stratigraphy and peak ring using drilling and seismic data[J]. Journal of Geophysical Research: Planets, 2021,126(8): e2021JE006938.
[79] VERMEESCH P M, MORGAN J V. Structural uplift beneath the Chicxulub impact structure [J]. Journal of Geophysical Research: Solid Earth, 2008, 113(B7).
[80] CHRISTESON G, MORGAN J, GULICK S. Mapping the Chicxulub impact stratigraphy and peak ring using drilling and seismic data[J]. Journal of Geophysical Research: Planets, 2021,126(8): e2021JE006938.
[81] PILKINGTON M, HILDEBRAND A R, ORTIZ-ALEMAN C. Gravity and magnetic fieldmodeling and structure of the Chicxulub crater, Mexico[J]. Journal of Geophysical Research: Planets, 1994, 99(E6): 13147-13162.
[82] GULICK S P, BRALOWER T J, ORMÖ J, et al. The first day of the Cenozoic[J]. Proceedings of the National Academy of Sciences, 2019, 116(39): 19342-19351.
[83] WHALEN M T, GULICK S P, LOWERY C M, et al. Winding down the Chicxulub impact: The transition between impact and normal marine sedimentation near ground zero[J]. Marine Geology, 2020, 430: 106368.
[84] ORMÖ J, GULICK S, WHALEN M, et al. Assessing event magnitude and target water depth for marine-target impacts: Ocean resurge deposits in the Chicxulub M0077A drill core compared [J]. Earth and Planetary Science Letters, 2021, 564: 116915.
[85] KASKES P, DE GRAAFF S J, FEIGNON J G, et al. Formation of the crater suevite sequence from the Chicxulub peak ring: A petrographic, geochemical, and sedimentological characteri-zation[J]. GSA Bulletin, 2022, 134(3-4): 895-927.
[86] MORGAN J, WARNER M, GROUP C W, et al. Size and morphology of the Chicxulub impact crater[J]. Nature, 1997, 390(6659): 472-476.
[87] GULICK S P, BARTON P J, CHRISTESON G L, et al. Importance of pre-impact crustal structure for the asymmetry of the Chicxulub impact crater[J]. Nature Geoscience, 2008, 1(2):131-135.
[88] MORGAN J, WARNER M. Chicxulub: The third dimension of a multi-ring impact basin[J].Geology, 1999, 27(5): 407-410.
[89] BAKER D M, HEAD J W, COLLINS G S, et al. The formation of peak-ring basins: Working hypotheses and path forward in using observations to constrain models of impact-basin forma-tion[J]. Icarus, 2016, 273: 146-163.
[90] SHARPTON V L, MARIN L E, CARNEY J D, et al. A model of the Chicxulub impact basin based on evaluation of geophysical data, well logs, and drill core samples[R]. 1996.
[91] URRUTIA-FUCUGAUCHI J, MARIN L, TREJO-GARCIA A. UNAM scientific drilling pro-gram of Chicxulub impact structure-Evidence for a 300 kilometer crater diameter[J]. Geophys-ical Research Letters, 1996, 23(13): 1565-1568.
[92] COLLINS G S, MELOSH H J, MORGAN J V, et al. Hydrocode simulations of Chicxulub crater collapse and peak-ring formation[J]. Icarus, 2002, 157(1): 24-33.
[93] MORGAN J V, GULICK S P, BRALOWER T, et al. The formation of peak rings in large impact craters[J]. Science, 2016, 354(6314): 878-882.
[94] RAE A S, COLLINS G S, POELCHAU M, et al. Stress-strain evolution during peak-ring formation: a case study of the Chicxulub impact structure[J]. Journal of Geophysical Research: Planets, 2019, 124(2): 396-417.
[95] IVANOV B. Numerical modeling of the largest terrestrial meteorite craters[J]. Solar System Research, 2005, 39: 381-409.
[96] HEAD J. Transition from complex craters to multi-ringed basins on terrestrial planetary bodies: Scale-dependent role of the expanding melt cavity and progressive interaction with the displaced zone[J]. Geophysical Research Letters, 2010, 37(2).
[97] RILLER U, POELCHAU M H, RAE A S, et al. Rock fluidization during peak-ring formation of large impact structures[J]. Nature, 2018, 562(7728): 511-518.
[98] RAE A S, COLLINS G S, MORGAN J V, et al. Impact-induced porosity and microfracturing at the chicxulub impact structure[J]. Journal of Geophysical Research: Planets, 2019, 124(7):1960-1978.
[99] TEANBY N, WOOKEY J. Seismic detection of meteorite impacts on Mars[J]. Physics of the Earth and Planetary Interiors, 2011, 186(1-2): 70-80.
[100] RICKER N. Transient waves in visco-elastic media: volume 10[M]. Elsevier, 2012.
[101] KRING D A. Air blast produced by the Meteor Crater impact event and a reconstruction of the affected environment[J]. Meteoritics & Planetary Science, 1997, 32(4): 517-530.
