中文版 | English
题名

锶单原子的冷却与囚禁

其他题名
COOLING AND TRAPPING OF A SINGLE STRONTIUM ATOM
姓名
姓名拼音
YANG Lin
学号
12132861
学位类型
硕士
学位专业
0702Z1 量子科学与工程
学科门类/专业学位类别
07 理学
导师
尉石
导师单位
量子科学与工程研究院
论文答辩日期
2024-05-10
论文提交日期
2024-06-20
学位授予单位
南方科技大学
学位授予地点
深圳
摘要
  在过去二十年时间里,中性原子光镊阵列体系已经成为进行量子计算和量子模拟的重要实验平台。该体系具有相干时间长、可扩展性高、原子间的相互作用丰富可控等优势。目前,多数实验均采用含有一个价电子的碱金属元素铷和铯。而近些年,由于具有两个价电子的(类)碱土金属元素锶和镱展示出诸多特性,已经引起了越来越多的关注。
  在本论文中,我们研究锶单原子的激光冷却与囚禁,主要结果介绍如下:
  我们在微型光镊中实现了锶单原子的装载和成像。在我们的实验装置中,冷原子团中原子数目为1.0×106 个,原子温度为3.5 μK。我们将波长为515 nm 的激光束强聚焦到冷原子团中心,形成束腰为0.5 μm 的光学偶极阱。在光助碰撞作用下,在光镊中可以囚禁一个原子,或者没有原子。在单原子荧光成像过程中,我们利用了窄线宽西西弗斯冷却技术。
  我们设计了一个可以同时产生多个射频(RF)波段的数字射频驱动,可应用于可编程的光镊阵列装置中。在光镊阵列光路中,我们可以利用由多个射频波段驱动的声光偏转器(AOD)实现激光束多路偏转,从而形成光束阵列。我们的射频技术是基于现场可编程逻辑门阵列(FPGA)和正交数字上变频器件(QDUC)。通过PCIe 通信,射频参数控制信号从上位机传输至FPGA 器件。随后,我们编码 QDUC 的控制流程,实现了在单频模式及QDUC 模式下的信号仿真。
  总之,我们展示了在光镊中实现锶单原子囚禁的实验进展,这些结果为利用独立可控的原子进行量子科学方面的研究提供了基础。
关键词
语种
中文
培养类别
独立培养
入学年份
2021
学位授予年份
2024-06
参考文献列表

[1] SHOR P W. Algorithms for quantum computation: discrete logarithms and factoring[C]. Proceedings 35th Annual Symposium on Foundations of Computer Science, 1994, 124-134.
[2] GROVER L K. Quantum mechanics helps in searching for a needle in a haystack[J]. Physical Review Letters, 1997, 79(2): 325-328.
[3] DIVINCENZO D P. The physical implementation of quantum computation[J]. Fortschritte der Physik, 2000, 48(9-11): 771-783.
[4] CHENG B, DENG X H, GU X, et al. Noisy intermediate-scale quantum computers[J]. Frontiers of Physcis, 2023, 18(2): 21308.
[5] SAFFMAN M, WALKER T G, MØLMER K. Quantum information with Rydberg atoms[J]. Reviews of Modern Physics, 2010, 82(3): 2313-2363.
[6] SAFFMAN M. Quantum computing with atomic qubits and Rydberg interactions: progress and challenges[J]. Journal of Physics B: Atomic, Molecular and Optical Physics, 2016, 49(20): 202001.
[7] BROWAEYS A, LAHAYE T. Many-body physics with individually controlled Rydberg atoms[J]. Nature Physics, 2020, 16(2): 132-142.
[8] HENRIET L, BEGUIN L, SIGNOLES A, et al. Quantum computing with neutral atoms[J]. Quantum, 2020, 4: 327-360.
[9] MORGADO M, WHITLOCK S. Quantum simulation and computing with Rydberginteracting qubits[J]. AVS Quantum Science, 2021, 3(2): 023501.
[10] WU X L, LIANG X H, TIAN Y Q, et al. A concise review of Rydberg atom based quantum computation and quantum simulation[J]. Chinese Physics B, 2021, 30(2): 020305.
[11] MAIMAN T H. Stimulated Optical Radiation in Ruby[J]. Nature, 1960, 187(4736): 493- 494.
[12] ASHKIN A. Acceleration and trapping of particles by radiation pressure[J]. Physical Review Letters, 1970, 24(4): 156-159.
