中文版 | English
题名

考虑岩石破裂的FDEM热-水-力多场耦合数值模型研究

其他题名
COUPLED THERMO-HYDRO-MECHANICAL NUMERICAL MODELS IN FDEM CONSIDERING ROCK FRACTURING
姓名
姓名拼音
CAI Weibing
学号
12031254
学位类型
博士
学位专业
0801 力学
学科门类/专业学位类别
08 工学
导师
高科
导师单位
地球与空间科学系
论文答辩日期
2024-04-22
论文提交日期
2024-06-20
学位授予单位
南方科技大学
学位授予地点
深圳
摘要

近年来,为优化能源结构和推动“双碳”目标的实施,国家加大了对页岩气和地热能等非常规能源的开采力度。裂隙岩体作为非常规能源开采中一种常见的工程地质体,在温度场、渗流场和应力场等多场耦合作用下,岩石裂缝之间的相互搭接和贯通会导致其发生渐进失稳破坏。深入了解裂隙岩体在多场耦合作用下的动态破裂过程对非常规能源的高效开采至关重要。数值模拟由于具有成本低,快速和方便的特点已经被广泛应用到裂隙岩体的破坏分析中,其中有限元-离散元耦合方法(FDEM)结合了有限元和离散元的优点,在模拟裂隙岩体从连续到非连续的渐进破坏过程中展现出巨大的优势。然而,目前关于FDEM的多物理场耦合数值模型研究尚处于初步发展阶段,因此本文对FDEM的多场耦合算法进行补充和扩展,使其能够有效模拟多物理场下裂隙岩体的复杂破裂过程。本文的主要研究内容和成果如下:

①为了解决传统FDEM中采用固有内聚模型(Intrinsic Cohesive Zone Model, ICZM)导致的伪柔度问题(Artificial Compliance Problem)以及非固有内聚模型(Extrinsic Cohesive Zone Model, ECZM)带来的单元拓扑频繁更新问题,本文提出了一种节点绑定算法实现了岩石从连续到非连续的渐进破裂过程的模拟,并通过一系列算例分析验证了该算法的准确性。此外通过与传统FDEM进行计算效率对比发现提出的节点绑定算法能极大降低模型的计算成本。

②传统FDEM中用于处理裂纹面相互作用的接触模型中的接触势能对单元网格尺寸存在依赖性,本文提出了一种新的能量守恒的接触模型。该模型通过对接触面积直接求梯度即可获取接触力的大小和方向。提出的接触模型不仅能够保证块体在接触过程中的能量和动量守恒,还能有效处理角-角等复杂的动态接触问题。此外,通过与传统FDEM采用的Munjiza接触模型相比,本文提出的接触模型不仅能够消除接触力大小对网格尺寸的依赖性,还能避免特定情况下接触力大小和方向的跳跃问题。

③为了揭示岩石破裂过程中的失效机制,本文通过引入矩张量理论提出了一种与岩石破裂相关的声发射模拟新技术,实现了对声发射事件时空演化过程的准确捕捉。通过进行室内试验尺度的模型测试,本文修正宏观裂纹类型的判断准则,并进一步将其应用到岩石宏微观破裂机制的分析中。

④为了避免传统FDEM由于ICZM的使用,在模拟固体热传导过程中需引入额外的热交换系数,本文提出了一种节点绑定方案来确保固体介质在破裂之前热传导的连续性,同时通过更新与温度节点相关的主从节点链表映射关系来实现裂纹面的热阻效应。此外,本文在新提出的接触模型基础上考虑离散体之间的接触传热过程。从而建立了考虑固体热传导、热破裂和接触传热全过程的热-力耦合模型,同时将该模型应用于花岗岩的微观破裂模拟分析中。

⑤同样,为了避免传统FDEM由于ICZM的使用,在模拟岩石基质孔隙渗流过程中需引入额外的流体流量交换系数,本文亦提出了一种节点绑定方案来确保多孔介质在破裂之前孔隙渗流的连续性,同时在裂纹扩展过程中通过更新相关的主从节点链表映射关系来实现裂纹面两侧孔隙压力的非连续性。本文提出的水-力耦合模型同时考虑了岩石基质的孔隙渗流和裂纹中的裂隙渗流过程。本文基于提出的水-力耦合模型对花岗岩水力压裂过程中的微观破裂机理进行了探讨。

⑥结合上述提出的热-力耦合模型和水-力耦合模型,本文继续考虑了温度场和渗流场之间的耦合效应,建立了考虑岩石破裂过程的热-水-力(THM – Thermo-Hydro-Mechanical)多场耦合的数值模型。通过一些算例验证了THM模型的准确性。采用提出的THM模型探讨了低温低压流体注射诱发断层激活的机制,分析了考虑温度效应下的水力裂纹扩展规律,研究了地热能开采过程中的储层温度演化规律。

关键词
语种
中文
培养类别
独立培养
入学年份
2020
学位授予年份
2024-07
参考文献列表

[1] ABDELAZIZ A, ZHAO Q, GRASSELLI G. Grain based modelling of rocks using the combined finite-discrete element method[J]. Computers and Geotechnics, 2018, 103: 73-81.
[2] LISJAK A, LIU Q, ZHAO Q, et al. Numerical simulation of acoustic emission in brittle rocks by two-dimensional finite-discrete element analysis[J]. Geophysical Journal International, 2013, 195(1): 423-443.
[3] ABOAYANAH K R, POPOOLA A K, ABDELAZIZ A, et al. Effect of pre-existing cracks on thermal cracking of granitic rocks under confinement[J]. Geomechanics and Geophysics for Geo-Energy and Geo-Resources, 2022, 8(4): 126.
[4] 邹才能, 赵群, 丛连铸, 等.中国页岩气开发进展、潜力及前景[J]. 天然气工业, 2021, 41(01): 1-14.
[5] 胡东风, 魏志红, 李宇平, 等.四川盆地东南部地区复杂构造带深层页岩气勘探进展与突破[J]. 天然气工业, 2022, 42(8): 35-44.
[6] 赵文智, 贾爱林, 位云生, 等.中国页岩气勘探开发进展及发展展望[J]. 中国石油勘探, 2019, 1(25): 31-44.
[7] HU Y, GAN Q, HURST A, et al. Investigation of coupled hydro-mechanical modelling of hydraulic fracture propagation and interaction with natural fractures[J]. International Journal of Rock Mechanics and Mining Sciences, 2023, 169: 105418.
[8] KAR S, CHAUDHURI A, SINGH A, et al. Phase field method to model hydraulic fracturing in saturated porous reservoir with natural fractures[J]. Engineering Fracture Mechanics, 2023, 286: 109289.
[9] 亢方超, 唐春安, 李迎春, 等.增强地热系统研究现状:挑战与机遇 [J]. 工程科学学报, 2022, 44(10): 1767-1777.
