[1] SHOR P W. Algorithms for quantum computation: discrete logarithms and factoring[C]. Proceedings 35th Annual Symposium on Foundations of Computer Science, 1994, 124-134.
[2] GROVER L K. Quantum mechanics helps in searching for a needle in a haystack[J]. Physical Review Letters, 1997, 79(2): 325-328.
[3] DIVINCENZO D P. The physical implementation of quantum computation[J]. Fortschritte der Physik, 2000, 48(9-11): 771-783.
[4] CHENG B, DENG X H, GU X, et al. Noisy intermediate-scale quantum computers[J]. Frontiers of Physcis, 2023, 18(2): 21308.
[5] SAFFMAN M, WALKER T G, MØLMER K. Quantum information with Rydberg atoms[J]. Reviews of Modern Physics, 2010, 82(3): 2313-2363.
[6] SAFFMAN M. Quantum computing with atomic qubits and Rydberg interactions: progress and challenges[J]. Journal of Physics B: Atomic, Molecular and Optical Physics, 2016, 49(20): 202001.
[7] BROWAEYS A, LAHAYE T. Many-body physics with individually controlled Rydberg atoms[J]. Nature Physics, 2020, 16(2): 132-142.
[8] HENRIET L, BEGUIN L, SIGNOLES A, et al. Quantum computing with neutral atoms[J]. Quantum, 2020, 4: 327-360.
[9] MORGADO M, WHITLOCK S. Quantum simulation and computing with Rydberginteracting qubits[J]. AVS Quantum Science, 2021, 3(2): 023501.
[10] WU X L, LIANG X H, TIAN Y Q, et al. A concise review of Rydberg atom based quantum computation and quantum simulation[J]. Chinese Physics B, 2021, 30(2): 020305.
[11] MAIMAN T H. Stimulated Optical Radiation in Ruby[J]. Nature, 1960, 187(4736): 493- 494.
[12] ASHKIN A. Acceleration and trapping of particles by radiation pressure[J]. Physical Review Letters, 1970, 24(4): 156-159.
[13] WINELAND D J, DEHMELT H. Proposed 1014 ∆ν<ν laser fluorescencespectroscopy on TI+ mono-ion oscillator III(side band cooling)[J]. Bulletin of theAmerican Physical Society, 1975, 20(4): 637-637.
[14] HÄNSCH T W, SCHAWLOW A L. Cooling of gases by laser radiation[J]. Optics Communications, 1975, 13(1): 68-69.
[15] ASHKIN A. Trapping of atoms by resonance radiation pressure[J]. Physical Review Letters, 1978, 40(12): 729-732.
[16] BALYKIN V I, LETOKHOV V S, MISHIN V I. Laser fluorescence detection of single atoms[J]. Soviet Physics JETP, 1979, 50(6): 1066-1074.
[17] CHU S, HOLLBERG L, BJORKHOLM J E, et al. Three-dimensional viscous confinement and cooling of atoms by resonance radiation pressure[J]. Physical Review Letters, 1985, 55(1): 48-51.
[18] RAAB E L, PRENTISS M, CABLE A, et al. Trapping of neutral Sodium atoms with radiation pressure[J]. Physical Review Letters, 1987, 59(23): 2631-2634.
[19] DALIBARD J, COHEN-TANNOUDJI C. Laser cooling below the Doppler limit by polarization gradients: simple theoretical models[J]. Journal of the Optical Societyof America B, 1989, 6(11): 2023-2045.
[20] UNGAR P J, WEISS D S, RIIS E, et al. Optical molasses and multilevel atoms: theory[J]. Journal of the Optical Society of America B, 1989, 6(11): 2058-2071.
[21] SHEEHY B, SHANG S-Q, VAN DER STRATEN P, et al. Magnetic-field-induced laser cooling below the Doppler limit[J]. Physical Review Letters, 1990, 64(8): 858-861.
[22] SHANG S-Q, SHEEHY B, VAN DER STRATEN P, et al. Velocity-selective magnetic- resonance laser cooling[J]. Physical Review Letters, 1990, 65(3): 317- 320.
[23] BAKR W S, GILLEN J I, PENG A, et al. A quantum gas microscope for detecting single atoms in a hubbard-regime optical lattice[J]. Nature, 2009, 462(7269): 74- 77.
[24] NOGRETTE F, LABUHN H, RAVETS S, et al. Single-atom trapping inholographic 2D arrays of microtraps with arbitrary geometries[J]. Physical ReviewX, 2014, 4(2): 021034.
[25] SCHLOSSER N, REYMOND G, PROTSENKO I, et al. Sub-poissonian loading of single atoms in a microscopic dipole trap[J]. Nature, 2001, 411(6841): 1024-1027.