[102] 陈运泰, 刘瑞丰. 地震的震级[J]. 地震地磁观测与研究, 2004, 25(6): 1-12.
[103] HILDEBRAND A, PILKINGTON M, ORTIZ-ALEMAN C, et al. Mapping Chicxulub crater structure with gravity and seismic reflection data[J]. Geological Society, London, Special Pub-lications, 1998, 140(1): 155-176.
[104] CARCIONE J M, HERMAN G C, TEN KROODE A. Seismic modeling[J]. Geophysics, 2002,67(4): 1304-1325.
[105] SIAHKOOHI A, LOUBOUTIN M, HERRMANN F J. The importance of transfer learning in seismic modeling and imaging[J]. Geophysics, 2019, 84(6): A47-A52.
[106] LIU C, FANG D, ZHAO L. Reflection on earthquake damage of buildings in 2015 Nepal earthquake and seismic measures for post-earthquake reconstruction[C]//Structures: volume 30.Elsevier, 2021: 647-658.
[107] 王一博, 肖文交, 周可法, 等. 三维正交各向异性孔隙介质震电波场数值模拟研究[J]. 地球物理学报,2022, 65(11): 4471-4484.
[108] 张永刚. 地震波场数值模拟方法[J]. 石油物探, 2003, 42(2): 6.
[109] 王莉. 基于 FEPG 有限元分析系统的地震波传播的数值模拟[D]. 中国海洋大学, 2005.
[110] 李川. 基于辛几何算法的地震波射线追踪研究[D]. 桂林理工大学, 2015.
[111] 程冰, 于加举, 吴自库, 等. 基于最小二乘支持向量机的一维波动方程近似解求法[J]. 青岛农业大学学报(自然科学版),2022(003): 039.
[112] 朱多林, 白超英. 基于波动方程理论的地震波场数值模拟方法综述[J]. 地球物理学进展,2011, 26(5): 12.
[113] 杜启振, 李宾, 侯波. 横向各向同性介质紧致交错网格有限差分波场模拟 (英文)[J]. 应用地球物理:英文版,2009, 6(1): 9.
[114] KOMATITSCH D, TROMP J. Spectral-element simulations of global seismic wave propaga-tion—I. Validation[J]. Geophysical Journal International, 2002, 149(2): 390-412.
[115] 张艳岗. 基于关键时间点的能量等效静态载荷法及结构动态响应优化研究[D]. 中北大学,2014.
[116] KOMATITSCH D, RITSEMA J, TROMP J. The spectral-element method, Beowulf computing,and global seismology[J]. Science, 2002, 298(5599): 1737-1742.
[117] KRISHNAN S, JI C, KOMATITSCH D, et al. Case studies of damage to tall steel moment-frame buildings in southern California during large San Andreas earthquakes[J]. Bulletin of the Seismological Society of America, 2006, 96(4A): 1523-1537.
[118] STORK A, BUTCHER A, ZHOU W, et al. Critical technology elements (WP1)[Z]. 2022.
[119] LECOULANT J, GUENNOU C, GUILLON L, et al. Modal propagation of ocean acoustic waves generated by earthquakes[C]//OCEANS 2019-Marseille. IEEE, 2019: 1-7.
[120] ZHU M, SUN S, ZHOU Y, et al. Mantle Q Structure from S-wave Amplitude Measurements[C]//AGU Fall Meeting Abstracts: volume 2020. 2020: DI016-0002.
[121] KOMATITSCH D, TROMP J. Introduction to the spectral element method for three-dimensional seismic wave propagation[J]. Geophysical Journal International, 1999.
[122] DOLLET C, GUÉGUEN P. Global occurrence models for human and economic losses due to earthquakes (1967–2018) considering exposed GDP and population[J]. Natural Hazards, 2022,110(1): 349-372.
[123] LI Y, ZHANG Z, WANG W, et al. Rapid estimation of earthquake fatalities in mainland China based on physical simulation and empirical statistics—A case study of the 2021 Yangbi earth-quake[J]. International Journal of Environmental Research and Public Health, 2022, 19(11):6820.
[124] 陈棋福, 陈凌. 利用国内生产总值和人口数据进行地震灾害损失预测评估[J]. 地震学报,1997, 19(6): 10.
[125] 周光全, 毛燕, 施伟华. 云南地区地震受灾人口与经济损失评估[J]. 地震研究, 2004, 27(001): 88-93.
[126] JAISWAL K, WALD D. An empirical model for global earthquake fatality estimation[J]. Earth-quake Spectra, 2010, 26(4): 1017-1037.
[127] MERDITH A S, WILLIAMS S E, COLLINS A S, et al. Extending full-plate tectonic models into deep time: Linking the Neoproterozoic and the Phanerozoic[J]. Earth-Science Reviews,2020, 214(5): 103477.
[128] MERDITH A S, WILLIAMS S E, COLLINS A S, et al. Extending full-plate tectonic models into deep time: Linking the Neoproterozoic and the Phanerozoic[J]. Earth-Science Reviews,2021, 214: 103477.
