[1] MANSER J S, CHRISTIANS J A, KAMAT P V. Intriguing optoelectronic properties of metal halide perovskites[J]. Chemical Review, 2016, 116(21): 12956–13008.
[2] TAO W J, ZHANG Y, ZHU H M. Dynamic exciton polaron in two-dimensional lead halide perovskites and Implications for optoelectronic applications[J]. Accounts of Chemical Research, 2022, 55(3): 345–353.
[3] QUAN L N, GARCIA DE ARQUER F P, SABATINI R P, et al. Perovskites for light emission[J]. Advanced Materials, 2018, 30(45): 1801996.
[4] HAN T-H, JANG K Y, DONG Y T, et al. A roadmap for the commercialization of perovskite light emitters[J]. Nature Reviews Materials, 2022, 7: 757–777.
[5] LIU X-K, XU W D, BAI S, et al. Metal halide perovskites for light-emitting diodes[J]. Nature Materials, 2021, 20: 10–21.
[6] DONG H Y, ZHANG C H, LIU X L, et al. Materials chemistry and engineering in metal halide perovskite lasers[J]. Chemical Society Review, 2020, 49(3): 951–982.
[7] LEI L, DONG Q, GUNDOGDU K, et al. Metal halide perovskites for laser applications[J]. Advanced Functional Materials, 2021, 31(16): 2010144.
[8] WANG H P, LI S Y, LIU X, et al. Low-dimensional metal halide perovskite photodetectors[J]. Advanced Materials, 2021, 33(7): e2003309.
[9] ZHANG Y Q, MA Y, WANG Y X, et al. Lead-free perovskite photodetectors: progress, challenges, and opportunities[J]. Advanced Materials, 2021, 33(26): e2006691.
[10] WRIGHT A D, VERDI C, MILOT R L, et al. Electron–phonon coupling in hybrid lead halide perovskites[J]. Nature Communications, 2016, 7(1): 11755.
[11] GONG X W, VOZNYY O, JAIN A, et al. Electron–phonon interaction in efficient perovskite blue emitters[J]. Nature Materials, 2018, 17(6): 550–556.
[12] LIN H R, ZHOU C K, TIAN Y, et al. Low-dimensional organometal halide perovskites[J]. ACS Energy Letters, 2017, 3(1): 54–62.
[13] ZHOU C K, LIN H R, LEE S, et al. Organic–inorganic metal halide hybrids beyond perovskites[J]. Materials Research Letters, 2018, 6(10): 552–569.
[14] SMITH M D, KARUNADASA H I. White-light emission from layered halide perovskites[J]. Accounts of Chemical Research, 2018, 51(3): 619–627.
[15] LI S R, LUO J J, LIU J, et al. Self-trapped excitons in all-inorganic halide perovskites: fundamentals, status, and potential applications[J]. The Journal of Physical Chemistry Letters, 2019, 10(8): 1999–2007.
[16] JIANG F, WU Z N, LU M, et al. Broadband emission origin in metal halide perovskites: are self-trapped excitons or ions?[J]. Advanced Materials, 2023, 35(51): e2211088.
[17] LIU G, KONG L P, YANG W G, et al. Pressure engineering of photovoltaic perovskites[J]. Materials Today, 2019, 27: 91–106.
[18] ZHANG L, WANG K, LIN Y, et al. Pressure effects on the electronic and optical properties in low-dimensional metal halide perovskites[J]. The Journal of Physical Chemistry Letters, 2020, 11(12): 4693–4701.
[19] LI M, LIU T B, WANG Y G, et al. Pressure responses of halide perovskites with various compositions, dimensionalities, and morphologies[J]. Matter and Radiation at Extremes, 2020, 5(1): 018201.
[20] LI Q, ZHANG L M, CHEN Z W, et al. Metal halide perovskites under compression[J]. Journal of Materials Chemistry A, 2019, 7(27): 16089–16108.
[21] BRETERNITZ J, SCHORR S. What defines a perovskite?[J]. Advanced Energy Materials, 2018, 8(34): 1802366.
