中文版 | English
题名

高压下低维金属卤化物激子发光性质调控研究

其他题名
EXCITONIC EMISSION PROPERTY REGULATION OF LOW-DIMENSIONAL METAL HALIDES UNDER HIGH PRESSURE
姓名
姓名拼音
XU Bin
学号
12131202
学位类型
博士
学位专业
0702 物理学
学科门类/专业学位类别
07 理学
导师
权泽卫
导师单位
化学系
论文答辩日期
2024-05-10
论文提交日期
2024-06-21
学位授予单位
南方科技大学
学位授予地点
深圳
摘要

低维金属卤化物具有高效的激子发光特性,在高性能显示、人造光源、辐射探测等领域都展现出极大的应用前景与研究价值。低维金属卤化物材料的激子发光特性与其结构维度紧密相关,主要存在两种本征的激子发光类型:窄带的自由激子发射和宽带的自陷态激子发射。其中,自陷态激子发射又可以根据发射能量的相对高低,进一步分为高能量的单重态发射和低能量的三重态发射。目前,虽然可以通过化学合成手段对低维金属卤化物的结构和激子发光性质进行一定程度的调控,但尚且无法全面系统地揭示其激子发光调控的内在机制并实现不同发光机制之间的相互转化。基于金刚石对顶砧的静态高压技术可以在不改变原有材料组分的情况下,连续地对材料的结构和性质进行精准的调控。因此,高压技术作为一种理想的研究手段,可以对低维金属卤化物的结构和激子发光性质实现可控调节,并深入揭示其晶体结构变化及对激子发光性质的影响机制。

本论文围绕低维金属卤化物材料,分别选取具有自陷态激子发射及自由激子发射和自陷态激子发射共存的材料体系,综合利用高压研究手段,实现对其结构和激子发光特性的调控,并对其内在光物理机制和结构-性质关系进行分析。对于仅存在自陷态激子三重态发射的低维金属卤化物体系,本文主要对其激发依赖发射特性开展研究。零维金属卤化物Cs2InBr5(H2O)虽然在常压下表现出不依赖于激发能量的自陷态激子发射,但在压力引发相变后,其无机发光单元 InBr5O 产生相当大的结构扭曲并生成新的自陷态激子发射,导致Cs2InBr5(H2O)在高压下表现出反激发依赖的特性。类似地,在混合卤素的零维金属卤化物(C4N2H14Br)4SnBr3I3中,具有不同配位环境的SnX6 (X = Br, I)发光单元为其在低温和高压下产生激发依赖发射响应提供了结构基础。这些发光单元在高压下不同程度的结构扭曲进一步引起了其中可以通过压力调控的激发依赖发射现象。

基于对自陷态激子发射特性的深入理解,进一步探索了低维金属卤化物中自陷态激子发射与自由激子发射之间相互转变的光物理机制及内在的结构-性质关系。在具有一定无机带宽度的准一维金属卤化物(C2H10N2)8[Pb4Br18]∙6Br中,通过压力提高了其电子维度并引发激子的离域,使其从常压下的自陷态激子发光完全转变为高压下的自由激子发光。压力一方面提高了自陷态子的能量,促进了其脱陷过程;另一方面减小了沿无机带方向载流子的有效质量,并改善了构成带边的电子轨道的连接性,有利于脱陷后的激子在晶格内发生迁移并在带边附近发生辐射复合,形成自由激子发射。这一过程清晰地展示了低维金属卤化物中不同激子发射类型之间相互转变的光物理机制。此外,在对自由激子发射和自陷态激子发射共存的二维金属卤化物(C4H12NO)2PbBr4的高压研究中,实现了其中自由激子发射和自陷态激子发射之间多次的相互转变,并结合高压结构表征,揭示了其产生不同类型激子发射的结构基础。压力引起(C4H12NO)2PbBr4的结构相变,减小了其无机层内近邻Pb构成的四边形的内角差。在此过程中,(C4H12NO)2PbBr4的自陷态激子发射强度显著降低,显示出明显的结构相关性。最后通过(C4H12NO)2PbBr4在低温下激子发光特性和结构特征关系的对比研究,再次验证了上述结构-性质关系在二维金属卤化物中的适用性。

其他摘要

Low-dimensional metal halides demonstrate efficient exciton emission properties, showing great potential for applications in high-performance displays, artificial light emitting sources, radiation detection, and other fields. Therein, the excitonic emission properties of low-dimensional metal halide materials are closely correlated to their structural dimensionalities and there are mainly two intrinsic types: narrow-band free exciton emission and broad-band self-trapped exciton emission. In particular, the self-trapped exciton emission can be further divided into singlet emission and triplet emission according to distinct emission energy. Although the structure and excitonic emission properties of low-dimensional metal halides can be regulated through chemical synthesis, it is still not enough to fully and systematically decipher the intrinsic mechanisms of exciton emission regulation or enable mutual transformation between different emission types. Employing static high-pressure techniques with diamond anvil cells enables precise control over the structure and properties of materials without changing their composition, Therefore, high-pressure techniques prove to be an ideal research method for regulating the structure and excitonic emission properties of low-dimensional metal halides, thereby extensively unveil crystalline structural changes and the mechanisms influencing their excitonic emission properties.

In this thesis, several low-dimensional metal halide materials with self-trapped exciton emission and free exciton emission are selected for high-pressure studies to realize excitonic emission properties regulating and accordingly reveal the underlying photophysical mechanisms and structure-property relationships. This study primarily investigates the excitation-dependent emission characteristics of low-dimensional metal halide systems with triplet self-trapped exciton emission. While the zero-dimensional metal halide Cs2InBr5(H2O) exhibits excitation-independent self-trapped exciton emission at ambient conditions, its inorganic emissive unit InBr5O octahedra experience significant structural distortion during the pressure-induced phase transition, leading to the generation of new self-trapped exciton emission to exhibit the rare inverse excitation-dependent emission response under high pressure. Similarly, in zero-dimensional metal halide (C4N2H14Br)4SnBr3I3 with mixed halogen, the emissive SnX6 (X = Br, I) octahedra with distinct coordination environments offer the structural foundation for the excitation-dependent emission response under low temperature and high pressure. The pressure-dependent structural distortion of these emissive units under high pressure gives rise to the adjustable excitationdependent emission phenomenon in (C4N2H14Br)4SnBr3I3.

Based on the understanding of the relationship between structure and self-trapped exciton emission, further explorations are then conducted on exploring the photophysical mechanisms and intrinsic structure-property relationships of the transition between free exciton emission and self-trapped exciton emission in low-dimensional metal halides. In the quasi-one-dimensional metal halide (C2H10N2)8[Pb4Br18]∙6Br, pressure promotes the electronic dimensionality and induces excitonic delocalization, leading to a complete transition from self-trapped exciton emission to free exciton emission. Pressure not only enhances the energy of self-trapped excitons, promoting their detrapping process but also reduces the effective mass of carriers in the inorganic ribbons and improves the connectivity of the electronic orbitals constituting the band edges. This facilitates the migration of detrapped excitons within the lattice and their radiative recombination near the band edges, leading to the formation of intense free exciton emission. This process demonstrates the photophysical mechanisms governing the transitions between different types of excitonic emissions. Furthermore, in the high-pressure study of two-dimensional metal halide (C4H12NO)2PbBr4, where free exciton emission coexists with self-trapped exciton emission, multiple mutual transformations between free exciton emission and self-trapped exciton emission are achieved. By conducting high-pressure structural characterization, the structural basis for generating different types of excitonic emissions is accordingly revealed. Pressure-induced phase transitions in (C4H12NO)2PbBr4 decreased the difference in interior angles of the quadrilaterals formed by neighboring Pb atoms in the inorganic layers. During this process, the intensity of self-trapped exciton emission significantly decreased, showing a clear correlation with structure. Finally, through the comparative study of the relationship between excitonic emission properties and structural features of (C4H12NO)2PbBr4 at low temperature, the applicability of the above structure-property relationships in two-dimensional metal halides is once again verified.