[129] GUBBINS D. Earth science: Geomagnetic reversals[J]. Nature, 2008, 452(7184): 165-167.
[130] RADHAKRISHNA T, MOHAMED A R, VENKATESHWARLU M, et al. Low geomagnetic field strength during End-Cretaceous Deccan volcanism and whole mantle convection[J]. Sci-entific Reports, 2020, 10(1): 10743.
[131] LOCKWOOD M, OWENS M J, LUKE A, et al. Semi-annual, annual and Universal Time variations in the magnetosphere and in geomagnetic activity: 3. Modelling[J]. Journal of Space Weather and Space Climate, 2020, 10(25).
[132] BURNS C A. Timing Between a Large Impact and a Geomagnetic Reversal and the Depth of NRM Acquisition in Deep-Sea Sediments[M]. Timing Between a Large Impact and a Geomag-netic Reversal and the Depth of NRM Acquisition in Deep-Sea Sediments, 1989.
[133] ZHU R, PAN Y, LIU Q. Geomagnetic excursions recorded in Chinese Loess in the last 70,000 years[J]. Geophysical Research Letters, 1999, 26(4): 505–508.
[134] OLSON P, DEGUEN R, HINNOV L A, et al. Controls on geomagnetic reversals and core evo-lution by mantle convection in the Phanerozoic[J]. Physics of the Earth and Planetary Interiors,2013, 214: 87-103.
[135] LI L. What causes geomagnetic reversals?[J]. Chinese Science Bulletin, 2016, 61(13): 1395-1400.
[136] MOUEL J L L, MADDEN T R, DUCRUIX J, et al. Decade fluctuations in geomagnetic west-ward drift and Earth rotation[J]. Nature, 1981, 290(5809): 763-765.
[137] PACCA I G, EVERTON F, HARTMANN G A. Possible relationship between the Earth’s ro-tation variations and geomagnetic field reversals over the past 510 Myr[J]. Frontiers in Earth Science, 2015, 3: 14.
[138] MULLER R A, MORRIS D E. Geomagnetic reversals from impacts on the Earth[J]. Geophys-ical Research Letters, 1986, 13(11): 1177-1180.
[139] BOPOHKOB N, LÜ M. Theoretical mechanics[M]. Heavy Industry Press, Beijing, 1958.
[140] COLLINS G S, PATEL N, DAVISON T M, et al. A steeply-inclined trajectory for the Chicxulubimpact[J]. Nature Communications, 2020, 11: 1480.
[141] NILSSON A, SUTTIE N, KORTE M, et al. Persistent westward drift of the geomagnetic field atthe core–mantle boundary linked to recurrent high-latitude weak/reverse flux patches[J]. Geo-physical Journal International, 2020, 222(2): 1423-1432.
[142] 孔祥辉周卫健武振坤杜雅娟赵国庆谢兴俊. 大气生成宇宙成因核素 10Be 在中国黄土中的应用研究进展[J]. 地球环境学报, 2016, 7(3): 227-237.
[143] TARDUNO J A, COTTRELL R D, BONO R K, et al. Paleomagnetism indicates that pri-mary magnetite in zircon records a strong Hadean geodynamo[J]. Proceedings of the NationalAcademy of Sciences, 2020, 117(5): 2309-2318.
[144] 黄川, 傅容珊. 小行星撞击对地球的上地幔对流的影响[J]. 地球物理学报, 2014, 57(5):1534-1542.
[145] 李国良. 死丘事件[J]. 智力: 提高版, 2017(12): 8-11.
[146] 李国良. 天启大爆炸[J]. 智力: 提高版, 2018(6): 8-11.
[147] 侯泉林. 通古斯大爆炸[J]. 化石, 2005(3): 39-40.
[148] GRAYKOWSKI A, LAMBERT R A, MARCHIS F, et al. Light Curves and Colors of the Ejectafrom Dimorphos after the DART Impact[J]. Nature, 2023: 1-3.
[149] 钱学森. 星际航行概论 (精)[M]. 宇航出版社, 2008.
[150] KHAN A, CEYLAN S, VAN DRIEL M, et al. Upper mantle structure of Mars from In Sightseismic data[J]. Science, 2021, 373(6553): 434-438.
[151] KNAPMEYER-ENDRUN B, PANNING M P, BISSIG F, et al. Thickness and structure of themartian crust from In Sight seismic data[J]. Science, 2021, 373(6553): 438-443.
[152] STÄHLER S C, KHAN A, BANERDT W B, et al. Seismic detection of the martian core[J].Science, 2021, 373(6553): 443-448.
[153] 姜明明, 艾印双. 月震与月球内部结构[J]. 地球化学, 2010, 39(1): 15-24.
[154] 孙伟家, 王一博, 魏勇, 等. 火星地震学与内部结构研究[J]. 地球与行星物理论评, 2021, 52(4): 437-449.
[155] AMMON C J. The isolation of receiver effects from teleseismic P waveforms[J]. Bull. Seismol.Soc. Am, 1991, 81(6): 2504-2510.