[22] AKKERMAN Q A, MANNA L. What defines a halide perovskite?[J]. ACS Energy Letters, 2020, 5(2): 604–610.
[23] ROSE G. Ueber einige neue Mineralien des Urals[J]. Journal für Praktische Chemie, 1840, 19(1): 459–468.
[24] GOLDSCHMIDT V M. Die gesetze der krystallochemie[J]. Die Naturwissenschaften, 1926, 14(21): 477–485.
[25] WELLS H L. On the caesium- and the potassium-lead halides[J]. American Journal of Science, 1893, 45(266): 121–134.
[26] MØLLER C K. A phase transition in cæsium plumbochloride[J]. Nature, 1957, 180(4593): 981–982.
[27] WEBER D. CH3NH3PbX3, a Pb(II)-system with cubic perovskite structure[J]. Journal Fur Naturforschung Section B-A Journal of Chemical Sciences, 1978, 33(12): 1443–1445.
[28] KOJIMA A, TESHIMA K, SHIRAI Y, et al. Organometal halide perovskites as visiblelight sensitizes for photovoltaic cells[J]. Journal of the American Chemical Society, 2009, 131(17): 6050–6051.
[29] BARTEL C J, SUTTON C, GOLDSMITH B R, et al. New tolerance factor to predict the stability of perovskite oxides and halides[J]. Science Advances, 2019, 5(2): eaav0693.
[30] SPANOPOULOS I, KE W, STOUMPOS C C, et al. Unraveling the chemical nature of the 3D "hollow" hybrid halide perovskites[J]. Journal of the American Chemical Society, 2018, 140(17): 5728–5742.
[31] SPANOPOULOS I, HADAR I, KE W, et al. Tunable broad light emission from 3D "hollow" bromide perovskites through defect engineering[J]. Journal of the American Chemical Society, 2021, 143(18): 7069–7080.
[32] JAYANTHI K, SPANOPOULOS I, ZIBOUCHE N, et al. Entropy stabilization effects and ion migration in 3D "hollow" halide perovskites[J]. Journal of the American Chemical Society, 2022, 144(18): 8223–8230.
[33] JI C M, ZHU T T, FAN Y P, et al. Localized lattice expansion of FAPbBr3 to design a 3D hybrid perovskite for sensitive near-infrared photodetection[J]. Angewandte Chemie International Edition, 2022, 61(47): e202213294.
[34] GUAN Q W, ZHU T T, ZHU Z K, et al. Unprecedented chiral three-dimensional hybrid organic-inorganic perovskitoids[J]. Angewandte Chemie International Edition, 2023, 62(32): e202307034.
[35] SUN C, GUO Y H, HAN S S, et al. Three-dimensional cuprous lead bromide framework with highly efficient and stable blue photoluminescence emission[J]. Angewandte Chemie International Edition, 2020, 59(38): 16465–16469.
[36] SCHMIDT L C, PERTEGAS A, GONZALEZ-CARRERO S, et al. Nontemplate synthesis of CH3NH3PbBr3 perovskite nanoparticles[J]. Journal of the American Chemical Society, 2014, 136(3): 850–853.
[37] TYAGI P, ARVESON S M, TISDALE W A. Colloidal organohalide perovskite nanoplatelets exhibiting quantum confinement[J]. The Journal of Physical Chemistry Letters, 2015, 6(10): 1911–1916.
[38] DOU L T, WONG A B, YU Y, et al. Atomically thin two-dimensional organicinorganic hybrid perovskites[J]. Science, 2015, 349(6255): 1518–1521.
[39] ZHANG D D, EATON S W, YU Y, et al. Solution-phase synthesis of cesium lead halide perovskite nanowires[J]. Journal of the American Chemical Society, 2015, 137(29): 9230–9233.
[40] ZHOU C K, LIN H R, HE Q Q, et al. Low dimensional metal halide perovskites and hybrids[J]. Materials Science & Engineering: R-Reports, 2019, 137: 38–65.
[41] HAN K, JIN J C, SU B B, et al. Molecular dimensionality and photoluminescence of hybrid metal halides[J]. Trends in Chemistry, 2022, 4(11): 1034–1044.