[26] ENDRES M, BERNIEN H, KEESLING A, et al. Atom-by-atom assembly of defectfree one-dimensional cold atom arrays[J]. Science, 2016, 354(6315): 1024-1027.
[27] BARREDO D, DE LÉSÉLEUC S, LIENHARD V, et al. An atom-by-atomassembler of defect-free arbitrary two-dimensional atomic arrays[J]. Science, 2016, 354(6315): 1021 -1023.
[28] GAËTAN A, MIROSHNYCHENKO Y, WILK T, et al. Observation of collective excitation of two individual atoms in the Rydberg blockade regime[J]. Nature Physics, 2009, 5(2): 115-118.
[29] URBAN E, JOHNSON T A, HENAGE T, et al. Observation of Rydberg blockade between two atoms[J]. Nature Physics, 2009, 5(2): 110-114.
[30] WILK T, GAËTAN A, EVELLIN C, et al. Entanglement of two individual neutral atoms using rydberg blockade[J]. Physical Review Letters, 2010, 104(1): 010502.
[31] ISENHOWER L, URBAN E, ZHANG X L, et al. Demonstration of a neutral atomcontrolled-NOT quantum gate[J]. Physical Review Letters, 2010, 104(1): 010503.
[32] BLUVSTEIN D, LEVINE H, SEMEGHINI G, et al. A quantum processor based oncoherent transport of entangled atom arrays[J]. Nature, 2022, 604(7906): 451-456.
[33] GRAHAM T M, SONG Y, SCOTT J, et al. Multi-qubit entanglement and algorithms on a neutral-atom quantum computer[J]. Nature, 2022, 604(7906): 457- 462.
[34] BERNIEN H, SCHWARTZ S, KEESLING A, et al. Probing many-body dynamics on a 51-atom quantum simulator[J]. Nature, 2017, 551(7682): 579-584.
[35] SCHOLL P, SCHULER M, WILLIAMS H J, et al. Quantum simulation of 2D antiferromagnets with hundreds of Rydberg atoms[J]. Nature, 2021, 595(7866): 233-238.
[36] NORCIA M A, YOUNG A W, ECKNER W J, et al. Seconds-scale coherence on an optical clock transition in a tweezer array[J]. Science, 2019, 366(6461): 93-97.
[37] MADJAROV I S, COOPER A, SHAW A L, et al. An atomic-array optical clock with single-atom readout[J]. Physical Review X, 2019, 9(4): 041052.
[38] YOUNG A W, ECKNER W J, MILNER W R, et al. Half-minute-scale atomic coherence and high relative stability in a tweezer clock[J]. Nature, 2020, 588(7838): 408-413.
[39] BLOCH D, HOFER B, COHEN S R, et al. Trapping and imaging single dysprosium atoms in optical tweezer arrays[J]. Physical Review Letters, 2023, 131(20): 203401.
[40] TZAHI G, ANDREW H, MCGOVERN M, et al. Near-deterministic preparation of a single atom in an optical microtrap[J]. Nature Physics, 2010, 6(12): 951-954.
[41] CARPENTIER A V, FUNG Y H, SOMPET P, et al. Preparation of a single atom in an optical microtrap[J]. Laser Physics Letters, 2013, 10(12): 125501.
[42] LIU B, WANG J M, DIAO W T, et al. Nearly deterministic loading of a single cesium atom in a magneto-optical trap and in a microscopic optical tweezer by feedback control[C]. Proceedings of SPIE, 2014, 9136, 91362O.
[43] SCHYMIK K-N, PANCALDI S, NOGRETTE F, et al. Single atoms with 6000- second trapping lifetimes in optical-tweezer arrays at cryogenic temperatures[J]. Physical Review A, 2021, 16(3): 034013.
[44] BARREDO D, LIENHARD V, DE LÉSÉLEUC S, et al. Synthetic three- dimensional atomic structures assembled atom by atom[J]. Nature, 2018, 561(7721): 79-82.
[45] EBADI S, WANG T T, LEVINE H, et al. Quantum phases of matter on a 256-atom programmable quantum simulator[J]. Nature, 2021, 595(7866): 227-232.
[46] LEE W, KIM H, AHN J. Defect-free atomic array formation using the Hungarian matching algorithm[J]. Physical Review A, 2017, 95(5): 053424.
[47] SCHYMIK K-N, LIENHARD V, BARREDO D, et al. Enhanced atom-by-atom assembly of arbitrary tweezer arrays[J]. Physical Review A, 2020, 102(6): 063107.
[48] SINGH K, ANAND S, POCKLINGTON A, et al. Dual-element, two-dimensional atom array with continuous-mode operation[J]. Physical Review X, 2022, 12(1): 011040.
[49] SHENG C, HOU J Y, HE X D, et al. Defect-free arbitrary-geometry assembly of mixed-species atom arrays[J]. Physical Review Letters, 2022, 128(8): 083202.