[10] 张朋. 多场耦合作用下深部热储裂隙动态演化机制研究[D]. 吉林大学. 2022.
[11] 宋先知, 李根生, 王高升, 等.中深层地热能取热技术研究进展[J]. 科技导报, 2022, 40(20): 42-51.
[12] JEANNE P, RUTQVIST J, HARTLINE C, et al. Reservoir structure and properties from geomechanical modeling and microseismicity analyses associated with an enhanced geothermal system at The Geysers, California[J]. Geothermics, 2014, 51: 460-469.
[13] SEMBLAT J F. Modeling Seismic Wave Propagation and Amplification in 1D/2D/3D Linear and Nonlinear Unbounded Media[J]. International Journal of Geomechanics, 2011, 11(6): 440-448.
[14] RABCZUK T. Computational Methods for Fracture in Brittle and Quasi-Brittle Solids: State-of-the-Art Review and Future Perspectives[J]. ISRN Applied Mathematics, 2013, 2013: 1-38.
[15] SONG J-H, WANG H, BELYTSCHKO T. A comparative study on finite element methods for dynamic fracture[J]. Computational Mechanics, 2007, 42(2): 239-250.
[16] ZHANG Z, PAULINO G H, CELES W. Extrinsic cohesive modelling of dynamic fracture and microbranching instability in brittle materials[J]. International Journal for Numerical Methods in Engineering, 2007, 72(8): 893-923.
[17] CHEN L, LIU G R, NOURBAKHSH-NIA N, et al. A singular edge-based smoothed finite element method (ES-FEM) for bimaterial interface cracks[J]. Computational Mechanics, 2009, 45(2-3): 109-125.
[18] MOHAMMADNEJAD T, ANDRADE J E. Numerical modeling of hydraulic fracture propagation, closure and reopening using XFEM with application to in-situ stress estimation[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 2016, 40(15): 2033-2060.
[19] TANG C A, YANG W T, FU Y F. A new approach to numerical method of modelling geological processes and rock engineering problems -Continuum to discontinuum and linearity to nonlinearity[J]. Engineering Geology, 49(3-4): 207-214.
[20] USECHE J. Fracture Dynamic Analysis of Cracked Reissner Plates Using the Boundary Element Method[J]. International Journal of Solids and Structures, 2020, 191-192: 315-332.
[21] SONG C, OOI E T, NATARAJAN S. A review of the scaled boundary finite element method for two-dimensional linear elastic fracture mechanics[J]. Engineering Fracture Mechanics, 2018, 187: 45-73.
[22] MOHAMMADI ANAEI M T, KHOSRAVIFARD A, BUI T Q. Analysis of fracture mechanics and fatigue crack growth in moderately thick plates using an efficient meshfree approach[J]. Theoretical and Applied Fracture Mechanics, 2021, 113: 102943.
[23] PRAMANIK R, DEB D. SPH procedures for modeling multiple intersecting discontinuities in geomaterial[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 2015, 39(4): 343-367.
[24] LU W, LENG Z, CHEN M, et al. A modified model to calculate the size of the crushed zone around a blast-hole[J]. Journal of the Southern African Institute of Mining and Metallurgy, 2016, 116(5): 412-422.
[25] DEB D, PRAMANIK R. Failure Process of Brittle Rock Using Smoothed Particle Hydrodynamics[J]. Journal of Engineering Mechanics, 2013, 139(11): 1551-1565.
[26] KAKOURIS E G, TRIANTAFYLLOU S P. Material point method for crack propagation in anisotropic media: a phase field approach[J]. Archive of Applied Mechanics, 2017, 88(1-2): 287-316.
[27] KLINSMANN M, ROSATO D, KAMLAH M, et al. An assessment of the phase field formulation for crack growth[J]. Computer Methods in Applied Mechanics and Engineering, 2015, 294: 313-330.
[28] CUNDALL P A, STRACK O D L. A discrete numerical model for granular assemblies[J]. Geotechnique, 1979, 29(1): 47-65.
[29] XU W, CAO P. Fracture behaviour of cemented tailing backfill with pre-existing crack and thermal treatment under three-point bending loading: Experimental studies and particle flow code simulation[J]. Engineering Fracture Mechanics, 2018, 195: 129-141.
[30] DOU F, WANG J G, LEUNG C F, et al. The alterations of critical pore water pressure and micro-cracking morphology with near-wellbore fractures in hydraulic fracturing of shale reservoirs[J]. Engineering Fracture Mechanics, 2021, 242: 107481.
[31] LEE J, KIM K-I, MIN K-B, et al. TOUGH-UDEC: A simulator for coupled multiphase fluid flows, heat transfers and discontinuous deformations in fractured porous media[J]. Computers & Geosciences, 2019, 126: 120-130.
[32] ALSHKANE Y M, MARSHALL A M, STACE L R. Prediction of strength and deformability of an interlocked blocky rock mass using UDEC[J]. Journal of Rock Mechanics and Geotechnical Engineering, 2017, 9(3): 531-542.
[33] POTYONDY D O, CUNDALL P A. A bonded-particle model for rock[J]. International Journal of Rock Mechanics and Mining Sciences, 2004, 41(8): 1329-1364.
[34] ZHU X, FENG C, CHENG P, et al. A novel three-dimensional hydraulic fracturing model based on continuum–discontinuum element method[J]. Computer Methods in Applied Mechanics and Engineering, 2021, 383: 113887.
[35] WANG C, WANG S, CHEN G, et al. Implementation of a J-integral based Maximum Circumferential Tensile Stress theory in DDA for simulating crack propagation[J]. Engineering Fracture Mechanics, 2021, 246: 107621.
[36] CHOO L Q, ZHAO Z, CHEN H, et al. Hydraulic fracturing modeling using the discontinuous deformation analysis (DDA) method[J]. Computers and Geotechnics, 2016, 76: 12-22.
[37] HUANG L, LIU J, ZHANG F, et al. 3D lattice modeling of hydraulic fracture initiation and near-wellbore propagation for different perforation models[J]. Journal of Petroleum Science and Engineering 2020, 191: 107169.
[38] WEI X-D, NGUYEN N H T, BUI H H, et al. A modified cohesive damage-plasticity model for distinct lattice spring model on rock fracturing[J]. Computers and Geotechnics, 2021, 135: 104152.
[39] STEPANOVA L, BRONNIKOV S. A computational study of the mixed–mode crack behavior by molecular dynamics method and the multi – Parameter crack field description of classical fracture mechanics[J]. Theoretical and Applied Fracture Mechanics, 2020, 109: 102691.
[40] MUNJIZA A. The combined finite-discrete element method [M]. London: Wiley, 2004.
[41] SHI G H. Manifold Method of Material Analysis [C]; proceedings of the Transactions of the 9th Army Conference On Applied Mathematics and Computing, 1991, 1991.