关键词
其他关键词
语种
中文
培养类别
独立培养
入学年份
2021
学位授予年份
2024-06
参考文献列表

[1] MANSER J S, CHRISTIANS J A, KAMAT P V. Intriguing optoelectronic properties of metal halide perovskites[J]. Chemical Review, 2016, 116(21): 12956–13008.
[2] TAO W J, ZHANG Y, ZHU H M. Dynamic exciton polaron in two-dimensional lead halide perovskites and Implications for optoelectronic applications[J]. Accounts of Chemical Research, 2022, 55(3): 345–353.
[3] QUAN L N, GARCIA DE ARQUER F P, SABATINI R P, et al. Perovskites for light emission[J]. Advanced Materials, 2018, 30(45): 1801996.
[4] HAN T-H, JANG K Y, DONG Y T, et al. A roadmap for the commercialization of perovskite light emitters[J]. Nature Reviews Materials, 2022, 7: 757–777.
[5] LIU X-K, XU W D, BAI S, et al. Metal halide perovskites for light-emitting diodes[J]. Nature Materials, 2021, 20: 10–21.
[6] DONG H Y, ZHANG C H, LIU X L, et al. Materials chemistry and engineering in metal halide perovskite lasers[J]. Chemical Society Review, 2020, 49(3): 951–982.
[7] LEI L, DONG Q, GUNDOGDU K, et al. Metal halide perovskites for laser applications[J]. Advanced Functional Materials, 2021, 31(16): 2010144.
[8] WANG H P, LI S Y, LIU X, et al. Low-dimensional metal halide perovskite photodetectors[J]. Advanced Materials, 2021, 33(7): e2003309.
[9] ZHANG Y Q, MA Y, WANG Y X, et al. Lead-free perovskite photodetectors: progress, challenges, and opportunities[J]. Advanced Materials, 2021, 33(26): e2006691.
[10] WRIGHT A D, VERDI C, MILOT R L, et al. Electron–phonon coupling in hybrid lead halide perovskites[J]. Nature Communications, 2016, 7(1): 11755.
[11] GONG X W, VOZNYY O, JAIN A, et al. Electron–phonon interaction in efficient perovskite blue emitters[J]. Nature Materials, 2018, 17(6): 550–556.
[12] LIN H R, ZHOU C K, TIAN Y, et al. Low-dimensional organometal halide perovskites[J]. ACS Energy Letters, 2017, 3(1): 54–62.
[13] ZHOU C K, LIN H R, LEE S, et al. Organic–inorganic metal halide hybrids beyond perovskites[J]. Materials Research Letters, 2018, 6(10): 552–569.
[14] SMITH M D, KARUNADASA H I. White-light emission from layered halide perovskites[J]. Accounts of Chemical Research, 2018, 51(3): 619–627.
[15] LI S R, LUO J J, LIU J, et al. Self-trapped excitons in all-inorganic halide perovskites: fundamentals, status, and potential applications[J]. The Journal of Physical Chemistry Letters, 2019, 10(8): 1999–2007.
[16] JIANG F, WU Z N, LU M, et al. Broadband emission origin in metal halide perovskites: are self-trapped excitons or ions?[J]. Advanced Materials, 2023, 35(51): e2211088.
[17] LIU G, KONG L P, YANG W G, et al. Pressure engineering of photovoltaic perovskites[J]. Materials Today, 2019, 27: 91–106.
[18] ZHANG L, WANG K, LIN Y, et al. Pressure effects on the electronic and optical properties in low-dimensional metal halide perovskites[J]. The Journal of Physical Chemistry Letters, 2020, 11(12): 4693–4701.
[19] LI M, LIU T B, WANG Y G, et al. Pressure responses of halide perovskites with various compositions, dimensionalities, and morphologies[J]. Matter and Radiation at Extremes, 2020, 5(1): 018201.
[20] LI Q, ZHANG L M, CHEN Z W, et al. Metal halide perovskites under compression[J]. Journal of Materials Chemistry A, 2019, 7(27): 16089–16108.
[21] BRETERNITZ J, SCHORR S. What defines a perovskite?[J]. Advanced Energy Materials, 2018, 8(34): 1802366.
[22] AKKERMAN Q A, MANNA L. What defines a halide perovskite?[J]. ACS Energy Letters, 2020, 5(2): 604–610.
[23] ROSE G. Ueber einige neue Mineralien des Urals[J]. Journal für Praktische Chemie, 1840, 19(1): 459–468.
[24] GOLDSCHMIDT V M. Die gesetze der krystallochemie[J]. Die Naturwissenschaften, 1926, 14(21): 477–485.
[25] WELLS H L. On the caesium- and the potassium-lead halides[J]. American Journal of Science, 1893, 45(266): 121–134.
[26] MØLLER C K. A phase transition in cæsium plumbochloride[J]. Nature, 1957, 180(4593): 981–982.
[27] WEBER D. CH3NH3PbX3, a Pb(II)-system with cubic perovskite structure[J]. Journal Fur Naturforschung Section B-A Journal of Chemical Sciences, 1978, 33(12): 1443–1445.
[28] KOJIMA A, TESHIMA K, SHIRAI Y, et al. Organometal halide perovskites as visiblelight sensitizes for photovoltaic cells[J]. Journal of the American Chemical Society, 2009, 131(17): 6050–6051.
[29] BARTEL C J, SUTTON C, GOLDSMITH B R, et al. New tolerance factor to predict the stability of perovskite oxides and halides[J]. Science Advances, 2019, 5(2): eaav0693.
[30] SPANOPOULOS I, KE W, STOUMPOS C C, et al. Unraveling the chemical nature of the 3D "hollow" hybrid halide perovskites[J]. Journal of the American Chemical Society, 2018, 140(17): 5728–5742.
[31] SPANOPOULOS I, HADAR I, KE W, et al. Tunable broad light emission from 3D "hollow" bromide perovskites through defect engineering[J]. Journal of the American Chemical Society, 2021, 143(18): 7069–7080.
[32] JAYANTHI K, SPANOPOULOS I, ZIBOUCHE N, et al. Entropy stabilization effects and ion migration in 3D "hollow" halide perovskites[J]. Journal of the American Chemical Society, 2022, 144(18): 8223–8230.
[33] JI C M, ZHU T T, FAN Y P, et al. Localized lattice expansion of FAPbBr3 to design a 3D hybrid perovskite for sensitive near-infrared photodetection[J]. Angewandte Chemie International Edition, 2022, 61(47): e202213294.
[34] GUAN Q W, ZHU T T, ZHU Z K, et al. Unprecedented chiral three-dimensional hybrid organic-inorganic perovskitoids[J]. Angewandte Chemie International Edition, 2023, 62(32): e202307034.
[35] SUN C, GUO Y H, HAN S S, et al. Three-dimensional cuprous lead bromide framework with highly efficient and stable blue photoluminescence emission[J]. Angewandte Chemie International Edition, 2020, 59(38): 16465–16469.
[36] SCHMIDT L C, PERTEGAS A, GONZALEZ-CARRERO S, et al. Nontemplate synthesis of CH3NH3PbBr3 perovskite nanoparticles[J]. Journal of the American Chemical Society, 2014, 136(3): 850–853.
[37] TYAGI P, ARVESON S M, TISDALE W A. Colloidal organohalide perovskite nanoplatelets exhibiting quantum confinement[J]. The Journal of Physical Chemistry Letters, 2015, 6(10): 1911–1916.
[38] DOU L T, WONG A B, YU Y, et al. Atomically thin two-dimensional organicinorganic hybrid perovskites[J]. Science, 2015, 349(6255): 1518–1521.
[39] ZHANG D D, EATON S W, YU Y, et al. Solution-phase synthesis of cesium lead halide perovskite nanowires[J]. Journal of the American Chemical Society, 2015, 137(29): 9230–9233.