[156] LANGSTON C A. Structure under Mount Rainier, Washington, inferred from teleseismic body waves[J]. Journal of Geophysical Research: Solid Earth, 1979, 84(B9): 4749-4762.
[157] 刘启元, 李顺成. 接收函数复谱比的最大或然性估计及非线性反演[J]. 地球物理学报,1996, 39(4): 500-511.
[158] 吴庆举, 曾融生. 用宽频带远震接收函数研究青藏高原的地壳结构[J]. 地球物理学报,1998, 41(5): 669-679.
[159] 段永红, 张先康, 刘志, 等. 长白山-镜泊湖火山区地壳结构接收函数研究[J]. 地球物理学报,2005, 48(2): 352-358.
[160] 危自根, 储日升, 李志伟, 等. 基于近震高频接收函数研究中国四川西山村滑坡的泊松比和S波速度[J]. 中国科学: 地球科学, 2021, 51(7): 1181-1192.
[161] RAWLINSON N, HOUSEMAN G A. Inversion for interface structure using teleseismic trav-eltime residuals[J]. Geophysical Journal International, 1998, 133(3): 756-772.
[162] 刘盛东, 李承华. 地震走时层析成像算法与比较[J]. 中国矿业大学学报, 2000, 29(2): 211-214.
[163] 朱介寿, 曹家敏, 蔡学林, 等. 东亚及西太平洋边缘海高分辨率面波层析成像[J]. 地球物理学报,2002, 45(5): 646-664.
[164] 赵大鹏, 雷建设, 唐荣余. 中国东北长白山火山的起源: 地震层析成像证据[J]. 科学通报,2004, 49(14): 1439-1446.
[165] 成谷, 张宝金. 反射地震走时层析成像中的大型稀疏矩阵压缩存储和求解[J]. 地球物理学进展,2008, 23(3): 674-680.
[166] 张风雪, 吴庆举, 李永华. 中国东北地区远震 S 波走时层析成像研究[J]. 地球物理学报,2014, 57(1): 88-101.
[167] PRATT R G. Seismic waveform inversion in the frequency domain, Part 1: Theory and verifi-cation in a physical scale model[J]. Geophysics, 1999, 64(3): 888-901.
[168] FICHTNER A, KENNETT B L, IGEL H, et al. Theoretical background for continental-andglobal-scale full-waveform inversion in the time–frequency domain[J]. Geophysical JournalInternational, 2008, 175(2): 665-685.
[169] 杨午阳, 王西文, 雍学善, 等. 地震全波形反演方法研究综述[J]. 地球物理学进展, 2013(2):766-776.
[170] 任志明, 戴雪, 包乾宗, 等. 有限差分的时间和空间频散及其对逆时偏移和全波形反演的影响[J]. 地球物理学报, 2021, 64(11): 4166-4180.
[171] 张碧星, 肖柏勋. 瑞利波勘探中“之”形频散曲线的形成机理及反演研究[J]. 地球物理学报,2000, 43(4): 557-567.
[172] 刘雪明, 凡友华, 翟佳羽, 等. 四种典型地层的瑞雷波“之”字型频散曲线数值模拟研究[J]. 地球物理学报, 2009(12): 3042-3050.
[173] 夏江海, 高玲利, 潘雨迪, 等. 高频面波方法的若干新进展[J]. 地球物理学报, 2015, 58(8):2591-2605.
[174] 孙楠, 潘磊, 王伟涛, 等. 多尺度阵列嵌套组合反演宾川气枪源区横波速度结构[J]. 地球物理学报,2021, 64(11): 4012-4021.
[175] TOKIMATSU K. Geotechnical site characterization using surface waves[C]//EarthquakeGeotechnical Engineering: Proceedings of IS-Tokyo’95, The First International Conferenceon Earthquake Geotechnical Engineering, Rotterdam. AA Balkema, 1997: 1333-136.
[176] SHAPIRO N M, CAMPILLO M, STEHLY L, et al. High-resolution surface-wave tomographyfrom ambient seismic noise[J]. Science, 2005, 307(5715): 1615-1618.
[177] YAO H, VAN DER HILST R D, DE HOOP M V. Surface-wave array tomography in SE Tibetfrom ambient seismic noise and two-station analysis—I. Phase velocity maps[J]. Geophysical Journal International, 2006, 166(2): 732-744.
[178] BENSEN G, RITZWOLLER M, BARMIN M, et al. Processing seismic ambient noise datato obtain reliable broad-band surface wave dispersion measurements[J]. Geophysical journalinternational, 2007, 169(3): 1239-1260.
[179] BENSEN G, RITZWOLLER M, YANG Y. A 3-D shear velocity model of the crust and up-permost mantle beneath the United States from ambient seismic noise[J]. Geophysical JournalInternational, 2009, 177(3): 1177-1196.
[180] YANG Y, RITZWOLLER M H, LEVSHIN A L, et al. Ambient noise Rayleigh wave tomog-raphy across Europe[J]. Geophysical Journal International, 2007, 168(1): 259-274.