[42] MA G W, AN X M, ZHANG H H, et al. Modeling complex crack problems using the numerical manifold method[J]. International Journal of Fracture, 2009, 156(1): 21-35.
[43] FAN H, HUANG D, WANG G. Cone-complementary manifold method for stability and failure analysis of jointed/fractured rock masses[J]. Computers and Geotechnics, 2021, 131: 103955.
[44] WU Z, JIANG Y, LIU Q, et al. Investigation of the excavation damaged zone around deep TBM tunnel using a Voronoi-element based explicit numerical manifold method[J]. International Journal of Rock Mechanics and Mining Sciences, 2018, 112: 158-170.
[45] LI G, WANG K, TANG C A, et al. An NMM-based fluid-solid coupling model for simulating rock hydraulic fracturing process[J]. Engineering Fracture Mechanics, 2020, 235: 107193.
[46] XU Y, YU C, LIU F, et al. A coupled NMM-SPH method for fluid-structure interaction problems[J]. Applied Mathematical Modelling, 2019, 76: 466-478.
[47] LI G, WANG K, GONG B, et al. A multi-temporal series high-accuracy numerical manifold method for transient thermoelastic fracture problems[J]. International Journal of Solids and Structures, 2021, 230-231: 111151.
[48] BAŽANT Z P, OHTSUBO H. Geothermal heat extraction by water circulation through a large crack in dry hot rock mass[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 1978, 2(4): 317-327.
[49] SUN Z-X, ZHANG X, XU Y, et al. Numerical simulation of the heat extraction in EGS with thermal-hydraulic-mechanical coupling method based on discrete fractures model[J]. Energy, 2017, 120: 20-33.
[50] HE R, RONG G, TAN J, et al. Numerical evaluation of heat extraction performance in enhanced geothermal system considering rough-walled fractures[J]. Renewable Energy, 2022, 188: 524-544.
[51] RUTQVIST J, JEANNE P, DOBSON P F, et al. The Northwest Geysers EGS Demonstration Project, California – Part 2: Modeling and interpretation[J]. Geothermics, 2016, 63: 120-138.
[52] PARK J-W, GUGLIELMI Y, GRAUPNER B, et al. Modeling of fluid injection-induced fault reactivation using coupled fluid flow and mechanical interface model[J]. International Journal of Rock Mechanics and Mining Sciences, 2020, 132: 104373.
[53] JACQUEY A B, CACACE M, BLöCHER G, et al. Thermo-poroelastic numerical modelling for enhanced geothermal system performance: Case study of the Groß Schönebeck reservoir[J]. Tectonophysics, 2016, 684: 119-130.
[54] KARRECH A, BELTAIEF O, VINCEC R, et al. Coupling of thermal-hydraulic-mechanical processes for geothermal reservoir modelling[J]. Journal of Earth Science, 2015, 26(1): 47-52.
[55] ZENG Y-C, WU N-Y, SU Z, et al. Numerical simulation of heat production potential from hot dry rock by water circulating through a novel single vertical fracture at Desert Peak geothermal field[J]. Energy, 2013, 63: 268-282.
[56] CHEN P, SUN J, LIN C, et al. Application of the finite volume method for geomechanics calculation and analysis on temperature dependent poromechanical stress and displacement fields in enhanced geothermal system[J]. Geothermics, 2021, 95: 102138.
[57] SAFARI R, GHASSEMI A. 3D thermo-poroelastic analysis of fracture network deformation and induced micro-seismicity in enhanced geothermal systems[J]. Geothermics, 2015, 58: 1-14.
[58] CUI X, WONG L N Y. A 3D thermo-hydro-mechanical coupling model for enhanced geothermal systems[J]. International Journal of Rock Mechanics and Mining Sciences, 2021, 143: 104744.
[59] JAFARI A, VAHAB M, BROUMAND P, et al. An eXtended finite element method implementation in COMSOL multiphysics: Thermo-hydro-mechanical modeling of fluid flow in discontinuous porous media[J]. Computers and Geotechnics, 2023, 159: 105458.
[60] LI S, ZHANG D. Three‐Dimensional Thermoporoelastic Modeling of Hydrofracturing and Fluid Circulation in Hot Dry Rock[J]. Journal of Geophysical Research: Solid Earth, 2023, 128(2): 1-30.
[61] ZHANG Y, YU S, DENG H. Peridynamic model of deformation and failure for rock material under the coupling effect of multi-physical fields[J]. Theoretical and Applied Fracture Mechanics, 2023, 125: 103912.
[62] CHENG P, ZHU H, ZHANG Y, et al. Coupled thermo-hydro-mechanical-phase field modeling for fire-induced spalling in concrete[J]. Computer Methods in Applied Mechanics and Engineering, 2022, 389: 114327.
[63] LI P, LI D, WANG Q, et al. Phase-field modeling of hydro-thermally induced fracture in thermo-poroelastic media[J]. Engineering Fracture Mechanics, 2021, 254: 107887.
[64] LIU X, LIU Q, LIU B, et al. Numerical manifold method for thermal–hydraulic coupling in fractured enhance geothermal system[J]. Engineering Analysis with Boundary Elements, 2019, 101: 67-75.
[65] JIAO K, HAN D, LI J, et al. A novel LBM-DEM based pore-scale thermal-hydro-mechanical model for the fracture propagation process[J]. Computers and Geotechnics, 2021, 139: 104418.
[66] DETOURNAY C, DAMJANAC B, TORRES M, et al. Heat advection and forced convection in a lattice code – Implementation and geothermal applications[J]. Rock Mechanics Bulletin, 2022, 1(1): 100004.
[67] PANDEY S N, VISHAL V, CHAUDHURI A. Geothermal reservoir modeling in a coupled thermo-hydro-mechanical-chemical approach: A review[J]. Earth-Science Reviews, 2018, 185: 1157-1169.
[68] JIANG H, CAI Z, ZHAO H. Numerical study of hard rock breakage under indenter impact by the hybrid FDEM[J]. Engineering Fracture Mechanics, 2020, 233(5): 107068.
[69] LISJAK A, MAHABADI O K, HE L, et al. Acceleration of a 2D/3D finite-discrete element code for geomechanical simulations using General Purpose GPU computing[J]. Computers and Geotechnics, 2018, 100: 84-96.
[70] KNIGHT E E, ROUGIER E, LEI Z, et al. HOSS: an implementation of the combined finite-discrete element method[J]. Computational Particle Mechanics, 2020, 7: 765-787.
[71] LIU H, KANG Y, LIN P. Hybrid finite–discrete element modeling of geomaterials fracture and fragment muck-piling[J]. International Journal of Geotechnical Engineering, 2015, 9(2): 115-131.