[42] WILLETT R D. Crystal structure of (NH4)2CuCl4[J]. The Journal of Chemical Physics, 1964, 41(8): 2243–2244.
[43] WILLETT R D, LILES O L, MICHELSON C. Electronic absorption spectra of monomeric copper(II) chloride species and the electron spin resonance spectrum of the square-planar CuCl42- ion[J]. Inorganic Chemistry, 2002, 6(10): 1885–1889.
[44] BELLITTO C, DAY P. Bis(monoalkylammonium) tetrachlorochromates(II): a new series of two-dimensional ionic ferromagnets[J]. Journal of the Chemical Society, Chemical Communications, 1976, 1(21): 870–871.
[45] DOLZHENKO Y I, INABE T, MARUYAMA Y. In situ X-ray observation on the intercalation of weak interaction molecules into perovskite-type layered crystals (C9H19NH3)2PbI4 and (C10H21NH3)2CdCl4[J]. Bulletin of the Chemical Society of Japan, 1986, 59(2): 563–567.
[46] ISHIHARA T, TAKAHASHI J, GOTO T. Exciton state in two-dimensional perovskite semiconductor (C10H21NH3)2PbI4[J]. Solid State Communications, 1989, 69(9): 933–936.
[47] MITZI D B, FEILD C A, HARRISON W T A, et al. Conducting tin halides with a layered organic-based perovskite structure[J]. Nature, 1994, 369(6480): 467–469.
[48] MITZI D B. Synthesis, crystal structure, and optical and thermal properties of (C4H9NH3)2MI4 (M = Ge, Sn, Pb)[J]. Chemistry of Materials, 1996, 8(3): 791–800.
[49] DOHNER E R, HOKE E T, KARUNADASA H I. Self-assembly of broadband whitelight emitters[J]. Journal of the American Chemical Society, 2014, 136(5): 1718–1721.
[50] DOHNER E R, JAFFE A, BRADSHAW L R, et al. Intrinsic white-light emission from layered hybrid perovskites[J]. Journal of the American Chemical Society, 2014, 136(38): 13154–13157.
[51] SOE C M M, NAGABHUSHANA G P, SHIVARAMAIAH R, et al. Structural and thermodynamic limits of layer thickness in 2D halide perovskites[J]. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116(1): 58–66.
[52] KAMMINGA M E, DE WIJS G A, HAVENITH R W A, et al. The role of connectivity on electronic properties of lead iodide perovskite-derived compounds[J]. Inorganic Chemistry, 2017, 56(14): 8408–8414.
[53] WANG S M, MITZI D B, FEILD C A, et al. Synthesis and characterization of [NH2C(I):NH2]3MI5 (M = Sn, Pb): stereochemical activity in divalent tin and lead halides containing single <110> perovskite sheets[J]. Journal of the American Chemical Society, 2002, 117(19): 5297–5302.
[54] YUAN Z, ZHOU C K, TIAN Y, et al. One-dimensional organic lead halide perovskites with efficient bluish white-light emission[J]. Nature Communications, 2017, 8(1): 14051.
[55] WU G H, ZHOU C K, MING W M, et al. A one-dimensional organic lead chloride hybrid with excitation-dependent broadband emissions[J]. ACS Energy Letters, 2018, 3(6): 1443–1449.
[56] LIN H R, ZHOU C K, NEU J, et al. Bulk assembly of corrugated 1D metal halides with broadband yellow emission[J]. Advanced Optical Materials, 2019, 7(6): 1801474.
[57] ZHOU C K, TIAN Y, WANG M C, et al. Low-dimensional organic tin bromide perovskites and their photoinduced structural transformation[J]. Angewandte Chemie International Edition, 2017, 56(31): 9018–9022.
[58] JIN K H, ZHANG Y, LI K J, et al. Enantiomorphic single crystals of linear lead(II) bromide perovskitoids with white circularly polarized emission[J]. Angewandte Chemie International Edition, 2022, 61(30): e202205317.