[181] TAYLOR S R, GERSTOFT P, FEHLER M C. Estimating site amplification factors from am-bient noise[J]. Geophysical research letters, 2009, 36(9).
[182] LIN F C, RITZWOLLER M H, SHEN W. On the reliability of attenuation measurements fromambient noise cross-correlations[J]. Geophysical Research Letters, 2011, 38(11).
[183] TIAN Y, SHEN W, RITZWOLLER M H. Crustal and uppermost mantle shear velocity structureadjacent to the Juan de Fuca Ridge from ambient seismic noise[J]. Geochemistry, Geophysics,Geosystems, 2013, 14(8): 3221-3233.
[184] SHEN W, RITZWOLLER M H. Crustal and uppermost mantle structure beneath the UnitedStates[J]. Journal of Geophysical Research: Solid Earth, 2016, 121(6): 4306-4342.
[185] AKI K. Space and time spectra of stationary stochastic waves, with special reference to mi-crotremors[J]. Bulletin of the Earthquake Research Institute, 1957, 35: 415-456.
[186] XIA J, MILLER R D, PARK C B, et al. Inversion of high frequency surface waves with funda-mental and higher modes[J]. Journal of Applied Geophysics, 2003, 52(1): 45-57.
[187] LUO Y, XU Y, LIU Q, et al. Rayleigh-wave dispersive energy imaging and mode separating byhigh-resolution linear Radon transform[J]. The Leading Edge, 2008, 27(11): 1536-1542.
[188] WANG J, WU G, CHEN X. Frequency-Bessel transform method for effective imaging ofhigher-mode Rayleigh dispersion curves from ambient seismic noise data[J]. Journal of Geo-physical Research: Solid Earth, 2019, 124(4): 3708-3723.
[189] PARK C B, MILLER R D, XIA J. Imaging dispersion curves of surface waves on multi-channelrecord[M]//SEG technical program expanded abstracts 1998. Society of Exploration Geophysi-cists, 1998: 1377-1380.
[190] PARK C B, MILLER R D, XIA J, et al. Multichannel analysis of surface waves (MASW)—active and passive methods[J]. The Leading Edge, 2007, 26(1): 60-64.
[191] PARK C B, MILLER R D. Roadside passive multichannel analysis of surface waves (MASW)[J]. Journal of environmental & engineering geophysics, 2008, 13(1): 1-11.
[192] 郑植升, 刘洋, 刘财, 等. T-p 变换的两种实现方法[J]. 吉林大学学报 (地球科学版), 2019,49(6): 1780-1787.
[193] CAPON J. High-resolution frequency-wavenumber spectrum analysis[J]. Proceedings of theIEEE, 1969, 57(8): 1408-1418.
[194] XI C, XIA J, MI B, et al. Modified frequency-bessel transform method for dispersion imagingof rayleigh waves from ambient seismic noise[J]. Geophysical Journal International, 2021.
[195] ZHOU J, CHEN X. Removal of Crossed Artifacts from Multimodal Dispersion Curves withModified Frequency-Bessel Method[J]. Bulletin of the Seismological Society of America, 2022(1): 112.
[196] GAO L, ZHANG W, ZHANG Z, et al. Extraction of multimodal dispersion curves from ambientnoise with compressed sensing[J]. Journal of Geophysical Research: Solid Earth, 2021, 126(6): e2020JB021472.
[197] HU S, LUO S, YAO H. The frequency-Bessel spectrograms of multicomponent cross-correlation functions from seismic ambient noise[J]. Journal of Geophysical Research: SolidEarth, 2020, 125(8): e2020JB019630.
[198] 雷宇航, 尹扶, 洪鹤庭, 等. 基于 MF-J 变换的 DAS 观测高阶面波提取和浅地表结构成像[J]. 地球物理学报, 2021, 64(12): 4280-4291.
[199] LI C, CHEN X. One station observation system for Mars exploration[C]//EGU General Assem-bly Conference Abstracts. 2022: EGU22-982.
[200] AKI K, RICHARDS P G. Quantitative seismology[M]. 2002.
[201] PAN L, CHEN X, WANG J, et al. Sensitivity analysis of dispersion curves of Rayleigh waveswith fundamental and higher modes[J]. Geophysical Journal International, 2019, 216(2): 1276-1303.
[202] POLI P, PEDERSEN H, CAMPILLO M. Emergence of body waves from cross-correlation ofshort period seismic noise[J]. Geophysical Journal International, 2012, 188(2): 549-558.
[203] POLI P, CAMPILLO M, PEDERSEN H, et al. Body-wave imaging of Earth’s mantle discon-tinuities from ambient seismic noise[J]. Science, 2012, 338(6110): 1063-1065.
[204] KNAPMEYER-ENDRUN B, GOLOMBEK M P, OHRNBERGER M. Rayleigh wave elliptic-ity modeling and inversion for shallow structure at the proposed In Sight landing site in ElysiumPlanitia, Mars[J]. Space Science Reviews, 2017, 211: 339-382.