[40] ZHOU C K, LIN H R, HE Q Q, et al. Low dimensional metal halide perovskites and hybrids[J]. Materials Science & Engineering: R-Reports, 2019, 137: 38–65.
[41] HAN K, JIN J C, SU B B, et al. Molecular dimensionality and photoluminescence of hybrid metal halides[J]. Trends in Chemistry, 2022, 4(11): 1034–1044.
[42] WILLETT R D. Crystal structure of (NH4)2CuCl4[J]. The Journal of Chemical Physics, 1964, 41(8): 2243–2244.
[43] WILLETT R D, LILES O L, MICHELSON C. Electronic absorption spectra of monomeric copper(II) chloride species and the electron spin resonance spectrum of the square-planar CuCl42- ion[J]. Inorganic Chemistry, 2002, 6(10): 1885–1889.
[44] BELLITTO C, DAY P. Bis(monoalkylammonium) tetrachlorochromates(II): a new series of two-dimensional ionic ferromagnets[J]. Journal of the Chemical Society, Chemical Communications, 1976, 1(21): 870–871.
[45] DOLZHENKO Y I, INABE T, MARUYAMA Y. In situ X-ray observation on the intercalation of weak interaction molecules into perovskite-type layered crystals (C9H19NH3)2PbI4 and (C10H21NH3)2CdCl4[J]. Bulletin of the Chemical Society of Japan, 1986, 59(2): 563–567.
[46] ISHIHARA T, TAKAHASHI J, GOTO T. Exciton state in two-dimensional perovskite semiconductor (C10H21NH3)2PbI4[J]. Solid State Communications, 1989, 69(9): 933–936.
[47] MITZI D B, FEILD C A, HARRISON W T A, et al. Conducting tin halides with a layered organic-based perovskite structure[J]. Nature, 1994, 369(6480): 467–469.
[48] MITZI D B. Synthesis, crystal structure, and optical and thermal properties of (C4H9NH3)2MI4 (M = Ge, Sn, Pb)[J]. Chemistry of Materials, 1996, 8(3): 791–800.
[49] DOHNER E R, HOKE E T, KARUNADASA H I. Self-assembly of broadband whitelight emitters[J]. Journal of the American Chemical Society, 2014, 136(5): 1718–1721.
[50] DOHNER E R, JAFFE A, BRADSHAW L R, et al. Intrinsic white-light emission from layered hybrid perovskites[J]. Journal of the American Chemical Society, 2014, 136(38): 13154–13157.
[51] SOE C M M, NAGABHUSHANA G P, SHIVARAMAIAH R, et al. Structural and thermodynamic limits of layer thickness in 2D halide perovskites[J]. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116(1): 58–66.
[52] KAMMINGA M E, DE WIJS G A, HAVENITH R W A, et al. The role of connectivity on electronic properties of lead iodide perovskite-derived compounds[J]. Inorganic Chemistry, 2017, 56(14): 8408–8414.
[53] WANG S M, MITZI D B, FEILD C A, et al. Synthesis and characterization of [NH2C(I):NH2]3MI5 (M = Sn, Pb): stereochemical activity in divalent tin and lead halides containing single <110> perovskite sheets[J]. Journal of the American Chemical Society, 2002, 117(19): 5297–5302.
[54] YUAN Z, ZHOU C K, TIAN Y, et al. One-dimensional organic lead halide perovskites with efficient bluish white-light emission[J]. Nature Communications, 2017, 8(1): 14051.
[55] WU G H, ZHOU C K, MING W M, et al. A one-dimensional organic lead chloride hybrid with excitation-dependent broadband emissions[J]. ACS Energy Letters, 2018, 3(6): 1443–1449.
[56] LIN H R, ZHOU C K, NEU J, et al. Bulk assembly of corrugated 1D metal halides with broadband yellow emission[J]. Advanced Optical Materials, 2019, 7(6): 1801474.
[57] ZHOU C K, TIAN Y, WANG M C, et al. Low-dimensional organic tin bromide perovskites and their photoinduced structural transformation[J]. Angewandte Chemie International Edition, 2017, 56(31): 9018–9022.
[58] JIN K H, ZHANG Y, LI K J, et al. Enantiomorphic single crystals of linear lead(II) bromide perovskitoids with white circularly polarized emission[J]. Angewandte Chemie International Edition, 2022, 61(30): e202205317.
[59] MAO L L, GUO P J, KEPENEKIAN M, et al. Structural diversity in white-lightemitting hybrid lead bromide perovskites[J]. Journal of the American Chemical Society, 2018, 140(40): 13078–13088.
[60] LIN H R, ZHOU C K, TIAN Y, et al. Bulk assembly of organic metal halide nanotubes[J]. Chemical Science, 2017, 8(12): 8400–8404.
[61] SPANOPOULOS I, HADAR I, KE W, et al. Water-stable 1D hybrid tin(II) iodide emits broad light with 36% photoluminescence quantum efficiency[J]. Journal of the American Chemical Society, 2020, 142(19): 9028–9038.
[62] YU S-K, XU N-N, JIANG M, et al. Hybrid lead iodide perovskites with mixed cations of thiourea and methylamine, from one dimension to three dimensions[J]. Inorganic Chemistry, 2020, 59(21): 15842–15847.
[63] BEN HAJ SALAH M, MERCIER N, ALLAIN M, et al. Dual phosphorescence from the organic and inorganic moieties of 1D hybrid perovskites of the Pbn'Br4n'+2 series (n' = 2, 3, 4, 5)[J]. Journal of Materials Chemistry C, 2019, 7(15): 4424–4433.
[64] LOUVAIN N, BI W, MERCIER N, et al. PbnI4n+2(2n+2)– ribbons (n = 3, 5) as dimensional reductions of 2D perovskite layers in cystamine cation based hybrids, also incorporating iodine molecules or reversible guest water molecules[J]. Dalton Transactions, 2007, 16(9): 965–970.
[65] BILLING D G, LEMMERER A. Inorganic–organic hybrid materials incorporating primary cyclic ammonium cations: the lead bromide and chloride series[J]. CrystEngComm, 2009, 11(8): 1549–1562.
[66] NIKL M, MIHOKOVA E, NITSCH K, et al. Photoluminescence of Cs4PbBr6 crystals and thin films[J]. Chemical Physics Letters, 1999, 306(5–6): 280–284.
[67] ZHOU C K, TIAN Y, YUAN Z, et al. Highly efficient broadband yellow phosphor based on zero-dimensional tin mixed-halide perovskite[J]. ACS Applied Materials & Interfaces, 2017, 9(51): 44579–44583.
[68] ZHOU C K, LIN H R, TIAN Y, et al. Luminescent zero-dimensional organic metal halide hybrids with near-unity quantum efficiency[J]. Chemical Science, 2018, 9(3): 586–593.
[69] LI M Z, XIA Z G. Recent progress of zero-dimensional luminescent metal halides[J]. Chemical Society Reviews, 2021, 50(4): 2626–2662.
[70] JIN J-C, SHEN N-N, WANG Z-P, et al. Photoluminescent ionic metal halides based on s2 typed ions and aprotic ionic liquid cations[J]. Coordination Chemistry Reviews, 2021, 448(1): 214185.
[71] ADONIN S A, SOKOLOV M N, FEDIN V P. Polynuclear halide complexes of Bi(III): from structural diversity to the new properties[J]. Coordination Chemistry Reviews, 2016, 312(1): 1–21.
[72] WEI J H, LIAO J F, ZHOU L, et al. Indium-antimony-halide single crystals for highefficiency white-light emission and anti-counterfeiting[J]. Science Advances, 2021, 7(34): eabg3989.
[73] LEE S, ZHOU C K, NEU J, et al. Bulk assemblies of lead bromide trimer clusters with geometry-dependent photophysical properties[J]. Chemistry of Materials, 2019, 32(1): 374–380.