[59] MAO L L, GUO P J, KEPENEKIAN M, et al. Structural diversity in white-lightemitting hybrid lead bromide perovskites[J]. Journal of the American Chemical Society, 2018, 140(40): 13078–13088.
[60] LIN H R, ZHOU C K, TIAN Y, et al. Bulk assembly of organic metal halide nanotubes[J]. Chemical Science, 2017, 8(12): 8400–8404.
[61] SPANOPOULOS I, HADAR I, KE W, et al. Water-stable 1D hybrid tin(II) iodide emits broad light with 36% photoluminescence quantum efficiency[J]. Journal of the American Chemical Society, 2020, 142(19): 9028–9038.
[62] YU S-K, XU N-N, JIANG M, et al. Hybrid lead iodide perovskites with mixed cations of thiourea and methylamine, from one dimension to three dimensions[J]. Inorganic Chemistry, 2020, 59(21): 15842–15847.
[63] BEN HAJ SALAH M, MERCIER N, ALLAIN M, et al. Dual phosphorescence from the organic and inorganic moieties of 1D hybrid perovskites of the Pbn'Br4n'+2 series (n' = 2, 3, 4, 5)[J]. Journal of Materials Chemistry C, 2019, 7(15): 4424–4433.
[64] LOUVAIN N, BI W, MERCIER N, et al. PbnI4n+2(2n+2)– ribbons (n = 3, 5) as dimensional reductions of 2D perovskite layers in cystamine cation based hybrids, also incorporating iodine molecules or reversible guest water molecules[J]. Dalton Transactions, 2007, 16(9): 965–970.
[65] BILLING D G, LEMMERER A. Inorganic–organic hybrid materials incorporating primary cyclic ammonium cations: the lead bromide and chloride series[J]. CrystEngComm, 2009, 11(8): 1549–1562.
[66] NIKL M, MIHOKOVA E, NITSCH K, et al. Photoluminescence of Cs4PbBr6 crystals and thin films[J]. Chemical Physics Letters, 1999, 306(5–6): 280–284.
[67] ZHOU C K, TIAN Y, YUAN Z, et al. Highly efficient broadband yellow phosphor based on zero-dimensional tin mixed-halide perovskite[J]. ACS Applied Materials & Interfaces, 2017, 9(51): 44579–44583.
[68] ZHOU C K, LIN H R, TIAN Y, et al. Luminescent zero-dimensional organic metal halide hybrids with near-unity quantum efficiency[J]. Chemical Science, 2018, 9(3): 586–593.
[69] LI M Z, XIA Z G. Recent progress of zero-dimensional luminescent metal halides[J]. Chemical Society Reviews, 2021, 50(4): 2626–2662.
[70] JIN J-C, SHEN N-N, WANG Z-P, et al. Photoluminescent ionic metal halides based on s2 typed ions and aprotic ionic liquid cations[J]. Coordination Chemistry Reviews, 2021, 448(1): 214185.
[71] ADONIN S A, SOKOLOV M N, FEDIN V P. Polynuclear halide complexes of Bi(III): from structural diversity to the new properties[J]. Coordination Chemistry Reviews, 2016, 312(1): 1–21.
[72] WEI J H, LIAO J F, ZHOU L, et al. Indium-antimony-halide single crystals for highefficiency white-light emission and anti-counterfeiting[J]. Science Advances, 2021, 7(34): eabg3989.
[73] LEE S, ZHOU C K, NEU J, et al. Bulk assemblies of lead bromide trimer clusters with geometry-dependent photophysical properties[J]. Chemistry of Materials, 2019, 32(1): 374–380.
[74] ZHOU C K, LEE S J, LIN H R, et al. Bulk assembly of multicomponent zerodimensional metal halides with dual emission[J]. ACS Materials Letters, 2020, 2(4): 376–380.
[75] XU L J, LEE S J, LIN X S, et al. Multicomponent organic metal halide hybrid with white emissions[J]. Angewandte Chemie International Edition, 2020, 59(33): 14120–14123.