[72] LEI Q, LATHAM J-P, XIANG J. Implementation of an Empirical Joint Constitutive Model into Finite-Discrete Element Analysis of the Geomechanical Behaviour of Fractured Rocks[J]. Rock Mechanics and Rock Engineering, 2016, 49(12): 4799-4816.
[73] YAN C, ZHENG Y, KE W, et al. A FDEM 3D moisture migration-fracture model for simulation of soil shrinkage and desiccation cracking[J]. Computers and Geotechnics, 2021, 140: 104425.
[74] HAN H, FUKUDA D, LIU H, et al. Combined finite-discrete element modelling of rock fracture and fragmentation induced by contour blasting during tunnelling with high horizontal in-situ stress[J]. International Journal of Rock Mechanics and Mining Sciences, 2020, 127: 104214.
[75] WANG B, LI H, SHAO Z, et al. Investigating the mechanism of rock fracturing induced by high-pressure gas blasting with a hybrid continuum-discontinuum method[J]. Computers and Geotechnics, 2021, 140: 104445.
[76] LEI Q, GAO K. Correlation Between Fracture Network Properties and Stress Variability in Geological Media[J]. Geophysical Research Letters, 2018, 45(9): 3994-4006.
[77] LEI Q, GHOLIZADEH DOONECHALY N, TSANG C-F. Modelling fluid injection-induced fracture activation, damage growth, seismicity occurrence and connectivity change in naturally fractured rocks[J]. International Journal of Rock Mechanics and Mining Sciences, 2021, 138: 104598.
[78] HAN H, FUKUDA D, LIU H, et al. FDEM simulation of rock damage evolution induced by contour blasting in the bench of tunnel at deep depth[J]. Tunnelling and Underground Space Technology, 2020, 103: 103495.
[79] ZHAO Q, LISJAK A, MAHABADI O, et al. Numerical simulation of hydraulic fracturing and associated microseismicity using finite-discrete element method[J]. Journal of Rock Mechanics and Geotechnical Engineering, 2014, 6(6): 574-581.
[80] ZHAO Q, TISATO N, GRASSELLI G, et al. Influence ofin situstress variations on acoustic emissions: a numerical study[J]. Geophysical Journal International, 2015, 203(2): 1246-1252.
[81] YAN C, JIAO Y-Y, YANG S. A 2D coupled hydro-thermal model for the combined finite-discrete element method[J]. Acta Geotechnica, 2018, 14(2): 403-416.
[82] YAN C, XIE X, REN Y, et al. A FDEM-based 2D coupled thermal-hydro-mechanical model for multiphysical simulation of rock fracturing[J]. International Journal of Rock Mechanics and Mining Sciences, 2022, 149: 104964.
[83] XU X, WANG D, ZANG M, et al. Development of an intrinsic solid-shell cohesive zone model for impact fracture of windshield laminated glass[J]. International Journal of Impact Engineering, 2022, 163: 104187.
[84] TATONE B S A, GRASSELLI G. A calibration procedure for two-dimensional laboratory-scale hybrid finite–discrete element simulations[J]. International Journal of Rock Mechanics and Mining Sciences, 2015, 75: 56-72.
[85] DENG P, LIU Q, HUANG X, et al. FDEM numerical modeling of failure mechanisms of anisotropic rock masses around deep tunnels[J]. Computers and Geotechnics, 2021, 142: 104535.
[86] LISJAK A, GRASSELLI G, VIETOR T. Continuum–discontinuum analysis of failure mechanisms around unsupported circular excavations in anisotropic clay shales[J]. International Journal of Rock Mechanics and Mining Sciences, 2014, 65: 96-115.
[87] LIU Q, DENG P. A numerical investigation of element size and loading/unloading rate for intact rock in laboratory-scale and field-scale based on the combined finite-discrete element method[J]. Engineering Fracture Mechanics, 2019, 211: 442-462.
[88] MOHAMMADNEJAD M, LIU H, CHAN A, et al. An overview on advances in computational fracture mechanics of rock[J]. Geosystem Engineering, 2018, 24(4): 206-229.
[89] FUKUDA D, NIHEI E, CHO S-H, et al. Development of a Numerical Simulator for 3-D Dynamic Fracture Process Analysis of Rocks Based on Hybrid FEM-DEM Using Extrinsic Cohesive Zone Model[J]. Materials Transactions, 2020, 61(9): 1767-1774.
[90] GAO K, EUSER B J, ROUGIER E, et al. Modeling of Stick-Slip Behavior in Sheared Granular Fault Gouge Using the Combined Finite-Discrete Element Method[J]. Journal of Geophysical Research: Solid Earth, 2018, 123(7): 5774-5792.
[91] MUNJIZA A, ANDREWS K R F. NBS contact detection algorithm for bodies of similar size[J]. International Journal for Numerical Methods in Engineering, 1998, 43(1): 131-149.
[92] MUNJIZA A, KNIGHT E E, ROUGIER E. Computational Mechanics of Discontinua [M]. London: Willey, 2011.
[93] LEI Z, ROUGIER E, EUSER B, et al. A smooth contact algorithm for the combined finite discrete element method[J]. Computational Particle Mechanics, 2020, 7(5): 807-821.
[94] LIU X, MAO J, ZHAO L, et al. The distance potential function-based finite-discrete element method[J]. Computational Mechanics, 2020, 66(6): 1477-1495.
[95] ZHAO L, LIU X, MAO J, et al. A novel discrete element method based on the distance potential for arbitrary 2D convex elements[J]. International Journal for Numerical Methods in Engineering, 2018, 115(2): 238-267.
[96] 严成增.基于统一标定的势接触力计算[J]. 岩土力学, 2015, 36(1): 249-256.
[97] ZHAO L, LIU X, MAO J, et al. A Novel Contact Algorithm Based on a Distance Potential Function for the 3D Discrete-Element Method[J]. Rock Mechanics and Rock Engineering, 2018, 51(12): 3737-3769.
[98] LIU H, MA H, LIU Q, et al. An efficient and robust GPGPU-parallelized contact algorithm for the combined finite-discrete element method[J]. Computer Methods in Applied Mechanics and Engineering, 2022, 395: 114981.
[99] FENG Y T. An energy-conserving contact theory for discrete element modelling of arbitrarily shaped particles: Basic framework and general contact model[J]. Computer Methods in Applied Mechanics and Engineering, 2021, 373: 113454.
[100] FENG Y T, HAN K, OWEN D R J. Energy-conserving contact interaction models for arbitrarily shaped discrete elements[J]. Computer Methods in Applied Mechanics and Engineering, 2012, 205-208: 169-177.
[101] FENG Y T, HAN K, OWEN D R J. A generic contact detection framework for cylindrical particles in discrete element modelling[J]. Computer Methods in Applied Mechanics and Engineering, 2017, 315: 632-651.