[74] ZHOU C K, LEE S J, LIN H R, et al. Bulk assembly of multicomponent zerodimensional metal halides with dual emission[J]. ACS Materials Letters, 2020, 2(4): 376–380.
[75] XU L J, LEE S J, LIN X S, et al. Multicomponent organic metal halide hybrid with white emissions[J]. Angewandte Chemie International Edition, 2020, 59(33): 14120–14123.
[76] FOLGUERAS M C, JIANG Y X, JIN J B, et al. High-entropy halide perovskite single crystals stabilized by mild chemistry[J]. Nature, 2023, 621(7978): 282–288.
[77] HUANG R R, WANG C, TAN D, et al. Single-fluorophore-based organic crystals with distinct conformers enabling wide-range excitation-dependent emissions[J]. Angewandte Chemie International Edition, 2022, 61(41): e202211106.
[78] SHEN Y X, AN Z F, LIU H C, et al. Excitation-dependent multicolour luminescence of organic materials: internal mechanism and potential applications[J]. Angewandte Chemie International Edition, 2022, 62(6): e202214483.
[79] UMEBAYASHI T, ASAI K, KONDO T, et al. Electronic structures of lead iodide based low-dimensional crystals[J]. Physical Review B, 2003, 67(15): 155405.
[80] DU M H. Efficient carrier transport in halide perovskites: theoretical perspectives[J]. Journal of Materials Chemistry A, 2014, 2(24): 9091–9098.
[81] BRIVIO F, BUTLER K T, WALSH A, et al. Relativistic quasiparticle self-consistent electronic structure of hybrid halide perovskite photovoltaic absorbers[J]. Physical Review B, 2014, 89(15): 155204.
[82] XIAO Z W, ZHOU Y Y, HOSONO H, et al. Bandgap optimization of perovskite semiconductors for photovoltaic applications[J]. Chemistry-A European Journal, 2018, 24(10): 2305–2316.
[83] SUN H-Y, XIONG L, JIANG H. Toward first-principles approaches for mechanistic study of self-trapped exciton luminescence[J]. Chemical Physics Reviews, 2023, 4(3): 031302.
[84] KIM J, LEE S-C, LEE S-H, et al. Importance of orbital interactions in determining electronic band structures of organo-lead iodide[J]. The Journal of Physical Chemistry C, 2015, 119(9): 4627–4634.
[85] XIAO Z W, MENG W W, WANG J B, et al. Searching for promising new perovskitebased photovoltaic absorbers: the importance of electronic dimensionality[J]. Materials Horizons, 2017, 4(2): 206–216.
[86] LUO J J, WANG X M, LI S R, et al. Efficient and stable emission of warm-white light from lead-free halide double perovskites[J]. Nature, 2018, 563(7732): 541–545.
[87] BLANCON J-C, EVEN J, STOUMPOS C C, et al. Semiconductor physics of organic– inorganic 2D halide perovskites[J]. Nature Nanotechnology, 2020, 15(12): 969–985.
[88] STRAUS D B, KAGAN C R. Photophysics of two-dimensional semiconducting organic-inorganic metal-halide perovskites[J]. Annual Review of Physical Chemistry 2022, 73(2): 403–428.
[89] HU H, LIU Y M, XIE Z X, et al. Observation of defect luminescence in 2D Dion– Jacobson perovskites[J]. Advanced Optical Materials, 2021, 9(24): 2101423.
[90] SMITH M D, CRACE E J, JAFFE A, et al. The diversity of layered halide perovskites[J]. Annual Review of Materials Research, 2018, 48(1): 111–136.
[91] HU T, SMITH M D, DOHNER E R, et al. Mechanism for broadband white-light emission from two-dimensional (110) hybrid perovskites[J]. The Journal of Physical Chemistry Letters 2016, 7(12): 2258–2263.
[92] STOUMPOS C C, CAO D H, CLARK D J, et al. Ruddlesden–Popper hybrid lead iodide perovskite 2D homologous semiconductors[J]. Chemistry of Materials, 2016, 28(8): 2852–2867.
[93] VASILEIADOU E S, KANATZIDIS M G. Structure–property relationships and idiosyncrasies of bulk, 2D hybrid lead bromide perovskites[J]. Israel Journal of Chemistry, 2021, 61(11–12): 782–817.
[94] MAO L L, GUO P J, KEPENEKIAN M, et al. Organic cation alloying on intralayer A and interlayer A' sites in 2D hybrid Dion-Jacobson lead bromide perovskites (A')(A)Pb2Br7[J]. Journal of the American Chemical Society, 2020, 142(18): 8342–8351.
[95] MAO L L, KE W J, PEDESSEAU L, et al. Hybrid Dion-Jacobson 2D lead iodide perovskites[J]. Journal of the American Chemical Society, 2018, 140(10): 3775–3783.
[96] MAO L L, STOUMPOS C C, KANATZIDIS M G. Two-dimensional hybrid halide perovskites: principles and promises[J]. Journal of the American Chemical Society, 2019, 141(3): 1171–1190.
[97] LEE S, KARKEE R, BEN-AKACHA A, et al. One-dimensional organic metal halide nanoribbons with dual emission[J]. Chemical Communications, 2023, 59(25): 3711–3714.
[98] XU Z W, JIANG X X, CAI H P, et al. Toward a general understanding of exciton selftrapping in metal halide perovskites[J]. The Journal of Physical Chemistry Letters 2021, 12(43): 10472–10478.
[99] KATAN C, MERCIER N, EVEN J. Quantum and dielectric confinement effects in lower-dimensional hybrid perovskite semiconductors[J]. Chemical Reviews, 2019, 119(5): 3140–3192.
[100] YIN J, NAPHADE R, GUTIÉRREZ ARZALUZ L, et al. Modulation of broadband emissions in two-dimensional <100>-oriented Ruddlesden–Popper hybrid perovskites[J]. ACS Energy Letters, 2020, 5(7): 2149–2155.
[101] ZHANG Q, JI Y J, CHEN Z H, et al. Controlled aqueous synthesis of 2D hybrid perovskites with bright room-temperature long-lived luminescence[J]. The Journal of Physical Chemistry Letters, 2019, 10(11): 2869–2873.
[102] JING Y Y, LIU Y, JIANG X X, et al. Sb3+ dopant and halogen substitution triggered highly efficient and tunable emission in lead-free metal halide single crystals[J]. Chemistry of Materials, 2020, 32(12): 5327–5334.
[103] JING Y Y, LIU Y, LI M Z, et al. Photoluminescence of singlet/triplet self-trapped excitons in Sb3+-based metal halides[J]. Advanced Optical Materials, 2021, 9(8): 2002213.
[104] ZHOU G J, SU B B, HUANG J L, et al. Broad-band emission in metal halide perovskites: mechanism, materials, and applications[J]. Materials Science & Engineering: R-Reports, 2020, 141: 100548.
[105] WANG X M, MENG W W, LIAO W Q, et al. Atomistic mechanism of broadband emission in metal halide perovskites[J]. The Journal of Physical Chemistry Letters, 2019, 10(3): 501–506.
[106] HUANG KUN A R. Theory of light absorption and non-radiative transitions in Fcentres[J]. Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences, 1997, 204(1078): 406–423.
[107] DE JONG M, SEIJO L, MEIJERINK A, et al. Resolving the ambiguity in the relation between Stokes shift and Huang-Rhys parameter[J]. Physical Chemistry Chemical Physics, 2015, 17(26): 16959–16969.
[108] MAUCK C M, TISDALE W A. Excitons in 2D organic–inorganic halide perovskites[J]. Trends in Chemistry, 2019, 1(4): 380–393.
[109] SAPAROV B, MITZI D B. Organic–inorganic perovskites: structural versatility for functional materials design[J]. Chemical Reviews, 2016, 116(7): 4558–4596.