[50] XIA T, LICHTMAN M, MALLER K, et al. Randomized benchmarking of single- qubit gates in a 2D array of neutral-atom qubits[J]. Physical Review Letters, 2015, 114(10): 100503.
[51] WANG Y, KUMAR A, WU T-Y, et al. Single-qubit gates based on targeted phase shifts in a 3D neutral atom array[J]. Science, 2016, 352(6293): 1562-1565.
[52] SHENG C, HE X D, XU P, et al. High-fidelity single-qubit gates on neutral atoms in a two-dimensional magic-intensity optical dipole trap array. Physical Review Letters, 2018, 121(24), 240501.
[53] NIKOLOV B, DIAMOND-HITCHCOCK E, BASS J, et al. Randomized benchmarking using non-destructive readout in a 2D atom array[J]. Physical Review Letters, 2023, 131(3): 030602.
[54] JAKSCH D, BRIEGEL H J, CIRAC J I, et al. Entanglement of atoms via cold controlled collisions[J]. Physical Review Letters, 1999, 82(9): 1975-1978.
[55] VOLZ J, WEBER M, SCHLENK D, et al. Observation of entanglement of a single photon with a trapped atom[J]. Physical Review Letters, 2006, 96(3): 030404.
[56] JAU Y Y, HANKIN A M, KEATING T, et al. Entangling atomic spins with a Rydberg- dressed spin-flip blockade[J]. Nature Physics, 2016, 12(1): 71-74.
[57] LEVINE H, KEESLING A, SEMEGHINI G, et al. Parallel implementation of highfidelity multiqubit gates with neutral atoms[J]. Physical Review Letters, 2019, 123(17): 170503.
[58] GRAHAM T M, KWON M, GRINKEMEYER B, et al. Rydberg-mediatedentanglement in a two-dimensional neutral atom qubit array[J]. Physical ReviewLetters, 2019, 123(23): 230501.
[59] DE LÉSÉLEUC S, BARREDO D, LIENHARD V, et al. Analysis of imperfections in the coherent optical excitation of single atoms to Rydberg states[J]. Physical Review A, 2018, 97(5): 053803.
[60] LEVINE H, KEESLING A, OMRAN A, et al. High-fidelity control and entanglement of Rydberg-atom qubits[J]. Physical Review Letters, 2018, 121(12): 123603.
[61] SAFFMAN M, BETEROV I I, DALAL A, et al. Symmetric Rydberg controlled-Z gates with adiabatic pulses[J]. Physical Review A, 2020, 101(6): 062309.
[62] EVERED S J, BLUVSTEIN D, KALINOWSKI M, et al. High-fidelity parallelentangling gates on a neutral-atom quantum[J]. Nature, 2023, 622(7982): 268-272.
[63] EBADI S, WANG T T, LEVINE H, et al. Quantum phases of matter on a 256-atom programmable quantum simulator[J]. Nature, 2021, 595(7866): 227-232.
[64] BLUVSTEIN D, EVERED S J, GEIM A A, et al. Logical quantum processor basedon reconfigurable atom arrays[J]. Nature, 2024, 626(7997): 58-65.
[65] COOPER A, COVEY J P, MADJAROV I S, et al. Alkaline-earth atoms in optical tweezers[J]. Physical Review X, 2018, 8(4): 041055.
[66] NORCIA M A, YOUNG A W, KAUFMAN A M. Microscopic control and detection of ultracold strontium in optical-tweezer arrays[J]. Physical Review X, 2018, 8(4): 041054.
[67] SASKIN S, WILSON J T, GRINKEMEYER B, et al. Narrow-line cooling and imaging of Ytterbium atoms in an optical tweezer array[J]. Physical Review Letters, 2019, 122(14): 143002.
[68] COVEY J P, MADJAROV I S, COOPER A, et al. 2000-times repeated imaging of strontium atoms in clock-magic tweezer arrays[J]. Physical Review Letters, 2019, 122(17): 173201.
[69] URECH A, KNOTTNERUS I H A, SPREEUW R J C, et al. Narrow-line imaging of single strontium atoms in shallow optical tweezers[J]. Physical Review Research, 2022, 4(2): 023245.
[70] MADJAROV I S, COOPER A, SHAW A L, et al. An atomic-array optical clock with single-atom readout[J]. Physical Review X, 2019, 9(4): 041052.
[71] NORCIA M A, YOUNG A W, ECKNER W J, et al. Seconds-scale coherence on an optical clock transition in a tweezer array[J]. Science, 2019, 366(6461): 93-97.
[72] MADJAROV I S, COVEY J P, SHAW A L, et al. High-fidelity entanglement and detection of alkaline-earth Rydberg atoms[J]. Nature Physics, 2020, 16(8): 857-861.