[102] LOCKNER D. The role of acoustic emission in the study of rock fracture[J]. International Journal of Rock Mechanics and Mining Sciences, 1993, 30: 883-889.
[103] HANKS T C. Small Earthquakes, Tectonic Forces[J]. Sciences, 1992, 256(5062): 1430-1432.
[104] CAI M, KAISER P K, MORIOKA H, et al. FLAC/PFC coupled numerical simulation of AE in large-scale underground excavations[J]. International Journal of Rock Mechanics and Mining Sciences, 2007, 44(4): 550-564.
[105] LEI X, MASUDA K, NISHIZAWA O, et al. Detailed analysis of acoustic emission activity during catastrophic fracture of faults in rock[J]. Journal of Structural Geology, 2004, 26(2): 247-258.
[106] SUN W, WU S. A study of crack initiation and source mechanism in the Brazilian test based on moment tensor[J]. Engineering Fracture Mechanics, 2021, 246: 107622.
[107] JIANG S, HE M, LI X, et al. Modeling and estimation of hole-type flaws on cracking mechanism of SiC ceramics under uniaxial compression: A 2D DEM simulation[J]. Theoretical and Applied Fracture Mechanics, 2020, 105: 102398.
[108] CASTRO-FILGUEIRA U, ALEJANO L R, IVARS D M. Particle flow code simulation of intact and fissured granitic rock samples[J]. Journal of Rock Mechanics and Geotechnical Engineering, 2020, 12(5): 960-974.
[109] TANG C. Numerical simulation of progressive rock failure and associated seismicity[J]. International Journal of Rock Mechanics and Mining Sciences, 1997, 34: 249-261.
[110] FENG X-T, PAN P-Z, ZHOU H. Simulation of the rock microfracturing process under uniaxial compression using an elasto-plastic cellular automaton[J]. International Journal of Rock Mechanics and Mining Sciences, 2006, 43(7): 1091-1108.
[111] FERGUEN N, MEBDOUA-LAHMAR Y, LAHMAR H, et al. DEM model for simulation of crack propagation in plasma-sprayed alumina coatings[J]. Surface and Coatings Technology, 2019, 371: 287-297.
[112] HAZZARD J F, YOUNG R P. Simulating acoustic emissions in bonded-particle models of rock[J]. International Journal of Rock Mechanics and Mining Sciences, 2000, 37: 867-872.
[113] CHONG Z, LI X, HOU P, et al. Moment tensor analysis of transversely isotropic shale based on the discrete element method[J]. International Journal of Mining Science and Technology, 2017, 27(3): 507-515.
[114] HAZZARD J F, YOUNG R P. Moment tensors and micromechanical models[J]. Tectonophysics, 2002, 356: 181-197.
[115] MUNJIZA A, LEI Z, DIVIC V, et al. Fracture and fragmentation of thin shells using the combined finite-discrete element method[J]. International Journal for Numerical Methods in Engineering, 2013, 95(6): 478-498.
[116] WONG L N Y, EINSTEIN H H. Crack Coalescence in Molded Gypsum and Carrara Marble: Part 2—Microscopic Observations and Interpretation[J]. Rock Mechanics and Rock Engineering, 2009, 42(3): 513-545.
[117] DOZ G N, RIERA J D. Towards the numerical simulation of seismic excitation[J]. Nuclear Engineering and Design, 2000, 196(3): 253-261.
[118] YAN C, ZHENG H. A coupled thermo-mechanical model based on the combined finite-discrete element method for simulating thermal cracking of rock[J]. International Journal of Rock Mechanics and Mining Sciences, 2017, 91: 170-178.
[119] SUN L, LIU Q, GRASSELLI G, et al. Simulation of thermal cracking in anisotropic shale formations using the combined finite-discrete element method[J]. Computers and Geotechnics, 2020, 117: 103237.
[120] WANG Z, LIU Q, WANG Y. Thermo-mechanical FDEM model for thermal cracking of rock and granular materials[J]. Powder Technology, 2021, 393: 807-823.
[121] YAN C, ZHENG Y, HUANG D, et al. A coupled contact heat transfer and thermal cracking model for discontinuous and granular media[J]. Computer Methods in Applied Mechanics and Engineering, 2021, 375: 113587.
[122] YAN C, WANG X, HUANG D, et al. A new 3D continuous-discontinuous heat conduction model and coupled thermomechanical model for simulating the thermal cracking of brittle materials[J]. International Journal of Solids and Structures, 2021, 229: 111123.
[123] YAN C, YANG Y, WANG G. A new 2D continuous-discontinuous heat conduction model for modeling heat transfer and thermal cracking in quasi-brittle materials[J]. Computers and Geotechnics, 2021: 104231.
[124] YAN C, ZHENG H. A two-dimensional coupled hydro-mechanical finite-discrete model considering porous media flow for simulating hydraulic fracturing[J]. International Journal of Rock Mechanics and Mining Sciences, 2016, 88: 115-128.
[125] LISJAK A, KAIFOSH P, HE L, et al. A 2D, fully-coupled, hydro-mechanical, FDEM formulation for modelling fracturing processes in discontinuous, porous rock masses[J]. Computers and Geotechnics, 2017, 81: 1-18.
[126] YAN C, JIAO Y-Y. A 2D fully coupled hydro-mechanical finite-discrete element model with real pore seepage for simulating the deformation and fracture of porous medium driven by fluid[J]. Computers and Structures, 2018, 196: 311-326.
[127] LEI Z, ROUGIER E, MUNJIZA A, et al. Simulation of discrete cracks driven by nearly incompressible fluid via 2D combined finite‐discrete element method[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 2019, 43(9): 1724-1743.
[128] YAN C, FAN H, HUANG D, et al. A 2D mixed fracture–pore seepage model and hydromechanical coupling for fractured porous media[J]. Acta Geotechnica, 2021, 16: 3061-3086.
[129] YAN C, GUO H, TANG Z. Three-dimensional continuous-discrete pore-fracture mixed seepage model and hydro-mechanical coupling model to simulate hydraulic fracturing[J]. Geoenergy Science and Engineering, 2022, 215: 110510.
[130] DUAN K, LI X, KWOK C-Y, et al. Modeling the orientation- and stress-dependent permeability of anisotropic rock with particle-based discrete element method[J]. International Journal of Rock Mechanics and Mining Sciences, 2021, 147: 104884.
[131] WU Z, CUI W, WENG L, et al. A 2D FDEM-based THM coupling scheme for modeling deformation and fracturing of the rock mass under THM effects[J]. Computers and Geotechnics, 2022, 152: 105019.
[132] WU Z, CUI W, WENG L, et al. Modeling Geothermal Heat Extraction-Induced Potential Fault Activation by Developing an FDEM-Based THM Coupling Scheme[J]. Rock Mechanics and Rock Engineering, 2023, 56: 3279–3299.