[110] SMITH M D, JAFFE A, DOHNER E R, et al. Structural origins of broadband emission from layered Pb-Br hybrid perovskites[J]. Chemical Science, 2017, 8(6): 4497–4504.
[111] SUN S Q, LU M, GAO X P, et al. 0D perovskites: unique properties, synthesis, and their applications[J]. Advanced Science, 2021, 8(24): e2102689.
[112] ZHOU L, LIAO J F, KUANG D B. An overview for zero-dimensional broadband emissive metal-halide single crystals[J]. Advanced Optical Materials, 2021, 9(17): 2100544.
[113] ZHOU G J, LI M Z, ZHAO J, et al. Single-component white-light emission in 2D hybrid perovskites with hybridized halogen atoms[J]. Advanced Optical Materials, 2019, 7(24): 1901335.
[114] ZHOU C K, WORKU M, NEU J, et al. Facile preparation of light emitting organic metal halide crystals with near-unity quantum efficiency[J]. Chemistry of Materials, 2018, 30(7): 2374–2378.
[115] ZHOU L, LIAO J F, HUANG Z G, et al. A highly red-emissive lead-free indium-based perovskite single crystal for sensitive water detection[J]. Angewandte Chemie International Edition, 2019, 58(16): 5277–5281.
[116] ZHOU L, LIAO J F, HUANG Z G, et al. Intrinsic self-trapped emission in 0D leadfree (C4H14N2)2In2Br10 single crystal[J]. Angewandte Chemie International Edition, 2019, 58(43): 15435–15440.
[117] SU B B, SONG G M, MOLOKEEV M S, et al. Synthesis, crystal structure and green luminescence in zero-dimensional tin halide (C8H14N2)2SnBr6[J]. Inorganic Chemistry, 2020, 59(14): 9962–9968.
[118] SU B B, GENG S N, XIAO Z W, et al. Highly distorted antimony(III) chloride [Sb2Cl8]2– dimers for near-infrared luminescence up to 1070 nm[J]. Angewandte Chemie International Edition, 2022, 61(33): e202208881.
[119] LI M Z, MOLOKEEV M S, ZHAO J, et al. Optical functional units in zero-dimensional metal halides as a paradigm of tunable photoluminescence and multicomponent chromophores[J]. Advanced Optical Materials, 2020, 8(8): 1902114.
[120] LI M Z, LI Y W, MOLOKEEV M S, et al. Halogen substitution in zero-dimensional mixed metal halides toward photoluminescence modulation and enhanced quantum yield[J]. Advanced Optical Materials, 2020, 8(16): 2000418.
[121] ONODA-YAMAMURO N, YAMAMURO O, MATSUO T, et al. p-T phase relations of CH3NH3PbX3 (X = Cl, Br, I) crystals[J]. Journal of Physics and Chemistry of Solids, 1992, 53(2): 277–281.
[122] SCHWARZ U, WAGNER F, SYASSEN K, et al. Effect of pressure on the opticalabsorption edges of CsGeBr3 and CsGeCl3[J]. Physical Review B: Condensed Matter and Materials Physics, 1996, 53(19): 12545–12548.
[123] WANG L R, WANG K, ZOU B. Pressure-induced structural and optical properties of organometal halide perovskite-based formamidinium lead bromide[J]. The Journal of Physical Chemistry Letters, 2016, 7(13): 2556–2562.
[124] WANG L R, OU T J, WANG K, et al. Pressure-induced structural evolution, optical and electronic transitions of nontoxic organometal halide perovskite-based methylammonium tin chloride[J]. Applied Physics Letters, 2017, 111(23): 233901.
[125] LU X J, WANG Y G, STOUMPOS C C, et al. Enhanced structural stability and photo responsiveness of CH3NH3SnI3 perovskite via pressure-induced amorphization and recrystallization[J]. Advanced Materials, 2016, 28(39): 8663–8668.
[126] KONG L P, LIU G, GONG J, et al. Simultaneous band-gap narrowing and carrierlifetime prolongation of organic-inorganic trihalide perovskites[J]. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113(32): 8910–8915.
[127] JAFFE A, LIN Y, BEAVERS C M, et al. High-pressure single-crystal structures of 3D lead-halide hybrid perovskites and pressure effects on their electronic and optical properties[J]. ACS Central Science, 2016, 2(4): 201–209.
[128] ZHAO W Y, XIAO G J, ZOU B. Pressure-induced emission (PIE) in halide perovskites toward promising applications in scintillators and solid-state lighting[J]. Aggregate, 2023, 5(1): e461.
[129] LI Q, XU B, QUAN Z W. Pressure-regulated excitonic transitions in emergent metal halides[J]. Accounts of Chemical Research, 2023, 56(22): 3282–3291.
[130] SHOCKLEY W, QUEISSER H J. Detailed balance limit of efficiency of p-n junction solar cells[J]. Journal of Applied Physics, 1961, 32(3): 510–519.
[131] STOUMPOS C C, KANATZIDIS M G. The renaissance of halide perovskites and their evolution as emerging semiconductors[J]. Accounts of Chemical Research, 2015, 48(10): 2791–2802.
[132] LIU G, KONG L P, GONG J, et al. Pressure-induced bandgap optimization in leadbased perovskites with prolonged carrier lifetime and ambient retainability[J]. Advanced Functional Materials, 2016, 27(3): 1604208.
[133] MATSUISHI K, SUZUKI T, ONARI S, et al. Excitonic states of alkylammonium leadiodide layered perovskite semiconductors under hydrostatic pressure to 25 GPa[J]. Physica Status Solidi B-Basic Solid State Physics, 2001, 223(1): 177–182.
[134] LIU G, KONG L P, GUO P J, et al. Two regimes of bandgap red shift and partial ambient retention in pressure-treated two-dimensional perovskites[J]. ACS Energy Letters, 2017, 2(11): 2518–2524.
[135] LI Q, WANG Y G, PAN W C, et al. High-pressure band-gap engineering in lead-free Cs2AgBiBr6 double perovskite[J]. Angewandte Chemie International Edition, 2017, 56(50): 15969–15973.
[136] WANG J X, WANG L R, LI Y Q, et al. Pressure-induced metallization of lead-free halide double perovskite (NH4)2PtI6[J]. Advanced Science, 2022, 9(28): e2203442.
[137] ZHANG L, LIU C M, WANG L R, et al. Pressure-induced emission enhancement, band-gap narrowing, and metallization of halide perovskite Cs3Bi2I9[J]. Angewandte Chemie International Edition, 2018, 57(35): 11213–11217.
[138] KE F, YAN J J, NIU S Y, et al. Cesium-mediated electron redistribution and electronelectron interaction in high-pressure metallic CsPbI3[J]. Nature Communications, 2022, 13(1): 7067.
[139] JI F X, KLARBRING J, WANG F, et al. Lead-free halide double perovskite Cs2AgBiBr6 with decreased band gap[J]. Angewandte Chemie International Edition, 2020, 59(35): 15191–15194.
[140] LI X T, FU Y P, PEDESSEAU L, et al. Negative pressure engineering with large cage cations in 2D halide perovskites causes lattice softening[J]. Journal of the American Chemical Society, 2020, 142(26): 11486–11496.
[141] LI Q, YIN L X, CHEN Z W, et al. High pressure structural and optical properties of two-dimensional hybrid halide perovskite (CH3NH3)3Bi2Br9[J]. Inorganic Chemistry, 2019, 58(2): 1621–1626.
[142] SONG X, LI Q, HAN J, et al. Highly luminescent metal-free perovskite single crystal for biocompatible X-ray detector to attain highest sensitivity[J]. Advanced Materials, 2021, 33(36): e2102190.
[143] FANG Y Y, ZHANG L, YU Y S, et al. Manipulating emission enhancement and piezochromism in two-dimensional organic-inorganic halide perovskite [(HO)(CH2)2NH3)]2PbI4 by high pressure[J]. CCS Chemistry, 2020, 3(8): 2203–2210.