[205] TROMP J, KOMATITSCH D, HJÖRLEIFSDÓTTIR V, et al. Near real-time simulations ofglobal CMT earthquakes[J]. Geophysical Journal International, 2010, 183(1): 381-389.
[206] SAGER K, BOEHM C, ERMERT L, et al. Sensitivity of seismic noise correlation functionsto global noise sources[J]. Journal of Geophysical Research: Solid Earth, 2018, 123(8): 6911-6921.
[207] SAGER K, BOEHM C, ERMERT L, et al. Global-scale full-waveform ambient noise inversion[J]. Journal of Geophysical Research: Solid Earth, 2020, 125(4): e2019JB018644.
[208] SHAPIRO N M, CAMPILLO M, STEHLY L, et al. High-resolution surface-wave tomographyfrom ambient seismic noise[J]. Science, 2005, 307(5715): 1615-1618.
[209] WANG J, WU G, CHEN X. Frequency-Bessel transform method for effective imaging ofhigher-mode Rayleigh dispersion curves from ambient seismic noise data[J]. Journal of Geo-physical Research: Solid Earth, 2019, 124(4): 3708-3723.
[210] XI C, XIA J, MI B, et al. Modified frequency–Bessel transform method for dispersion imagingof Rayleigh waves from ambient seismic noise[J]. Geophysical Journal International, 2021, 225(2): 1271-1280.
[211] YAO H, VAN DER HILST R D, DE HOOP M V. Surface-wave array tomography in SE Tibetfrom ambient seismic noise and two-station analysis—I. Phase velocity maps[J]. GeophysicalJournal International, 2006, 166(2): 732-744.
[212] YAO H, BEGHEIN C, VAN DER HILST R D. Surface wave array tomography in SE Tibetfrom ambient seismic noise and two-station analysis-II. Crustal and upper-mantle structure[J].Geophysical Journal International, 2008, 173(1): 205-219.
[213] XIA J, MILLER R D, PARK C B, et al. Inversion of high frequency surface waves with funda-mental and higher modes[J]. Journal of Applied Geophysics, 2003, 52(1): 45-57.
[214] WU G X, PAN L, WANG J N, et al. Shear velocity inversion using multimodal dispersion curvesfrom ambient seismic noise data of USArray transportable array[J]. Journal of GeophysicalResearch: Solid Earth, 2020, 125(1): e2019JB018213.
[215] SAGER K, ERMERT L, BOEHM C, et al. Towards full waveform ambient noise inversion[J].Geophysical Journal International, 2018, 212(1): 566-590.
[216] GORBATOV A, KENNETT B. Joint bulk-sound and shear tomography for Western Pacificsubduction zones[J]. Earth and Planetary Science Letters, 2003, 210(3-4): 527-543.
[217] LEBEDEV S, VAN DER HILST R D. Global upper-mantle tomography with the automatedmultimode inversion of surface and S-wave forms[J]. Geophysical Journal International, 2008,173(2): 505-518.
[218] TIAN Y, SIGLOCH K, NOLET G. Multiple-frequency SH-wave tomography of the westernUS upper mantle[J]. Geophysical Journal International, 2009, 178(3): 1384-1402.
[219] FISHWICK S, KENNETT B, READING A. Contrasts in lithospheric structure within the Aus-tralian craton—insights from surface wave tomography[J]. Earth and Planetary Science Letters,2005, 231(3-4): 163-176.
[220] ZHOU Y, NOLET G, DAHLEN F, et al. Global upper-mantle structure from finite-frequencysurface-wave tomography[J]. Journal of Geophysical Research: Solid Earth, 2006, 111(B4).
[221] NETTLES M, DZIEWOŃSKI A M. Radially anisotropic shear velocity structure of the uppermantle globally and beneath North America[J]. Journal of Geophysical Research: Solid Earth,2008, 113(B2).
[222] 徐义贤, 王家映. 大地电磁的多尺度反演[J]. 地球物理学报, 1998, 41(5): 704-711.
[223] 潘纪顺, 王新建, 张先康, 等. 2D 多尺度混合优化地球物理反演方法及其应用 (英文)[J].应用地球物理:英文版, 2009, 6(4): 337-348.
[224] 张文生, 罗嘉, 滕吉文, 等. 频率多尺度全波形速度反演[J]. 地球物理学报, 2015, 58(1):216-228.
[225] 孙楠, 潘磊, 王伟涛, 等. 多尺度阵列嵌套组合反演宾川气枪源区横波速度结构[J]. 地球物理学报,2021, 64(11): 4012-4021.
[226] BUNKS C, SALECK F M, ZALESKI S, et al. Multiscale seismic waveform inversion[J].Geophysics, 1995, 60(5): 1457-1473.
[227] VIRIEUX J, OPERTO S. An overview of full-waveform inversion in exploration geophysics[J]. Geophysics, 2009, 74(6): WCC1-WCC26.
[228] FU L, FENG Z, SCHUSTER G T. Multiscale phase inversion for 3D ocean-bottom cable data[J]. Geophysical Prospecting, 2020, 68(3): 786-801.