[13] WINELAND D J, DEHMELT H. Proposed 1014 ∆ν<ν laser fluorescencespectroscopy on TI+ mono-ion oscillator III(side band cooling)[J]. Bulletin of theAmerican Physical Society, 1975, 20(4): 637-637.
[14] HÄNSCH T W, SCHAWLOW A L. Cooling of gases by laser radiation[J]. Optics Communications, 1975, 13(1): 68-69.
[15] ASHKIN A. Trapping of atoms by resonance radiation pressure[J]. Physical Review Letters, 1978, 40(12): 729-732.
[16] BALYKIN V I, LETOKHOV V S, MISHIN V I. Laser fluorescence detection of single atoms[J]. Soviet Physics JETP, 1979, 50(6): 1066-1074.
[17] CHU S, HOLLBERG L, BJORKHOLM J E, et al. Three-dimensional viscous confinement and cooling of atoms by resonance radiation pressure[J]. Physical Review Letters, 1985, 55(1): 48-51.
[18] RAAB E L, PRENTISS M, CABLE A, et al. Trapping of neutral Sodium atoms with radiation pressure[J]. Physical Review Letters, 1987, 59(23): 2631-2634.
[19] DALIBARD J, COHEN-TANNOUDJI C. Laser cooling below the Doppler limit by polarization gradients: simple theoretical models[J]. Journal of the Optical Societyof America B, 1989, 6(11): 2023-2045.
[20] UNGAR P J, WEISS D S, RIIS E, et al. Optical molasses and multilevel atoms: theory[J]. Journal of the Optical Society of America B, 1989, 6(11): 2058-2071.
[21] SHEEHY B, SHANG S-Q, VAN DER STRATEN P, et al. Magnetic-field-induced laser cooling below the Doppler limit[J]. Physical Review Letters, 1990, 64(8): 858-861.
[22] SHANG S-Q, SHEEHY B, VAN DER STRATEN P, et al. Velocity-selective magnetic- resonance laser cooling[J]. Physical Review Letters, 1990, 65(3): 317- 320.
[23] BAKR W S, GILLEN J I, PENG A, et al. A quantum gas microscope for detecting single atoms in a hubbard-regime optical lattice[J]. Nature, 2009, 462(7269): 74- 77.
[24] NOGRETTE F, LABUHN H, RAVETS S, et al. Single-atom trapping inholographic 2D arrays of microtraps with arbitrary geometries[J]. Physical ReviewX, 2014, 4(2): 021034.
[25] SCHLOSSER N, REYMOND G, PROTSENKO I, et al. Sub-poissonian loading of single atoms in a microscopic dipole trap[J]. Nature, 2001, 411(6841): 1024-1027.
[26] ENDRES M, BERNIEN H, KEESLING A, et al. Atom-by-atom assembly of defectfree one-dimensional cold atom arrays[J]. Science, 2016, 354(6315): 1024-1027.
[27] BARREDO D, DE LÉSÉLEUC S, LIENHARD V, et al. An atom-by-atomassembler of defect-free arbitrary two-dimensional atomic arrays[J]. Science, 2016, 354(6315): 1021 -1023.
[28] GAËTAN A, MIROSHNYCHENKO Y, WILK T, et al. Observation of collective excitation of two individual atoms in the Rydberg blockade regime[J]. Nature Physics, 2009, 5(2): 115-118.
[29] URBAN E, JOHNSON T A, HENAGE T, et al. Observation of Rydberg blockade between two atoms[J]. Nature Physics, 2009, 5(2): 110-114.
[30] WILK T, GAËTAN A, EVELLIN C, et al. Entanglement of two individual neutral atoms using rydberg blockade[J]. Physical Review Letters, 2010, 104(1): 010502.
[31] ISENHOWER L, URBAN E, ZHANG X L, et al. Demonstration of a neutral atomcontrolled-NOT quantum gate[J]. Physical Review Letters, 2010, 104(1): 010503.
[32] BLUVSTEIN D, LEVINE H, SEMEGHINI G, et al. A quantum processor based oncoherent transport of entangled atom arrays[J]. Nature, 2022, 604(7906): 451-456.
[33] GRAHAM T M, SONG Y, SCOTT J, et al. Multi-qubit entanglement and algorithms on a neutral-atom quantum computer[J]. Nature, 2022, 604(7906): 457- 462.