[76] FOLGUERAS M C, JIANG Y X, JIN J B, et al. High-entropy halide perovskite single crystals stabilized by mild chemistry[J]. Nature, 2023, 621(7978): 282–288.
[77] HUANG R R, WANG C, TAN D, et al. Single-fluorophore-based organic crystals with distinct conformers enabling wide-range excitation-dependent emissions[J]. Angewandte Chemie International Edition, 2022, 61(41): e202211106.
[78] SHEN Y X, AN Z F, LIU H C, et al. Excitation-dependent multicolour luminescence of organic materials: internal mechanism and potential applications[J]. Angewandte Chemie International Edition, 2022, 62(6): e202214483.
[79] UMEBAYASHI T, ASAI K, KONDO T, et al. Electronic structures of lead iodide based low-dimensional crystals[J]. Physical Review B, 2003, 67(15): 155405.
[80] DU M H. Efficient carrier transport in halide perovskites: theoretical perspectives[J]. Journal of Materials Chemistry A, 2014, 2(24): 9091–9098.
[81] BRIVIO F, BUTLER K T, WALSH A, et al. Relativistic quasiparticle self-consistent electronic structure of hybrid halide perovskite photovoltaic absorbers[J]. Physical Review B, 2014, 89(15): 155204.
[82] XIAO Z W, ZHOU Y Y, HOSONO H, et al. Bandgap optimization of perovskite semiconductors for photovoltaic applications[J]. Chemistry-A European Journal, 2018, 24(10): 2305–2316.
[83] SUN H-Y, XIONG L, JIANG H. Toward first-principles approaches for mechanistic study of self-trapped exciton luminescence[J]. Chemical Physics Reviews, 2023, 4(3): 031302.
[84] KIM J, LEE S-C, LEE S-H, et al. Importance of orbital interactions in determining electronic band structures of organo-lead iodide[J]. The Journal of Physical Chemistry C, 2015, 119(9): 4627–4634.
[85] XIAO Z W, MENG W W, WANG J B, et al. Searching for promising new perovskitebased photovoltaic absorbers: the importance of electronic dimensionality[J]. Materials Horizons, 2017, 4(2): 206–216.
[86] LUO J J, WANG X M, LI S R, et al. Efficient and stable emission of warm-white light from lead-free halide double perovskites[J]. Nature, 2018, 563(7732): 541–545.
[87] BLANCON J-C, EVEN J, STOUMPOS C C, et al. Semiconductor physics of organic– inorganic 2D halide perovskites[J]. Nature Nanotechnology, 2020, 15(12): 969–985.
[88] STRAUS D B, KAGAN C R. Photophysics of two-dimensional semiconducting organic-inorganic metal-halide perovskites[J]. Annual Review of Physical Chemistry 2022, 73(2): 403–428.
[89] HU H, LIU Y M, XIE Z X, et al. Observation of defect luminescence in 2D Dion– Jacobson perovskites[J]. Advanced Optical Materials, 2021, 9(24): 2101423.
[90] SMITH M D, CRACE E J, JAFFE A, et al. The diversity of layered halide perovskites[J]. Annual Review of Materials Research, 2018, 48(1): 111–136.
[91] HU T, SMITH M D, DOHNER E R, et al. Mechanism for broadband white-light emission from two-dimensional (110) hybrid perovskites[J]. The Journal of Physical Chemistry Letters 2016, 7(12): 2258–2263.
[92] STOUMPOS C C, CAO D H, CLARK D J, et al. Ruddlesden–Popper hybrid lead iodide perovskite 2D homologous semiconductors[J]. Chemistry of Materials, 2016, 28(8): 2852–2867.
[93] VASILEIADOU E S, KANATZIDIS M G. Structure–property relationships and idiosyncrasies of bulk, 2D hybrid lead bromide perovskites[J]. Israel Journal of Chemistry, 2021, 61(11–12): 782–817.
[94] MAO L L, GUO P J, KEPENEKIAN M, et al. Organic cation alloying on intralayer A and interlayer A' sites in 2D hybrid Dion-Jacobson lead bromide perovskites (A')(A)Pb2Br7[J]. Journal of the American Chemical Society, 2020, 142(18): 8342–8351.