[133] ZHAO Q, GLASER S D, LISJAK A, et al. Numerical Simulation of Fault Slip During Geothermal Energy Extraction [C]; proceedings of the 54th US Rock Mechanics/Geomechanics Symposium, 2020. ARMA-2020-1388.
[134] LISJAK A, MAHABADI O K, HE L, et al. A Fully-Coupled, Thermo-Hydro-Mechanical Modelling Logic for a GPU-Accelerated, Finite-Discrete Element Method Code [C]; proceedings of the 54th US Rock Mechanics/Geomechanics Symposium, 2020. ARMA-2020-1839.
[135] JU Y, LIU P, CHEN J, et al. CDEM-based analysis of the 3D initiation and propagation of hydrofracturing cracks in heterogeneous glutenites[J]. Gas Science and Engineering, 2016, 35: 614-623.
[136] SAM C-H, PAPOULIA K D, VAVASIS S A. Obtaining initially rigid cohesive finite element models that are temporally convergent[J]. Engineering Fracture Mechanics, 2005, 72(14): 2247-2267.
[137] PAPOULIA K D, SAM C-H, VAVASIS S A. Time continuity in cohesive finite element modeling[J]. International Journal for Numerical Methods in Engineering, 2003, 58(5): 679-701.
[138] FUKUDA D, LIU H, ZHANG Q, et al. Modelling of dynamic rock fracture process using the finite-discrete element method with a novel and efficient contact activation scheme[J]. International Journal of Rock Mechanics and Mining Sciences, 2021, 138: 104645.
[139] XU X P, NEEDLEMAN A. Void nucleation by inclusion debonding in a crystal matrix[J]. Modelling and Simulation in Materials Science and Engineering, 1993, 1(2): 111-132.
[140] CAMACHO G T, ORTIZ M. Computational modelling of impact damage in brittle materials[J]. International Journal of Solids and Structures, 1996, 33(20): 2899-2938.
[141] LEI Z, ROUGIER E, KNIGHT E E, et al. Impact Fracture and Fragmentation of Glass via the 3D Combined Finite-Discrete Element Method[J]. Applied Sciences, 2021, 11(6): 2484.
[142] MUNJIZA A, ANDREWS K R F, WHITE J K. Combined single and smeared crack model in combined finite-discrete element analysis[J]. International Journal for Numerical Methods in Engineering, 1999, 44(1): 41-57.
[143] TIMOSHENKO S P, GOODIER J N. Theory of Elasticity[J]. International Journal of Applied Mechanics, 1970, 37(3): 888.
[144] BROWN W, SRAWLEY J. Plane strain crack toughness testing of high strength metallic materials [M]. Plane strain crack toughness testing of high strength metallic materials. ASTM International. 1966.
[145] AN H, SONG Y, LIU H, et al. FDEM Modelling of Rock Fracture Process during Three-Point Bending Test under Quasistatic and Dynamic Loading Conditions[J]. Shock and Vibration, 2021, 2021: 1-21.
[146] MOëS N, STOLZ C, BERNARD P E, et al. A level set based model for damage growth: The thick level set approach[J]. International Journal for Numerical Methods in Engineering, 2011, 86(3): 358-380.
[147] MOLNáR G, GRAVOUIL A. 2D and 3D Abaqus implementation of a robust staggered phase-field solution for modeling brittle fracture[J]. Finite Elements in Analysis and Design, 2017, 130: 27-38.
[148] XU Z, XIE W. Phase-field model for brittle fracture based on the inner-element edge-based smoothed finite method (IES-FEM)[J]. Engineering Fracture Mechanics, 2021, 254: 107919.
[149] WONG L N Y, EINSTEIN H H. Systematic evaluation of cracking behavior in specimens containing single flaws under uniaxial compression[J]. International Journal of Rock Mechanics and Mining Sciences, 2009, 46(2): 239-249.
[150] ZHANG X-P, WONG L N Y. Cracking Processes in Rock-Like Material Containing a Single Flaw Under Uniaxial Compression: A Numerical Study Based on Parallel Bonded-Particle Model Approach[J]. Rock Mechanics and Rock Engineering, 2011, 45(5): 711-737.
[151] FAN J, TADMOR E B. Rescaling cohesive element properties for mesh independent fracture simulations[J]. Engineering Fracture Mechanics, 2019, 213: 89-99.
[152] GHOSH G, DUDDU R, ANNAVARAPU C. A stabilized finite element method for enforcing stiff anisotropic cohesive laws using interface elements[J]. Computer Methods in Applied Mechanics and Engineering, 2019, 348: 1013-1038.
[153] FUKUDA D, MOHAMMADNEJAD M, LIU H, et al. Development of a 3D Hybrid Finite-Discrete Element Simulator Based on GPGPU-Parallelized Computation for Modelling Rock Fracturing Under Quasi-Static and Dynamic Loading Conditions[J]. Rock Mechanics and Rock Engineering, 2019, 53(3): 1079-1112.
[154] BORST R D, REMMERS J J C, NEEDLEMAN A. Mesh-independent discrete numerical representations of cohesive-zone models[J]. Engineering Fracture Mechanics, 2006, 73(2): 160-177.
[155] ZHOU X, CHEN J. Extended finite element simulation of step-path brittle failure in rock slopes with non-persistent en-echelon joints[J]. Engineering Geology, 2019, 250: 65-88.
[156] HATZOR Y H, ARZI A A, ZASLAVSKY Y, et al. Dynamic stability analysis of jointed rock slopes using the DDA method: King Herod's Palace, Masada, Israel[J]. International Journal of Rock Mechanics and Mining Sciences, 2004, 41(5): 813-832.
[157] REGASSA B, XU N, MEI G. An equivalent discontinuous modeling method of jointed rock masses for DEM simulation of mining-induced rock movements[J]. International Journal of Rock Mechanics and Mining Sciences, 2018, 108: 1-14.
[158] WU W, ZHU H, LIN J-S, et al. Tunnel stability assessment by 3D DDA-key block analysis[J]. Tunnelling and Underground Space Technology, 2018, 71: 210-214.
[159] FENG Y. A generic energy‐conserving discrete element modeling strategy for concave particles represented by surface triangular meshes[J]. International Journal for Numerical Methods in Engineering, 2021, 122(10): 2581-2597.
[160] FENG Y T. An energy-conserving contact theory for discrete element modelling of arbitrarily shaped particles: Contact volume based model and computational issues[J]. Computer Methods in Applied Mechanics and Engineering, 2021, 373: 113493.
[161] FENG Y T, OWEN D R J. A 2D polygon/polygon contact model: algorithmic aspects[J]. Engineering Computations, 2004, 21(2): 265-277.
[162] EUSER B, ROUGIER E, LEI Z, et al. Simulation of Fracture Coalescence in Granite via the Combined Finite–Discrete Element Method[J]. Rock Mechanics and Rock Engineering, 2019, 52(9): 3213-3227.