[34] BERNIEN H, SCHWARTZ S, KEESLING A, et al. Probing many-body dynamics on a 51-atom quantum simulator[J]. Nature, 2017, 551(7682): 579-584.
[35] SCHOLL P, SCHULER M, WILLIAMS H J, et al. Quantum simulation of 2D antiferromagnets with hundreds of Rydberg atoms[J]. Nature, 2021, 595(7866): 233-238.
[36] NORCIA M A, YOUNG A W, ECKNER W J, et al. Seconds-scale coherence on an optical clock transition in a tweezer array[J]. Science, 2019, 366(6461): 93-97.
[37] MADJAROV I S, COOPER A, SHAW A L, et al. An atomic-array optical clock with single-atom readout[J]. Physical Review X, 2019, 9(4): 041052.
[38] YOUNG A W, ECKNER W J, MILNER W R, et al. Half-minute-scale atomic coherence and high relative stability in a tweezer clock[J]. Nature, 2020, 588(7838): 408-413.
[39] BLOCH D, HOFER B, COHEN S R, et al. Trapping and imaging single dysprosium atoms in optical tweezer arrays[J]. Physical Review Letters, 2023, 131(20): 203401.
[40] TZAHI G, ANDREW H, MCGOVERN M, et al. Near-deterministic preparation of a single atom in an optical microtrap[J]. Nature Physics, 2010, 6(12): 951-954.
[41] CARPENTIER A V, FUNG Y H, SOMPET P, et al. Preparation of a single atom in an optical microtrap[J]. Laser Physics Letters, 2013, 10(12): 125501.
[42] LIU B, WANG J M, DIAO W T, et al. Nearly deterministic loading of a single cesium atom in a magneto-optical trap and in a microscopic optical tweezer by feedback control[C]. Proceedings of SPIE, 2014, 9136, 91362O.
[43] SCHYMIK K-N, PANCALDI S, NOGRETTE F, et al. Single atoms with 6000- second trapping lifetimes in optical-tweezer arrays at cryogenic temperatures[J]. Physical Review A, 2021, 16(3): 034013.
[44] BARREDO D, LIENHARD V, DE LÉSÉLEUC S, et al. Synthetic three- dimensional atomic structures assembled atom by atom[J]. Nature, 2018, 561(7721): 79-82.
[45] EBADI S, WANG T T, LEVINE H, et al. Quantum phases of matter on a 256-atom programmable quantum simulator[J]. Nature, 2021, 595(7866): 227-232.
[46] LEE W, KIM H, AHN J. Defect-free atomic array formation using the Hungarian matching algorithm[J]. Physical Review A, 2017, 95(5): 053424.
[47] SCHYMIK K-N, LIENHARD V, BARREDO D, et al. Enhanced atom-by-atom assembly of arbitrary tweezer arrays[J]. Physical Review A, 2020, 102(6): 063107.
[48] SINGH K, ANAND S, POCKLINGTON A, et al. Dual-element, two-dimensional atom array with continuous-mode operation[J]. Physical Review X, 2022, 12(1): 011040.
[49] SHENG C, HOU J Y, HE X D, et al. Defect-free arbitrary-geometry assembly of mixed-species atom arrays[J]. Physical Review Letters, 2022, 128(8): 083202.
[50] XIA T, LICHTMAN M, MALLER K, et al. Randomized benchmarking of single- qubit gates in a 2D array of neutral-atom qubits[J]. Physical Review Letters, 2015, 114(10): 100503.
[51] WANG Y, KUMAR A, WU T-Y, et al. Single-qubit gates based on targeted phase shifts in a 3D neutral atom array[J]. Science, 2016, 352(6293): 1562-1565.
[52] SHENG C, HE X D, XU P, et al. High-fidelity single-qubit gates on neutral atoms in a two-dimensional magic-intensity optical dipole trap array. Physical Review Letters, 2018, 121(24), 240501.
[53] NIKOLOV B, DIAMOND-HITCHCOCK E, BASS J, et al. Randomized benchmarking using non-destructive readout in a 2D atom array[J]. Physical Review Letters, 2023, 131(3): 030602.
[54] JAKSCH D, BRIEGEL H J, CIRAC J I, et al. Entanglement of atoms via cold controlled collisions[J]. Physical Review Letters, 1999, 82(9): 1975-1978.
[55] VOLZ J, WEBER M, SCHLENK D, et al. Observation of entanglement of a single photon with a trapped atom[J]. Physical Review Letters, 2006, 96(3): 030404.