[144] GUO S H, ZHAO Y S, BU K J, et al. Pressure-suppressed carrier trapping leads to enhanced emission in two-dimensional perovskite (HA)2(GA)Pb2I7[J]. Angewandte Chemie International Edition, 2020, 59(40): 17533–17539.
[145] HUANG X, LI X T, TAO Y, et al. Understanding electron–phonon interactions in 3D lead halide perovskites from the stereochemical expression of 6s2 lone pairs[J]. Journal of the American Chemical Society, 2022, 144(27): 12247–12260.
[146] GU J Z, TAO Y, FU T H, et al. Correlating photophysical properties with stereochemical expression of 6s2 lone pairs in two-dimensional lead halide perovskites[J]. Angewandte Chemie International Edition, 2023, 62(30): e202304515.
[147] ZHANG L, FANG Y Y, SUI L Z, et al. Tuning emission and electron–phonon coupling in lead-free halide double perovskite Cs2AgBiCl6 under pressure[J]. ACS Energy Letters, 2019, 4(12): 2975–2982.
[148] FANG Y Y, ZHANG L, WU L W, et al. Pressure-induced emission (PIE) and phase transition of a two-dimensional halide double perovskite (BA)4AgBiBr8 (BA=CH3(CH2)3NH3+)[J]. Angewandte Chemie International Edition, 2019, 131(43): 15393–15397.
[149] ZHANG L, LI S X, SUN H Y, et al. Revealing the mechanism of pressure-induced emission in layered silver-bismuth double perovskites[J]. Angewandte Chemie International Edition, 2023, 62(14): e202301573.
[150] FANG Y Y, WANG J T, ZHANG L, et al. Tailoring the high-brightness "warm" white light emission of two-dimensional perovskite crystals via a pressure-inhibited nonradiative transition[J]. Chemical Science, 2023, 14(10): 2652–2658.
[151] FU R J, ZHAO W Y, WANG L R, et al. Pressure-induced emission toward harvesting cold white light from warm white light[J]. Angewandte Chemie International Edition, 2021, 60(18): 10082–10088.
[152] LI Q, CHEN Z W, YANG B, et al. Pressure-induced remarkable enhancement of selftrapped exciton emission in one-dimensional CsCu2I3 with tetrahedral units[J]. Journal of the American Chemical Society, 2020, 142(4): 1786–1791.
[153] SHI Y, MA Z W, ZHAO D L, et al. Pressure-induced emission (PIE) of onedimensional organic tin bromide perovskites[J]. Journal of the American Chemical Society, 2019, 141(16): 6504–6508.
[154] WANG Y Q, GUO S H, LUO H, et al. Reaching 90% photoluminescence quantum yield in one-dimensional metal halide C4N2H14PbBr4 by pressure-suppressed nonradiative loss[J]. Journal of the American Chemical Society, 2020, 142(37): 16001–16006.
[155] LUO H, GUO S H, ZHANG Y B, et al. Regulating exciton-phonon coupling to achieve a near-unity photoluminescence quantum yield in one-dimensional hybrid metal halides[J]. Advanced Science, 2021, 8(14): e2100786.
[156] SUN M E, GENG T, YONG X, et al. Pressure-triggered blue emission of zerodimensional organic bismuth bromide perovskite[J]. Advanced Science, 2021, 8(9): 2004853.
[157] CHEN M T, GUO S H, BU K J, et al. Pressure-induced robust emission in a zerodimensional hybrid metal halide (C9NH20)6Pb3Br12[J]. Matter and Radiation at Extremes, 2021, 6(5): 058401.
[158] MA Z W, LIU Z, LU S Y, et al. Pressure-induced emission of cesium lead halide perovskite nanocrystals[J]. Nature Communications, 2018, 9(1): 4506.
[159] MA Z W, LI F F, ZHAO D L, et al. Whether or not emission of Cs4PbBr6 nanocrystals: high-pressure experimental evidence[J]. CCS Chemistry, 2020, 2(2): 71–80.
[160] GAO F F, SONG H P, LI Z G, et al. Pressure-tuned multicolor emission of 2D lead halide perovskites with ultrahigh color purity[J]. Angewandte Chemie International Edition, 2023, 62(12): e202218675.
[161] ZHANG L, WU L W, WANG K, et al. Pressure-induced broadband emission of 2D organic–inorganic hybrid perovskite (C6H5C2H4NH3)2PbBr4[J]. Advanced Science, 2019, 6(2): 1801628.
[162] ZHANG H, ZHANG P J, XIE C L, et al. Distinct excitonic emissions in 2D (C7H7N2)2PbX4 (X = Cl, Br) under compression[J]. Advanced Science, 2023, 11(4): e2305597.
[163] LI Q, CHEN Z W, LI M Z, et al. Pressure-engineered photoluminescence tuning in zero-dimensional lead bromide trimer clusters[J]. Angewandte Chemie International Edition, 2021, 6(5): 2583–2587.
[164] MA Z W, LI Q, LUO J J, et al. Pressure-driven reverse intersystem crossing: new path toward bright deep-blue emission of lead-free halide double perovskites[J]. Journal of the American Chemical Society, 2021, 143(37): 15176–15184.
[165] HAN J, LI Q, XU B, et al. Regulating multiple self-trapped exciton emissions in zerodimensional antimony halides with pyramidal units[J]. Journal of Materials Chemistry C, 2023, 11(31): 10625–10633.
[166] SHI Y, ZHAO W Y, MA Z W, et al. Self-trapped exciton emission and piezochromism in conventional 3D lead bromide perovskite nanocrystals under high pressure[J]. Chemical Science, 2021, 12(44): 14711–14717.
[167] ZHAO D L, CONG M, LIU Z, et al. Steric hindrance effects on the retention of pressure-induced emission toward scintillators[J]. Cell Reports Physical Science, 2023, 4(6): 101445.
[168] MA Z W, LI F F, SUI L Z, et al. Tunable color temperatures and emission enhancement in 1D halide perovskites under high pressure[J]. Advanced Optical Materials, 2020, 8(18): 2000713.
[169] FANG Y Y, SHAO T Y, ZHANG L, et al. Harvesting high-quality white-light emitting and remarkable emission enhancement in one-dimensional halide perovskites upon compression[J]. JACS Au, 2021, 1(4): 459–466.
[170] ZHAO D L, XIAO G J, LIU Z, et al. Harvesting cool daylight in hybrid organicinorganic halides microtubules through the reservation of pressure-induced emission[J]. Advanced Materials, 2021, 33(31): e2100323.
[171] LI Q, XU B, CHEN Z W, et al. Excitation-dependent emission color tuning of 0D Cs2InBr5(H2O) at high pressure[J]. Advanced Functional Materials, 2021, 31(38): 2104923.
[172] LEMMERER A, BILLING D G. Lead halide inorganic–organic hybrids incorporating diammonium cations[J]. CrystEngComm, 2012, 14(6): 1954–1966.
[173] BISWAS A, BAKTHAVATSALAM R, SHAIKH S R, et al. Efficient broad-band emission from contorted purely corner-shared one dimensional (1D) organic lead halide perovskite[J]. Chemistry of Materials, 2019, 31(7): 2253–2257.
[174] LI Y Z, JI C M, LI L N, et al. (γ-methoxy propyl amine)2PbBr4: a novel twodimensional halide hybrid perovskite with efficient bluish white-light emission[J]. Inorganic Chemistry Frontiers, 2021, 8(8): 2119–2124.
[175] MCMILLAN P F. Pressing on: the legacy of Percy W. Bridgman[J]. Nature Materials, 2005, 4(10): 715–718.
[176] KANTOR I, PRAKAPENKA V, KANTOR A, et al. BX90: a new diamond anvil cell design for X-ray diffraction and optical measurements[J]. Review of Scientific Instruments 2012, 83(12): 125102.