[95] MAO L L, KE W J, PEDESSEAU L, et al. Hybrid Dion-Jacobson 2D lead iodide perovskites[J]. Journal of the American Chemical Society, 2018, 140(10): 3775–3783.
[96] MAO L L, STOUMPOS C C, KANATZIDIS M G. Two-dimensional hybrid halide perovskites: principles and promises[J]. Journal of the American Chemical Society, 2019, 141(3): 1171–1190.
[97] LEE S, KARKEE R, BEN-AKACHA A, et al. One-dimensional organic metal halide nanoribbons with dual emission[J]. Chemical Communications, 2023, 59(25): 3711–3714.
[98] XU Z W, JIANG X X, CAI H P, et al. Toward a general understanding of exciton selftrapping in metal halide perovskites[J]. The Journal of Physical Chemistry Letters 2021, 12(43): 10472–10478.
[99] KATAN C, MERCIER N, EVEN J. Quantum and dielectric confinement effects in lower-dimensional hybrid perovskite semiconductors[J]. Chemical Reviews, 2019, 119(5): 3140–3192.
[100] YIN J, NAPHADE R, GUTIÉRREZ ARZALUZ L, et al. Modulation of broadband emissions in two-dimensional <100>-oriented Ruddlesden–Popper hybrid perovskites[J]. ACS Energy Letters, 2020, 5(7): 2149–2155.
[101] ZHANG Q, JI Y J, CHEN Z H, et al. Controlled aqueous synthesis of 2D hybrid perovskites with bright room-temperature long-lived luminescence[J]. The Journal of Physical Chemistry Letters, 2019, 10(11): 2869–2873.
[102] JING Y Y, LIU Y, JIANG X X, et al. Sb3+ dopant and halogen substitution triggered highly efficient and tunable emission in lead-free metal halide single crystals[J]. Chemistry of Materials, 2020, 32(12): 5327–5334.
[103] JING Y Y, LIU Y, LI M Z, et al. Photoluminescence of singlet/triplet self-trapped excitons in Sb3+-based metal halides[J]. Advanced Optical Materials, 2021, 9(8): 2002213.
[104] ZHOU G J, SU B B, HUANG J L, et al. Broad-band emission in metal halide perovskites: mechanism, materials, and applications[J]. Materials Science & Engineering: R-Reports, 2020, 141: 100548.
[105] WANG X M, MENG W W, LIAO W Q, et al. Atomistic mechanism of broadband emission in metal halide perovskites[J]. The Journal of Physical Chemistry Letters, 2019, 10(3): 501–506.
[106] HUANG KUN A R. Theory of light absorption and non-radiative transitions in Fcentres[J]. Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences, 1997, 204(1078): 406–423.
[107] DE JONG M, SEIJO L, MEIJERINK A, et al. Resolving the ambiguity in the relation between Stokes shift and Huang-Rhys parameter[J]. Physical Chemistry Chemical Physics, 2015, 17(26): 16959–16969.
[108] MAUCK C M, TISDALE W A. Excitons in 2D organic–inorganic halide perovskites[J]. Trends in Chemistry, 2019, 1(4): 380–393.
[109] SAPAROV B, MITZI D B. Organic–inorganic perovskites: structural versatility for functional materials design[J]. Chemical Reviews, 2016, 116(7): 4558–4596.
[110] SMITH M D, JAFFE A, DOHNER E R, et al. Structural origins of broadband emission from layered Pb-Br hybrid perovskites[J]. Chemical Science, 2017, 8(6): 4497–4504.
[111] SUN S Q, LU M, GAO X P, et al. 0D perovskites: unique properties, synthesis, and their applications[J]. Advanced Science, 2021, 8(24): e2102689.
[112] ZHOU L, LIAO J F, KUANG D B. An overview for zero-dimensional broadband emissive metal-halide single crystals[J]. Advanced Optical Materials, 2021, 9(17): 2100544.