[56] JAU Y Y, HANKIN A M, KEATING T, et al. Entangling atomic spins with a Rydberg- dressed spin-flip blockade[J]. Nature Physics, 2016, 12(1): 71-74.
[57] LEVINE H, KEESLING A, SEMEGHINI G, et al. Parallel implementation of highfidelity multiqubit gates with neutral atoms[J]. Physical Review Letters, 2019, 123(17): 170503.
[58] GRAHAM T M, KWON M, GRINKEMEYER B, et al. Rydberg-mediatedentanglement in a two-dimensional neutral atom qubit array[J]. Physical ReviewLetters, 2019, 123(23): 230501.
[59] DE LÉSÉLEUC S, BARREDO D, LIENHARD V, et al. Analysis of imperfections in the coherent optical excitation of single atoms to Rydberg states[J]. Physical Review A, 2018, 97(5): 053803.
[60] LEVINE H, KEESLING A, OMRAN A, et al. High-fidelity control and entanglement of Rydberg-atom qubits[J]. Physical Review Letters, 2018, 121(12): 123603.
[61] SAFFMAN M, BETEROV I I, DALAL A, et al. Symmetric Rydberg controlled-Z gates with adiabatic pulses[J]. Physical Review A, 2020, 101(6): 062309.
[62] EVERED S J, BLUVSTEIN D, KALINOWSKI M, et al. High-fidelity parallelentangling gates on a neutral-atom quantum[J]. Nature, 2023, 622(7982): 268-272.
[63] EBADI S, WANG T T, LEVINE H, et al. Quantum phases of matter on a 256-atom programmable quantum simulator[J]. Nature, 2021, 595(7866): 227-232.
[64] BLUVSTEIN D, EVERED S J, GEIM A A, et al. Logical quantum processor basedon reconfigurable atom arrays[J]. Nature, 2024, 626(7997): 58-65.
[65] COOPER A, COVEY J P, MADJAROV I S, et al. Alkaline-earth atoms in optical tweezers[J]. Physical Review X, 2018, 8(4): 041055.
[66] NORCIA M A, YOUNG A W, KAUFMAN A M. Microscopic control and detection of ultracold strontium in optical-tweezer arrays[J]. Physical Review X, 2018, 8(4): 041054.
[67] SASKIN S, WILSON J T, GRINKEMEYER B, et al. Narrow-line cooling and imaging of Ytterbium atoms in an optical tweezer array[J]. Physical Review Letters, 2019, 122(14): 143002.
[68] COVEY J P, MADJAROV I S, COOPER A, et al. 2000-times repeated imaging of strontium atoms in clock-magic tweezer arrays[J]. Physical Review Letters, 2019, 122(17): 173201.
[69] URECH A, KNOTTNERUS I H A, SPREEUW R J C, et al. Narrow-line imaging of single strontium atoms in shallow optical tweezers[J]. Physical Review Research, 2022, 4(2): 023245.
[70] MADJAROV I S, COOPER A, SHAW A L, et al. An atomic-array optical clock with single-atom readout[J]. Physical Review X, 2019, 9(4): 041052.
[71] NORCIA M A, YOUNG A W, ECKNER W J, et al. Seconds-scale coherence on an optical clock transition in a tweezer array[J]. Science, 2019, 366(6461): 93-97.
[72] MADJAROV I S, COVEY J P, SHAW A L, et al. High-fidelity entanglement and detection of alkaline-earth Rydberg atoms[J]. Nature Physics, 2020, 16(8): 857-861.
[73] SCHINE N, YOUNG A W, ECKNER W J, et al. Long-lived Bell states in an array of optical clock qubits[J]. Nature Physics, 2022, 18(9): 1067-1073.
[74] WILSON J T, SASKIN S, MENG Y, et al. Trapping alkaline earth Rydberg atoms optical tweezer arrays[J]. Physical Review Letters, 2022, 128(3): 033201.
[75] SCHOLL P, SHAW A L, TSAI R B-S, et al. Erasure conversion in a high-fidelity Rydberg quantum simulator[J]. Nature, 2023, 622(7982): 273-278.
[76] BARNES K, BATTAGLINO P, BLOOM B J, et al. Assembly and coherent control of a register of nuclear spin qubits[J]. Nature Communications, 2022, 13(1): 2779.
[77] MA S, BURGERS A P, LIU G, et al. Universal gate operations on nuclear spin qubits in an optical tweezer array of 17 1Yb atoms[J]. Physical Review X, 2022, 12(2): 021028.