[177] KATRUSIAK A. High-pressure crystallography[J]. Acta Crystallographica, Section A:Foundations of Crystallography, 2008, 64(1): 135–148.
[178] SPAIN I L, DUNSTAN D J. The technology of diamond anvil high-pressure cells: II. Operation and use[J]. Journal of Physics E: Scientific Instruments, 1989, 22(11): 923–933.
[179] DUNSTAN D J, SPAIN I L. Technology of diamond anvil high-pressure cells: I. Principles, design and construction[J]. Journal of Physics E: Scientific Instruments, 1989, 22(11): 913–923.
[180] DUNSTAN D J. Theory of the gasket in diamond anvil high-pressure cells[J]. Review of Scientific Instruments, 1989, 60(12): 3789–3795.
[181] JIANG D W, CAO M, ZHANG X T, et al. Pressure evolution in a diamond anvil cell without a pressure medium[J]. Journal of Applied Physics, 2022, 131(12): 125904.
[182] CHEN X H, LOU H B, ZENG Z D, et al. Structural transitions of 4:1 methanol–ethanol mixture and silicone oil under high pressure[J]. Matter and Radiation at Extremes, 2021, 6(3): 038402.
[183] KLOTZ S, CHERVIN J C, MUNSCH P, et al. Hydrostatic limits of 11 pressure transmitting media[J]. Journal of Physics D: Applied Physics, 2009, 42(7): 075413.
[184] SYASSEN K. Ruby under pressure[J]. High Pressure Research, 2008, 28(2): 75–126.
[185] MAO H K, BELL P M, SHANER J W, et al. Specific volume measurements of Cu, Mo, Pd, and Ag and calibration of the ruby R1 fluorescence pressure gauge from 0.06 to 1 Mbar[J]. Journal of Applied Physics, 1978, 49(6): 3276–3283.
[186] MCCUMBER D E, STURGE M D. Linewidth and temperature shift of the R lines in ruby[J]. Journal of Applied Physics, 1963, 34(6): 1682–1684.
[187] RAGAN D D, GUSTAVSEN R, SCHIFERL D. Calibration of the ruby R1 and R2 fluorescence shifts as a function of temperature from 0 to 600 K[J]. Journal of Applied Physics, 1992, 72(12): 5539–5544.
[188] NAKANO K, AKAHAMA Y, OHISHI Y, et al. Ruby scale at low temperatures calibrated by the NaCl gauge: wavelength shift of ruby R1 fluorescence line at high pressure and low temperature[J]. Japanese Journal of Applied Physics, 2000, 39(1): 1249–1251.
[189] FENG Y J, JARAMILLO R, WANG J Y, et al. Invited article: high-pressure techniques for condensed matter physics at low temperature[J]. Review of Scientific Instruments, 2010, 81(4): 041301.
[190] WU Y L, YIN X, HASAIEN J Z L, et al. On-site in situ high-pressure ultrafast pumpprobe spectroscopy instrument[J]. Review of Scientific Instruments, 2021, 92(11): 113002.
[191] YAN J W, LIU X D, GORELLI F A, et al. Compression rate of dynamic diamond anvil cells from room temperature to 10 K[J]. Review of Scientific Instruments, 2022, 93(6): 063901.
[192] CAO M, JIANG D W, HAN M Y, et al. In situ temperature measurement in the pressure chamber of diamond anvil cell[J]. Review of Scientific Instruments, 2023, 94(8): 083908.
[193] GONCHAROV A F, CROWHURST J C. Pulsed laser Raman spectroscopy in the laserheated diamond anvil cell[J]. Review of Scientific Instruments, 2005, 76(6): 063905.
[194] 郑海飞. 金刚石压腔高温高压实验技术及其应用[M]. 北京:科学出版社, 2014.
[195] PRESCHER C, PRAKAPENKA V B. DIOPTAS: a program for reduction of twodimensional X-ray diffraction data and data exploration[J]. High Pressure Research, 2015, 35(3): 223–230.
[196] TAUC J, GRIGOROVICI R, VANCU A. Optical properties and electronic structure of amorphous germanium[J]. Physica Status Solidi B-Basic Solid State Physics, 1966, 15(2): 627–637.
[197] CLIFFE M J, GOODWIN A L. PASCal: a principal axis strain calculator for thermal expansion and compressibility determination[J]. Journal of Applied Crystallography, 2012, 45(6): 1321–1329.
[198] BLÖCHL P E. Projector augmented-wave method[J]. Physical Review B: Condensed Matter and Materials Physics 1994, 50(24): 17953–17979.
[199] KRESSE G, FURTHMÜLLER J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set[J]. Computational Materials Science, 1996, 6(1): 15–50.
[200] KRESSE G, JOUBERT D. From ultrasoft pseudopotentials to the projector augmented-wave method[J]. Physical Review B, 1999, 59(3): 1758–1775.
[201] PERDEW J P, BURKE K, ERNZERHOF M. Generalized gradient approximation made simple[J]. Physical Review Letters 1996, 77(18): 3865–3868.
[202] KLIMEŠ J, BOWLER D R, MICHAELIDES A. Chemical accuracy for the van der Waals density functional[J]. Journal of Physics: Condensed Matter, 2010, 22(2): 022201.
[203] KLIMEŠ J, BOWLER D R, MICHAELIDES A. Van der Waals density functionals applied to solids[J]. Physical Review B, 2011, 83(19): 195131.
[204] ZHOU C K, LIN H R, WORKU M, et al. Blue emitting single crystalline assembly of metal halide clusters[J]. Journal of the American Chemical Society, 2018, 140(41): 13181–13184.
[205] KASHA M. Characterization of electronic transitions in complex molecules[J]. Discussions of the Faraday Society, 1950, 9(2): 14–19.
[206] GAN Z X, XU H, HAO Y L. Mechanism for excitation-dependent photoluminescence from graphene quantum dots and other graphene oxide derivates: consensus, debates and challenges[J]. Nanoscale, 2016, 8(15): 7794–7807.
[207] ZHOU C K, LIN H, NEU J, et al. Green emitting single-crystalline bulk assembly of metal halide clusters with near-unity photoluminescence quantum efficiency[J]. ACS Energy Letters, 2019, 4(7): 1579–1583.
[208] SCHMIDT T, LISCHKA K, ZULEHNER W. Excitation-power dependence of the near-band-edge photoluminescence of semiconductors[J]. Physical Review B: Condensed Matter and Materials Physics, 1992, 45(16): 8989–8994.
[209] WILSON J S, CHAWDHURY N, AL-MANDHARY M R, et al. The energy gap law for triplet states in Pt-containing conjugated polymers and monomers[J]. Journal of the American Chemical Society, 2001, 123(38): 9412–9417.
[210] LUO Y F, XU Y Y, ZHANG W T, et al. Theoretical Insights into the phosphorescence quantum yields of cyclometalated (C^C*) platinum(II) NHC complexes: conjugation controls the radiative and nonradiative decay processes[J]. The Journal of Physical Chemistry C, 2016, 120(6): 3462–3471.
[211] BENIN B M, DIRIN D N, MORAD V, et al. Highly emissive self-trapped excitons in fully inorganic zero-dimensional tin halides[J]. Angewandte Chemie International Edition, 2018, 57(35): 11329–11333.
[212] LIAO J F, ZHANG Z, WEI J H, et al. Emission-color-tunable Pb−Sn alloyed single crystals with high luminescent efficiency and stability[J]. Advanced Optical Materials, 2022, 10(6): 2102426.
[213] LI Z Y, SONG G M, LI Y, et al. Realizing tunable white light emission in lead-free indium(III) bromine hybrid single crystals through antimony(III) cation doping[J]. The Journal of Physical Chemistry Letters, 2020, 11(23): 10164–10172.
[214] AKSHINAMURTHY A C, GUPTA M, NANDA B R K, et al. Anionic alloying in hybrid halide Cs2AgBiBr6–xClx double perovskites: is it true alloying or preferential occupation of halide ions in MX6 octahedra?[J]. The Journal of Physical Chemistry C, 2023, 127(3): 1588–1597.