[163] MAHABADI O K, LISJAK A, MUNJIZA A, et al. Y-Geo: New Combined Finite-Discrete Element Numerical Code for Geomechanical Applications[J]. International Journal of Geomechanics, 2012, 12(6): 676-688.
[164] ITASCA. PFC2D Particle Flow Code in 2 Dimensions [M]. Minneapolis, 2010.
[165] DENG P, LIU Q, HUANG X, et al. Acquisition of normal contact stiffness and its influence on rock crack propagation for the combined finite-discrete element method (FDEM)[J]. Engineering Fracture Mechanics, 2021, 242: 107459.
[166] DENG P, LIU Q, HUANG X, et al. Sensitivity analysis of fracture energies for the combined finite-discrete element method (FDEM)[J]. Engineering Fracture Mechanics, 2021, 251: 107793.
[167] YAN C Z, ZHENG H. A new potential function for the calculation of contact forces in the combined finite-discrete element method[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 2017, 41(2): 265-283.
[168] SUN L, LIU Q, ABDELAZIZ A, et al. Simulating the entire progressive failure process of rock slopes using the combined finite-discrete element method[J]. Computers and Geotechnics, 2022, 141: 104557.
[169] SITAR N, MACLAUGHLIN M, TECH M. Kinematics and Discontinuous Deformation Analysis of Landslide Movement [C]; proceedings of the Panamerican Symposium on Landslides, 1997.
[170] WEI W, ZHAO Q, JIANG Q, et al. A New Contact Formulation for Large Frictional Sliding and Its Implement in the Explicit Numerical Manifold Method[J]. Rock Mechanics and Rock Engineering, 2019, 53(1): 435-451.
[171] ZHENG W, ZHUANG X, TANNANT D D, et al. Unified continuum/discontinuum modeling framework for slope stability assessment[J]. Engineering Geology, 2014, 179: 90-101.
[172] BACKUS G E. Interpreting the seismic glut moments of total degree two or less[J]. Geophysical Journal of the Royal Astronomical Society, 1977, (51): 1-25.
[173] HANKS T C, KANAMORI H. A moment magnitude scale[J]. Journal of Geophysical Research, 1979, 84(B5): 2348-2351.
[174] SILVER P G, JORDAN T H. Optimal estimation of scalar seismic moment[J]. Geophysical Journal International, 1982, 70(3): 755-787.
[175] VAVRYČUK V. Moment tensor decompositions revisited[J]. Journal of Seismology, 2014, 19(1): 231-252.
[176] OHTSU M. Acoustic Emission Theory for Moment Tensor Analysis[J]. Research in Nondestructive Evaluation, 1995, 6(3): 169-184.
[177] FEIGNIER B, YOUNG R P. Moment tensor inversion of induced microseisnmic events: Evidence of non-shear failures in the -4 < M < -2 moment magnitude range[J]. Geophysical Research Letters, 1992, 19(14): 1503-1506.
[178] ZHANG X-P, ZHANG Q. Distinction of Crack Nature in Brittle Rock-Like Materials: A Numerical Study Based on Moment Tensors[J]. Rock Mechanics and Rock Engineering, 2017, 50(10): 2837-2845.
[179] ZHAO Y, ZHAO G, ZHOU J, et al. Failure mechanism analysis of rock in particle discrete element method simulation based on moment tensors[J]. Computers and Geotechnics, 2021, 136: 104215.
[180] JOST M L, HERRMANN R B. A Student’s Guide to and Review of Moment Tensors[J]. Seismological Research Letters, 1989, 60(2): 37-57.
[181] LIU Q, JIANG Y, WU Z, et al. Numerical modeling of acoustic emission during rock failure process using a Voronoi element based – explicit numerical manifold method[J]. Tunnelling and Underground Space Technology, 2018, 79: 175-189.
[182] GUTENBERG B, RICHTER C F. Earthquake magnitude, intensity, energy, and acceleration[J]. Bulletin of the Seismological Society of America, 1942, 32(3): 163-191.
[183] HE T-M, ZHAO Q, HA J, et al. Understanding progressive rock failure and associated seismicity using ultrasonic tomography and numerical simulation[J]. Tunnelling and Underground Space Technology, 2018, 81: 26-34.
[184] AKI K. Maximum likelihood estimate of b in the formula log N = a - bM and its confidence limits[J]. Bull Earthq Res Inst, 1965, 43: 237-239.
[185] WOESSNER J, WIEMER S. Assessing the quality of earthquake catalogues: Estimating the magnitude of completeness and its uncertainty[J]. Bulletin of the Seismological Society of America, 2005, 95(2): 684-698.
[186] GUTENBERG B. The energy of earthquakes[J]. Quarterly Journal of the Geological Society, 1956, 112(1-4): 1-14.
[187] EINSTEIN H H. Fractures: Tension and Shear[J]. Rock Mechanics and Rock Engineering, 2021, 54(7): 3389-3408.
[188] NASSERI M H B, TATONE B S A, GRASSELLI G, et al. Fracture Toughness and Fracture Roughness Interrelationship in Thermally treated Westerly Granite[J]. Pure and Applied Geophysics, 2009, 166(5): 801-822.
[189] HUDSON J A, COSGROVE J W, KEMPPAINEN K, et al. Faults in crystalline rock and the estimation of their mechanical properties at the Olkiluoto site, western Finland[J]. Engineering Geology, 2011, 117(3): 246-258.
[190] CAI W, GAO K, AI S, et al. Implementation of extrinsic cohesive zone model (ECZM) in 2D finite-discrete element method (FDEM) using node binding scheme[J]. Computers and Geotechnics, 2023, 159: 105470.
[191] JOULIN C, XIANG J, LATHAM J-P. A novel thermo-mechanical coupling approach for thermal fracturing of rocks in the three-dimensional FDEM[J]. Computational Particle Mechanics, 2020, 7(5): 935-946.
[192] TAO S, TANG X, RUTQVIST J, et al. Simulating three dimensional thermal cracking with TOUGH-FEMM[J]. Computers and Geotechnics, 2020, 124: 103654.
[193] LI L, TANG C, TANG S, et al. Damage coupled thermo-mechanical model for rock failure process and applications[J]. Lixue Xuebao/Chinese Journal of Theoretical and Applied Mechanics, 2006, 38(4): 505-513.
[194] CRANK J. The mathematics of diffusion [M]. Oxford, UK: Oxford university press, 1975.
[195] ABDALLA H. Concrete cover requirements for FRP reinforced members in hot climates[J]. Composite Structures, 2006, 73(1): 61-69.
[196] YAN C, FAN H, ZHENG Y, et al. Simulation of the thermal shock of brittle materials using the finite-discrete element method[J]. Engineering Analysis with Boundary Elements, 2020, 115: 142-155.