[73] SCHINE N, YOUNG A W, ECKNER W J, et al. Long-lived Bell states in an array of optical clock qubits[J]. Nature Physics, 2022, 18(9): 1067-1073.
[74] WILSON J T, SASKIN S, MENG Y, et al. Trapping alkaline earth Rydberg atoms optical tweezer arrays[J]. Physical Review Letters, 2022, 128(3): 033201.
[75] SCHOLL P, SHAW A L, TSAI R B-S, et al. Erasure conversion in a high-fidelity Rydberg quantum simulator[J]. Nature, 2023, 622(7982): 273-278.
[76] BARNES K, BATTAGLINO P, BLOOM B J, et al. Assembly and coherent control of a register of nuclear spin qubits[J]. Nature Communications, 2022, 13(1): 2779.
[77] MA S, BURGERS A P, LIU G, et al. Universal gate operations on nuclear spin qubits in an optical tweezer array of 17 1Yb atoms[J]. Physical Review X, 2022, 12(2): 021028.
[78] JENKINS A, LIS J W, SENOO A, et al. Ytterbium nuclear-spin qubits in an optical tweezer array[J]. Physical Review X, 2022, 12(2): 021027.
[79] MA S, LIU G, PENG P, et al. High-fidelity gates and mid-circuit erasure conversion in an atomic qubit[J]. Nature, 2023, 622(7982): 279-284.
[80] SANSONETTI J E, NAVE G. Wavelengths, transition probabilities, and energyatoms near the fermi temperature[J]. Physical Review Letters, 2003, 90(11):113002.
[82] 王义遒. 原子的激光冷却与囚禁[M]. 北京: 北京大学出版社, 2007: 90-110.
[83] LOFTUS T H, IDO T, BOYD M M, et al. Narrow line cooling and momentumlevels for the spectrum of neutral strontium (SrI)[J]. Journal of Physical andChemical Reference Data, 2010 , 39(3): 033103.
[81] MUKAIYAMA T, KATORI H, IDO T, et al. Recoil-limited laser cooling of 87Sr - space crystals[J]. Physical Review A, 2004, 70(6): 063413.
[84] STELLMER S. Degenerate quantum gases of strontium[D]. Tyrol: University of Innsbruck, PhD Thesis, 2013.
[85] MADISON K W, BONGS K, CARR L D, et al. Annual Review of Cold Atoms and Molecules: Volume 2[M]. Hong Kong: World Scientific Publishing Company, 2014: CHAPTER 1.
[86] NOSSKE I. Cooling and trapping of strontium atoms for quantum simulation using Rydberg states[D]. Hefei: University of Science and Technology of China, PhD Thesis, 2018.
[87] KIM H, LEE W, LEE H, et al. In situ single-atom array synthesis using dynamic holographic optical tweezers[J]. Nature communications, 2016, 7(1): 13317.
[88] AA Opto-Electronic. DTSX 1-axis Operating Manual[EB/OL].
[2016]. http://www.aaoptoelectronic.com/
[89] OMRAN A, LEVINE H, KEESLING A, et al. Generation and manipulation of Schrödinger cat states in Rydberg atom arrays-Supplementary Material[J]. Science, 2019, 365(6453): 570-574.
[90] SHENG C, HOU J Y, HE XD, et al. Efficient preparation of two-dimensionaldefect-free atom arrays with near-fewest sorting-atom moves[J]. Physical ReviewResearch, 2021, 3(2): 023008.
[91] TIAN W K, WEE W J, QU A, et al. Parallel assembly of arbitrary defect-free atom arrays with a multitweezer algorithm[J]. Physical Review Applied, 2023, 19(3): 034048.
[92] CIMRING B, SABEH R E, BACVANSKI M, et al, Efficient algorithms to solve atom reconfiguration problems. I. Redistribution-reconfiguration algorithm[J]. Physical Review A, 2023, 108(2): 023107.
[93] Analog Devices. AD9957: 1 GSPS Quadrature Digital Upconverter with 18-Bit I/Q Data Path and 14-Bit DAC Data Sheet[EB/OL] .
[2008-06-26]. https://www.analog.com/media/en/technical-documentation/data-sheets/ad9957.pdf
[94] ALINX. ARTIX-7 FPGA AX7103 Datasheet. [EB/OL].
[2023-09-08].file:///E:/FPGA/ AthisFPGA/AX7103_2019_1/.
[95] XILINX.DMA/Bridge Subsystem for PCI Express v4.1- Product Guide[EB/OL].
[2022-11-16]. https://www.xilinx.com/support/documents/ip_documentation/xdma/v41/pg195-pcie-dma.pdf.
[96] Ultra Librarian. ADM7172ACPZ-1.8-R7 datasheet[EB/OL].
[2019]. https://www. digikey.cn/zhs/models/5011543.
修改评论