[229] 朱宝衡, 谢春雨. 多尺度混合反演技术在河流相薄储层预测中的应用[J]. 复杂油气藏,2021.
[230] LI Z, CHEN X. An effective method to extract overtones of surface wave from array seismicrecords of earthquake events[J]. Journal of Geophysical Research: Solid Earth, 2020, 125(3):e2019JB018511.
[231] XIE J, YANG Y, LUO Y. Improving cross-correlations of ambient noise using an rms-ratioselection stacking method[J]. Geophysical Journal International, 2020, 222(2): 989-1002.
[232] YANG Y, LIU C, LANGSTON C A. Processing seismic ambient noise data with the contin-uous wavelet transform to obtain reliable empirical Green’s functions[J]. Geophysical JournalInternational, 2020, 222(2): 1224-1235.
[233] ASTER R C, BORCHERS B, THURBER C H. Parameter estimation and inverse problems[M].Elsevier, 2018.
[234] SÁNCHEZ-SESMA F J, CAMPILLO M. Retrieval of the Green’s function from cross cor-relation: the canonical elastic problem[J]. Bulletin of the Seismological Society of America,2006, 96(3): 1182-1191.
[235] SATO H, FEHLER M C, MAEDA T. Seismic wave propagation and scattering in the hetero-geneous earth[M]. Springer Science & Business Media, 2012.
[236] HANEY M M, MIKESELL T D, VAN WIJK K, et al. Extension of the spatial autocorrelation(SPAC) method to mixed-component correlations of surface waves[J]. Geophysical JournalInternational, 2012, 191(1): 189-206.
[237] HANEY M M, NAKAHARA H. Surface-wave Green’s tensors in the near field[J]. Bulletinof the Seismological Society of America, 2014, 104(3): 1578-1586.
[238] CHEN X. A systematic and efficient method of computing normal modes for multilayeredhalf-space[J]. Geophysical Journal International, 1993, 115(2): 391-409.
[239] SHEN W, RITZWOLLER M H. Crustal and uppermost mantle structure beneath the UnitedStates[J]. Journal of Geophysical Research: Solid Earth, 2016, 121(6): 4306-4342.
[240] 赵延娜, 段永红, 邹长桥, 等. 江西九江—福建宁化接收函数剖面研究[J]. 地震学报, 2015,37(5): 722-732.
[241] SHENGBIAO H, JIYANG W. Heat flow, deep temperature and thermal structure across theorogenic belts in Southeast China[J]. Journal of Geodynamics, 2000, 30(4): 461-473.
[242] PRIESTLEY K, MCKENZIE D. The relationship between shear wave velocity, temperature,attenuation and viscosity in the shallow part of the mantle[J]. Earth and Planetary ScienceLetters, 2013, 381: 78-91.
[243] OUYANG L, LI H, LÜ Q, et al. Crustal and uppermost mantle velocity structure and its rela-tionship with the formation of ore districts in the Middle–Lower Yangtze River region[J]. Earthand Planetary Science Letters, 2014, 408: 378-389.
[244] SHAN B, XIONG X, ZHAO K, et al. Crustal and upper-mantle structure of South China fromRayleigh wave tomography[J]. Geophysical Journal International, 2017, 208(3): 1643-1654.
[245] PRATT G R, WORTHINGTON M H. Inverse theory applied to multi-source cross-hole tomog-raphy. Part 1: acoustic wave-equation method[J]. Geophysical Prospecting, 2010, 38: 287-310.
[246] JO C H, SHIN C, SUH J H. An optimal 9-point, finite-difference, frequency-space, 2-D scalarwave extrapolator[J]. Geophysics, 1996, 61(2): 529-537.
[247] ŠTEKL I, PRATT R G. Accurate viscoelastic modeling by frequency-domain finite differencesusing rotated operators[J]. Geophysics, 1998, 63(5): 1779-1794.
[248] SHIN C, SOHN H. A frequency-space 2-D scalar wave extrapolator using extended 25-pointfinite-difference operator[J]. Geophysics, 1998.
[249] OPERTO S, VIRIEUX J, AMESTOY P, et al. 3D finite-difference frequency-domain modelingof visco-acoustic wave propagation using a massively parallel direct solver: A feasibility study[J]. Geophysics, 2007, 72(5): SM195-SM211.
[250] CHEN J B. A 27-point scheme for a 3D frequency-domain scalar wave equation based on anaverage-derivative method[J]. Geophysical Prospecting, 2014, 62(2): 258-277.
[251] RAVAUT C, OPERTO S, IMPROTA L, et al. Multiscale imaging of complex structures frommultifold wide-aperture seismic data by frequency-domain full-waveform tomography: Appli-cation to a thrust belt[J]. Geophysical Journal International, 2004, 159(3): 1032-1056.
[252] WANG Y, RAO Y. Crosshole seismic waveform tomography–I. Strategy for real data applica-tion[J]. Geophysical Journal International, 2006, 166(3): 1224-1236.