[197] JIANG C P, WU X F, LI J, et al. A study of the mechanism of formation and numerical simulations of crack patterns in ceramics subjected to thermal shock[J]. Acta Materialia, 2012, 60(11): 4540-4550.
[198] WANG Y, ZHOU X, KOU M. An improved coupled thermo-mechanic bond-based peridynamic model for cracking behaviors in brittle solids subjected to thermal shocks[J]. European Journal of Mechanics - A/Solids, 2019, 73: 282-305.
[199] LIU Y, WU X, GUO Q, et al. Experiments and numerical simulations of thermal shock crack patterns in thin circular ceramic specimens[J]. Ceramics International, 2015, 41(1): 1107-1114.
[200] WANG Y, ZHOU X, KOU M. A coupled thermo-mechanical bond-based peridynamics for simulating thermal cracking in rocks[J]. International Journal of Fracture, 2018, 211(1-2): 13-42.
[201] CARLSON S R, JANSEN D P, YOUNG R P. Thermally induced fracturing of lac du bonnet granite [R]. Kingston, Canada: Eng Seismol Lab: Queen's University, 1993.
[202] XIA M, ZHAO C, HOBBS B E. Particle simulation of thermally-induced rock damage with consideration of temperature-dependent elastic modulus and strength[J]. Computers and Geotechnics, 2014, 55: 461-473.
[203] YAN C, JIAO Y-Y. A 2D discrete heat transfer model considering the thermal resistance effect of fractures for simulating the thermal cracking of brittle materials[J]. Acta Geotechnica, 2019, 15(5): 1303-1319.
[204] QUEY R, DAWSON P R, BARBE F. Large-scale 3D random polycrystals for the finite element method: Generation, meshing and remeshing[J]. Computer Methods in Applied Mechanics and Engineering, 2011, 200(17-20): 1729-1745.
[205] YU S, REN X, ZHANG J, et al. An Improved Smoothed Particle Hydrodynamics Method and Its Application in Rock Hydraulic Fracture Modelling[J]. Rock Mechanics and Rock Engineering, 2021, 54(12): 6039-6055.
[206] CAI W, LI Y, WANG K. Crack propagation mechanism of rock-like specimens containing non-parallel flaws subjected to internal hydraulic pressure and shear loading[J]. Theoretical and Applied Fracture Mechanics, 2022, 119: 103350.
[207] NAGEL N B, SANCHEZ-NAGEL M A, ZHANG F, et al. Coupled Numerical Evaluations of the Geomechanical Interactions Between a Hydraulic Fracture Stimulation and a Natural Fracture System in Shale Formations[J]. Rock Mechanics and Rock Engineering, 2013, 46(3): 581-609.
[208] BERKOWITZ B. Characterizing flow and transport in fractured geological media: A review[J]. Advances in Water Resources, 2002, 25(8): 861-884.
[209] FJæR E, HOLT R, HORSRUD P, et al. Petroleum Related Rock Mechanics [M]. Elsevier, 2008.
[210] CARLSLAW H, JAEGER J. Conduction of Heat in Solids [M]. America: Oxford University Press, 1959.
[211] MA P. Study on damage and seepage characteristics of fractured rock mass by peridynamic method[D]. Jinan, China. Shandong University. 2022.
[212] LIU D, SHEN Z, XU L, et al. Experimental study on critical internal water pressure of hydraulic fracturing of fractured rock mass[J]. South North Water Transf Water Sci Technol, 2018, 16(02): 140-145.
[213] PAUL B, FAIVRE M, MASSIN P, et al. 3D coupled HM–XFEM modeling with cohesive zone model and applications to non planar hydraulic fracture propagation and multiple hydraulic fractures interference[J]. Computer Methods in Applied Mechanics and Engineering, 2018, 342: 321-353.
[214] YOON J S, ZIMMERMANN G, ZANG A. Numerical investigation on stress shadowing in fluid injection-induced fracture propagation in naturally fractured geothermal reservoirs[J]. Rock Mechanics and Rock Engineering, 2015, 48: 1439-1454.
[215] DUAN K, LI Y, YANG W. Discrete element method simulation of the growth and efficiency of multiple hydraulic fractures simultaneously-induced from two horizontal wells[J]. Geomechanics and Geophysics for Geo-Energy and Geo-Resources, 2020, 7(1): 3.
[216] KONG L, RANJITH P G, LI Q B, et al. Rock grain-scale mechanical properties influencing hydraulic fracturing using Hydro-GBM approach[J]. Engineering Fracture Mechanics, 2022, 262: 108227.
[217] GEREMIA D, DAVID C, DESCAMPS F, et al. Water-Induced Damage in Microporous Carbonate Rock by Low-Pressure Injection Test[J]. Rock Mechanics and Rock Engineering, 2021, 54(10): 5185-5206.
[218] KIM K-H, REE J-H, KIM Y, et al. Assessing whether the 2017 Mw 5.4 Pohang earthquake in South Korea was an induced event[J]. Science, 2018, 360(6392): 1007-1009.
[219] ZHAO Y, FENG Z, FENG Z, et al. THM (Thermo-hydro-mechanical) coupled mathematical model of fractured media and numerical simulation of a 3D enhanced geothermal system at 573 K and buried depth 6000–7000 M[J]. Energy, 2015, 82: 193-205.
[220] LAUWERIER H A. The transport of heat in an oil layer caused by the injection of hot fluid[J]. Applied Scientific Research, Section A, 1955, 5(2): 145-150.
[221] 郭彤楼, 熊亮, 雷炜, 等.四川盆地南部威荣,永川地区深层页岩气勘探开发进展,挑战与思考[J]. 天然气工业, 2022, 42(8): 45-59.
[222] 殷鹏飞. 川南龙马溪组页岩力学特性及水力压裂机理研究[D]. 中国矿业大学. 2020.
[223] 崔景伟, 侯连华, 朱如凯, 等.鄂尔多斯盆地延长组长7页岩层段岩石热导率特征及启示[J]. 石油实验地质, 2019, 41(2): 280-289.
[224] 王允腾. 岩体热-水-化-力耦合近场动力学模型及数值模拟研究[D]. 重庆大学. 2019.

所在学位评定分委会
力学
国内图书分类号
O39
来源库
人工提交
成果类型学位论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/765784
专题南方科技大学
理学院_地球与空间科学系
推荐引用方式
GB/T 7714
蔡卫兵. 考虑岩石破裂的FDEM热-水-力多场耦合数值模型研究[D]. 深圳. 南方科技大学,2024.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可 操作
12031254-蔡卫兵-地球与空间科学(16907KB)----限制开放--请求全文
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[蔡卫兵]的文章
百度学术
百度学术中相似的文章
[蔡卫兵]的文章
必应学术
必应学术中相似的文章
[蔡卫兵]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。