[113] ZHOU G J, LI M Z, ZHAO J, et al. Single-component white-light emission in 2D hybrid perovskites with hybridized halogen atoms[J]. Advanced Optical Materials, 2019, 7(24): 1901335.
[114] ZHOU C K, WORKU M, NEU J, et al. Facile preparation of light emitting organic metal halide crystals with near-unity quantum efficiency[J]. Chemistry of Materials, 2018, 30(7): 2374–2378.
[115] ZHOU L, LIAO J F, HUANG Z G, et al. A highly red-emissive lead-free indium-based perovskite single crystal for sensitive water detection[J]. Angewandte Chemie International Edition, 2019, 58(16): 5277–5281.
[116] ZHOU L, LIAO J F, HUANG Z G, et al. Intrinsic self-trapped emission in 0D leadfree (C4H14N2)2In2Br10 single crystal[J]. Angewandte Chemie International Edition, 2019, 58(43): 15435–15440.
[117] SU B B, SONG G M, MOLOKEEV M S, et al. Synthesis, crystal structure and green luminescence in zero-dimensional tin halide (C8H14N2)2SnBr6[J]. Inorganic Chemistry, 2020, 59(14): 9962–9968.
[118] SU B B, GENG S N, XIAO Z W, et al. Highly distorted antimony(III) chloride [Sb2Cl8]2– dimers for near-infrared luminescence up to 1070 nm[J]. Angewandte Chemie International Edition, 2022, 61(33): e202208881.
[119] LI M Z, MOLOKEEV M S, ZHAO J, et al. Optical functional units in zero-dimensional metal halides as a paradigm of tunable photoluminescence and multicomponent chromophores[J]. Advanced Optical Materials, 2020, 8(8): 1902114.
[120] LI M Z, LI Y W, MOLOKEEV M S, et al. Halogen substitution in zero-dimensional mixed metal halides toward photoluminescence modulation and enhanced quantum yield[J]. Advanced Optical Materials, 2020, 8(16): 2000418.
[121] ONODA-YAMAMURO N, YAMAMURO O, MATSUO T, et al. p-T phase relations of CH3NH3PbX3 (X = Cl, Br, I) crystals[J]. Journal of Physics and Chemistry of Solids, 1992, 53(2): 277–281.
[122] SCHWARZ U, WAGNER F, SYASSEN K, et al. Effect of pressure on the opticalabsorption edges of CsGeBr3 and CsGeCl3[J]. Physical Review B: Condensed Matter and Materials Physics, 1996, 53(19): 12545–12548.
[123] WANG L R, WANG K, ZOU B. Pressure-induced structural and optical properties of organometal halide perovskite-based formamidinium lead bromide[J]. The Journal of Physical Chemistry Letters, 2016, 7(13): 2556–2562.
[124] WANG L R, OU T J, WANG K, et al. Pressure-induced structural evolution, optical and electronic transitions of nontoxic organometal halide perovskite-based methylammonium tin chloride[J]. Applied Physics Letters, 2017, 111(23): 233901.
[125] LU X J, WANG Y G, STOUMPOS C C, et al. Enhanced structural stability and photo responsiveness of CH3NH3SnI3 perovskite via pressure-induced amorphization and recrystallization[J]. Advanced Materials, 2016, 28(39): 8663–8668.
[126] KONG L P, LIU G, GONG J, et al. Simultaneous band-gap narrowing and carrierlifetime prolongation of organic-inorganic trihalide perovskites[J]. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113(32): 8910–8915.
[127] JAFFE A, LIN Y, BEAVERS C M, et al. High-pressure single-crystal structures of 3D lead-halide hybrid perovskites and pressure effects on their electronic and optical properties[J]. ACS Central Science, 2016, 2(4): 201–209.
[128] ZHAO W Y, XIAO G J, ZOU B. Pressure-induced emission (PIE) in halide perovskites toward promising applications in scintillators and solid-state lighting[J]. Aggregate, 2023, 5(1): e461.
[129] LI Q, XU B, QUAN Z W. Pressure-regulated excitonic transitions in emergent metal halides[J]. Accounts of Chemical Research, 2023, 56(22): 3282–3291.