[253] BROSSIER R, VIRIEUX J, OPERTO S. Parsimonious finite-volume frequency-domainmethod for 2-DP–SV-wave modelling[J]. Geophysical Journal International, 2008, 175(2):541-559.
[254] LIU Y. An optimal 5-point scheme for frequency-domain scalar wave equation[J]. Journal ofApplied Geophysics, 2014, 108: 19-24.
[255] FAN N, CHENG J, QIN L, et al. An optimal method for frequency-domain finite-differencesolution of 3D scalar wave equation[J]. Chinese Journal of Geophysics, 2018, 61(3): 1095-1108.
[256] GOLUB G H, VAN LOAN C F. Matrix computations[M]. Johns Hopkins University Press,2013.
[257] OPERTO S, BROSSIER R, COMBE L, et al. Computationally efficient three-dimensionalacoustic finite-difference frequency-domain seismic modeling in vertical transversely isotropicmedia with sparse direct solver[J]. Geophysics, 2014, 79(5): T257-T275.
[258] LI Y, HAN B, MÉTIVIER L, et al. Optimal fourth-order staggered-grid finite-difference schemefor 3D frequency-domain viscoelastic wave modeling[J]. Journal of Computational Physics,2016, 321: 1055-1078.
[259] SI J, LI X, ZHANG H, et al. Frequency-domain acoustic wave modeling using regularizedpreconditioning iterative method[J]. Chinese Journal of Geophysics, 2019, 62(5): 1824-1834.
[260] CLAERBOUT J F. Imaging the earth’s interior: volume 1[M]. Blackwell scientific publicationsOxford, 1985.
[261] LIU Y, SEN M K. A practical implicit finite-difference method: examples from seismic mod-elling[J]. Journal of Geophysics and Engineering, 2009, 6(3): 231-249.
[262] YUAN Y X, BYRD R H. Non-quasi-Newton updates for unconstrained optimization[J]. Journalof Computational Mathematics, 1995: 95-107.
[263] DAI Y, YUAN J, YUAN Y X. Modified two-point stepsize gradient methods for unconstrainedoptimization[J]. Computational Optimization and Applications, 2002, 22: 103-109.
[264] HAGER W W, ZHANG H. A survey of nonlinear conjugate gradient methods[J]. Pacific journalof Optimization, 2006, 2(1): 35-58.
[265] YUAN Y. Gradient methods for large scale convex quadratic functions[J]. Optimization andregularization for computational inverse problems and applications, 2011: 141-155.
[266] LEE J H, JUNG Y M, YUAN Y X, et al. A subspace SQP method for equality constrainedoptimization[J]. Computational Optimization and Applications, 2019, 74: 177-194.
[267] JIANG T, WEI M. On solutions of the matrix equations 𝑋 − 𝐴𝑋𝐵 = 𝐶 and 𝑋 − 𝐴𝑋𝐵 = 𝐶[J].Linear Algebra and its Applications, 2003, 367: 225-233.
[268] GUO C H, KUO Y C, LIN W W. Complex symmetric stabilizing solution of the matrix equation[J]. Linear algebra and its applications, 2011, 435(6): 1187-1192.
[269] LI Y, MÉTIVIER L, BROSSIER R, et al. 2D and 3D frequency-domain elastic wave modelingin complex media with a parallel iterative solver[J]. Geophysics, 2015, 80(3): T101-T118.
[270] ANDREI N. A scaled BFGS preconditioned conjugate gradient algorithm for unconstrainedoptimization[J]. Applied Mathematics Letters, 2007, 20(6): 645-650.
[271] HESTENES M R, STIEFEL E, et al. Methods of conjugate gradients for solving linear systems[J]. Journal of research of the National Bureau of Standards, 1952, 49(6): 409-436.
[272] FLETCHER R, REEVES C M. Function minimization by conjugate gradients[J]. The computerjournal, 1964, 7(2): 149-154.
[273] DANIEL J W. The conjugate gradient method for linear and nonlinear operator equations[J].SIAM Journal on Numerical Analysis, 1967, 4(1): 10-26.
[274] POLYAK B T. The conjugate gradient method in extremal problems[J]. USSR ComputationalMathematics and Mathematical Physics, 1969, 9(4): 94-112.
[275] ALFORD R, KELLY K, BOORE D M. Accuracy of finite-difference modeling of the acousticwave equation[J]. Geophysics, 1974, 39(6): 834-842.

所在学位评定分委会
力学
国内图书分类号
O343.7
来源库
人工提交
成果类型学位论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/765781
专题南方科技大学
理学院_地球与空间科学系
推荐引用方式
GB/T 7714
黎昌成. 尤卡坦撞击事件地震波场影响及启示[D]. 深圳. 南方科技大学,2024.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可 操作
11930785-黎昌成-地球与空间科学(109507KB)----限制开放--请求全文
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[黎昌成]的文章
百度学术
百度学术中相似的文章
[黎昌成]的文章
必应学术
必应学术中相似的文章
[黎昌成]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。