[78] JENKINS A, LIS J W, SENOO A, et al. Ytterbium nuclear-spin qubits in an optical tweezer array[J]. Physical Review X, 2022, 12(2): 021027.
[79] MA S, LIU G, PENG P, et al. High-fidelity gates and mid-circuit erasure conversion in an atomic qubit[J]. Nature, 2023, 622(7982): 279-284.
[80] SANSONETTI J E, NAVE G. Wavelengths, transition probabilities, and energyatoms near the fermi temperature[J]. Physical Review Letters, 2003, 90(11):113002.
[82] 王义遒. 原子的激光冷却与囚禁[M]. 北京: 北京大学出版社, 2007: 90-110.
[83] LOFTUS T H, IDO T, BOYD M M, et al. Narrow line cooling and momentumlevels for the spectrum of neutral strontium (SrI)[J]. Journal of Physical andChemical Reference Data, 2010 , 39(3): 033103.
[81] MUKAIYAMA T, KATORI H, IDO T, et al. Recoil-limited laser cooling of 87Sr - space crystals[J]. Physical Review A, 2004, 70(6): 063413.
[84] STELLMER S. Degenerate quantum gases of strontium[D]. Tyrol: University of Innsbruck, PhD Thesis, 2013.
[85] MADISON K W, BONGS K, CARR L D, et al. Annual Review of Cold Atoms and Molecules: Volume 2[M]. Hong Kong: World Scientific Publishing Company, 2014: CHAPTER 1.
[86] NOSSKE I. Cooling and trapping of strontium atoms for quantum simulation using Rydberg states[D]. Hefei: University of Science and Technology of China, PhD Thesis, 2018.
[87] KIM H, LEE W, LEE H, et al. In situ single-atom array synthesis using dynamic holographic optical tweezers[J]. Nature communications, 2016, 7(1): 13317.
[88] AA Opto-Electronic. DTSX 1-axis Operating Manual[EB/OL].
[2016]. http://www.aaoptoelectronic.com/
[89] OMRAN A, LEVINE H, KEESLING A, et al. Generation and manipulation of Schrödinger cat states in Rydberg atom arrays-Supplementary Material[J]. Science, 2019, 365(6453): 570-574.
[90] SHENG C, HOU J Y, HE XD, et al. Efficient preparation of two-dimensionaldefect-free atom arrays with near-fewest sorting-atom moves[J]. Physical ReviewResearch, 2021, 3(2): 023008.
[91] TIAN W K, WEE W J, QU A, et al. Parallel assembly of arbitrary defect-free atom arrays with a multitweezer algorithm[J]. Physical Review Applied, 2023, 19(3): 034048.
[92] CIMRING B, SABEH R E, BACVANSKI M, et al, Efficient algorithms to solve atom reconfiguration problems. I. Redistribution-reconfiguration algorithm[J]. Physical Review A, 2023, 108(2): 023107.
[93] Analog Devices. AD9957: 1 GSPS Quadrature Digital Upconverter with 18-Bit I/Q Data Path and 14-Bit DAC Data Sheet[EB/OL] .
[2008-06-26]. https://www.analog.com/media/en/technical-documentation/data-sheets/ad9957.pdf
[94] ALINX. ARTIX-7 FPGA AX7103 Datasheet. [EB/OL].
[2023-09-08].file:///E:/FPGA/ AthisFPGA/AX7103_2019_1/.
[95] XILINX.DMA/Bridge Subsystem for PCI Express v4.1- Product Guide[EB/OL].
[2022-11-16]. https://www.xilinx.com/support/documents/ip_documentation/xdma/v41/pg195-pcie-dma.pdf.
[96] Ultra Librarian. ADM7172ACPZ-1.8-R7 datasheet[EB/OL].
[2019]. https://www. digikey.cn/zhs/models/5011543.

所在学位评定分委会
物理学
国内图书分类号
O562
来源库
人工提交
成果类型学位论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/765782
专题南方科技大学
量子科学与工程研究院
推荐引用方式
GB/T 7714
杨琳. 锶单原子的冷却与囚禁[D]. 深圳. 南方科技大学,2024.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可 操作
12132861-杨琳-量子科学与工程研(7534KB)----限制开放--请求全文
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[杨琳]的文章
百度学术
百度学术中相似的文章
[杨琳]的文章
必应学术
必应学术中相似的文章
[杨琳]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。