[215] YANG X M, WANG Y, JIANG J J, et al. Composition effects on structure and optical properties in double perovskite derivatives semiconductors Cs2SnI6−xBrx (x = 0–6)[J]. APL Materials, 2020, 8(2): 021102.
[216] KUBICKI D J, PROCHOWICZ D, SALAGER E, et al. Local structure and dynamics in methylammonium, formamidinium, and cesium tin(II) mixed-halide perovskites from (119)Sn solid-state NMR[J]. Journal of the American Chemical Society, 2020, 142(17): 7813–7826.
[217] CHEN D, DAI F L, HAO S Q, et al. Crystal structure and luminescence properties of lead-free metal halides: (C6H5CH2NH3)3MBr6 (M = Bi and Sb)[J]. Journal of Materials Chemistry C, 2020, 8(2): 7322–7329.
[218] LIU H C, GU Y R, DAI Y X, et al. Pressure-induced blue-shifted and enhanced emission: a cooperative effect between aggregation-induced emission and energytransfer suppression[J]. Journal of the American Chemical Society, 2020, 142(3): 1153–1158.
[219] JIANG Y Z, SUN C J, XU J, et al. Synthesis-on-substrate of quantum dot solids[J]. Nature, 2022, 612(7941): 679–684.
[220] FU Y P, ZHU H M, CHEN J, et al. Metal halide perovskite nanostructures for optoelectronic applications and the study of physical properties[J]. Nature Reviews Materials, 2019, 4(3): 169–188.
[221] GUO Q X, ZHAO X, SONG B X, et al. Light emission of self-trapped excitons in inorganic metal halides for optoelectronic applications[J]. Advanced Materials, 2022, 34(52): e2201008.
[222] LI X, GAO X P, ZHANG X T, et al. Lead-free halide perovskites for light emission: recent advances and perspectives[J]. Advanced Science, 2020, 8(4): 2003334.
[223] SMITH M D, CONNOR B A, KARUNADASA H I. Tuning the luminescence of layered halide perovskites[J]. Chemical Review, 2019, 119(5): 3104–3139.
[224] CHEN H T, XIANG H Y, ZOU Y T, et al. Perspective on metal halides with selftrapped exciton toward white light-emitting diodes[J]. Advanced Optical Materials, 2022, 10(5): 2101900.
[225] HAN D, SHI H L, MING W M, et al. Unraveling luminescence mechanisms in zerodimensional halide perovskites[J]. Journal of Materials Chemistry C, 2018, 6(24): 6398–6405.
[226] VOLONAKIS G, HAGHIGHIRAD A A, MILOT R L, et al. Cs2InAgCl6: a new leadfree halide double perovskite with direct band gap[J]. The Journal of Physical Chemistry Letters 2017, 8(4): 772–778.
[227] LUO J J, LI S R, WU H D, et al. Cs2AgInCl6 double perovskite single crystals: parity forbidden transitions and their application for sensitive and fast UV photodetectors[J]. ACS Photonics, 2018, 5(2): 398–405.
[228] MATHEU R, VIGIL J A, CRACE E J, et al. The halogen chemistry of halide perovskites[J]. Trends in Chemistry, 2022, 4(3): 206–219.
[229] HARIS M P U, BAKTHAVATSALAM R, SHAIKH S, et al. Synthetic control on structure/dimensionality and photophysical properties of low dimensional organic lead bromide perovskite[J]. Inorganic Chemistry, 2018, 57(21): 13443–13452.
[230] JACOBS P W M. Alkali halide crystals containing impurity ions with the ns2 groundstate electronic configuration[J]. Journal of Physics and Chemistry of Solids, 1991, 52(1): 35–67.
[231] MORAD V, SHYNKARENKO Y, YAKUNIN S, et al. Disphenoidal zero-dimensional lead, tin, and germanium halides: highly emissive singlet and triplet self-trapped excitons and X-ray scintillation[J]. Journal of the American Chemical Society, 2019, 141(25): 9764–9768.
[232] LIU S, SUN S S, GAN C K, et al. Manipulating efficient light emission in twodimensional perovskite crystals by pressure-induced anisotropic deformation[J]. Sci Adv, 2019, 5(7): eaav9445.
[233] MA X M, PAN F, LI H Q, et al. Mechanism of single-photon upconversion photoluminescence in all-inorganic perovskite nanocrystals: the role of self-trapped excitons[J]. The Journal of Physical Chemistry Letters 2019, 10(20): 5989–5996.
[234] KE F, YAN J J, MATHEU R, et al. Quasi-one-dimensional metallicity in compressed CsSnI3[J]. Journal of the American Chemical Society, 2022, 144(51): 26595–23602.
[235] LI S X, QIN Z H, WU H, et al. Anomalous thermal transport under high pressure in boron arsenide[J]. Nature, 2022, 612(7940): 459–464.
[236] HOFFMAN J M, CHE X Y, SIDHIK S, et al. From 2D to 1D electronic dimensionality in halide perovskites with stepped and flat layers using propylammonium as a spacer[J]. Journal of the American Chemical Society, 2019, 141(27): 10661–10676.
[237] HAN Y, YIN J, CAO G Y, et al. Exciton self-trapping for white emission in 100-oriented two-dimensional perovskites via halogen substitution[J]. ACS Energy Letters, 2021, 7(1): 453–460.
[238] FEBRIANSYAH B, BORZDA T, CORTECCHIA D, et al. Metal coordination sphere deformation induced highly stokes-shifted, ultra broadband emission in 2D hybrid lead-bromide perovskites and investigation of its origin[J]. Angewandte Chemie International Edition, 2020, 59(27): 10791–10796.
[239] ZU H-Y, FAN C-C, LIU C-D, et al. Establishing a relationship between the bandgap and the structure in 2D lead halide perovskite semiconductors[J]. Chemistry of Materials, 2023, 35(15): 5854–5863.
[240] LI X T, HOFFMAN J M, KANATZIDIS M G. The 2D halide perovskite rulebook: how the spacer influences everything from the structure to optoelectronic device efficiency[J]. Chemical Review, 2021, 121(4): 2230–2291.
[241] GAO C F, LI R P, LI Y R, et al. Direct-indirect transition of pressurized twodimensional halide perovskite: role of benzene ring stack ordering[J]. The Journal of Physical Chemistry Letters, 2019, 10(19): 5687–5693.
[242] LIU G, GONG J, KONG L P, et al. Isothermal pressure-derived metastable states in 2D hybrid perovskites showing enduring bandgap narrowing[J]. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115(32): 8076–8081.
[243] HAN X B, JING C Q, ZU H Y, et al. Structural descriptors to correlate Pb ion displacement and broadband emission in 2D halide perovskites[J]. Journal of the American Chemical Society, 2022, 144(40): 18595–18606.
[244] KOEGEL A A, MOZUR E M, OSWALD I W H, et al. Correlating broadband photoluminescence with structural dynamics in layered hybrid halide perovskites[J]. Journal of the American Chemical Society, 2022, 144(3): 1313–1322.
[245] NIU L D, ZHAO L L, LI D Y, et al. Predictably synthesizing a library of white-lightemitting perovskites[J]. Science China Chemistry, 2023, 66(3): 760–766

所在学位评定分委会
物理学
国内图书分类号
O521
来源库
人工提交
成果类型学位论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/765787
专题南方科技大学
理学院_化学系
推荐引用方式
GB/T 7714
徐斌. 高压下低维金属卤化物激子发光性质调控研究[D]. 深圳. 南方科技大学,2024.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可 操作
12131202-徐斌-化学系.pdf(16540KB)----限制开放--请求全文
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[徐斌]的文章
百度学术
百度学术中相似的文章
[徐斌]的文章
必应学术
必应学术中相似的文章
[徐斌]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。