[130] SHOCKLEY W, QUEISSER H J. Detailed balance limit of efficiency of p-n junction solar cells[J]. Journal of Applied Physics, 1961, 32(3): 510–519.
[131] STOUMPOS C C, KANATZIDIS M G. The renaissance of halide perovskites and their evolution as emerging semiconductors[J]. Accounts of Chemical Research, 2015, 48(10): 2791–2802.
[132] LIU G, KONG L P, GONG J, et al. Pressure-induced bandgap optimization in leadbased perovskites with prolonged carrier lifetime and ambient retainability[J]. Advanced Functional Materials, 2016, 27(3): 1604208.
[133] MATSUISHI K, SUZUKI T, ONARI S, et al. Excitonic states of alkylammonium leadiodide layered perovskite semiconductors under hydrostatic pressure to 25 GPa[J]. Physica Status Solidi B-Basic Solid State Physics, 2001, 223(1): 177–182.
[134] LIU G, KONG L P, GUO P J, et al. Two regimes of bandgap red shift and partial ambient retention in pressure-treated two-dimensional perovskites[J]. ACS Energy Letters, 2017, 2(11): 2518–2524.
[135] LI Q, WANG Y G, PAN W C, et al. High-pressure band-gap engineering in lead-free Cs2AgBiBr6 double perovskite[J]. Angewandte Chemie International Edition, 2017, 56(50): 15969–15973.
[136] WANG J X, WANG L R, LI Y Q, et al. Pressure-induced metallization of lead-free halide double perovskite (NH4)2PtI6[J]. Advanced Science, 2022, 9(28): e2203442.
[137] ZHANG L, LIU C M, WANG L R, et al. Pressure-induced emission enhancement, band-gap narrowing, and metallization of halide perovskite Cs3Bi2I9[J]. Angewandte Chemie International Edition, 2018, 57(35): 11213–11217.
[138] KE F, YAN J J, NIU S Y, et al. Cesium-mediated electron redistribution and electronelectron interaction in high-pressure metallic CsPbI3[J]. Nature Communications, 2022, 13(1): 7067.
[139] JI F X, KLARBRING J, WANG F, et al. Lead-free halide double perovskite Cs2AgBiBr6 with decreased band gap[J]. Angewandte Chemie International Edition, 2020, 59(35): 15191–15194.
[140] LI X T, FU Y P, PEDESSEAU L, et al. Negative pressure engineering with large cage cations in 2D halide perovskites causes lattice softening[J]. Journal of the American Chemical Society, 2020, 142(26): 11486–11496.
[141] LI Q, YIN L X, CHEN Z W, et al. High pressure structural and optical properties of two-dimensional hybrid halide perovskite (CH3NH3)3Bi2Br9[J]. Inorganic Chemistry, 2019, 58(2): 1621–1626.
[142] SONG X, LI Q, HAN J, et al. Highly luminescent metal-free perovskite single crystal for biocompatible X-ray detector to attain highest sensitivity[J]. Advanced Materials, 2021, 33(36): e2102190.
[143] FANG Y Y, ZHANG L, YU Y S, et al. Manipulating emission enhancement and piezochromism in two-dimensional organic-inorganic halide perovskite [(HO)(CH2)2NH3)]2PbI4 by high pressure[J]. CCS Chemistry, 2020, 3(8): 2203–2210.
[144] GUO S H, ZHAO Y S, BU K J, et al. Pressure-suppressed carrier trapping leads to enhanced emission in two-dimensional perovskite (HA)2(GA)Pb2I7[J]. Angewandte Chemie International Edition, 2020, 59(40): 17533–17539.
[145] HUANG X, LI X T, TAO Y, et al. Understanding electron–phonon interactions in 3D lead halide perovskites from the stereochemical expression of 6s2 lone pairs[J]. Journal of the American Chemical Society, 2022, 144(27): 12247–12260.
[146] GU J Z, TAO Y, FU T H, et al. Correlating photophysical properties with stereochemical expression of 6s2 lone pairs in two-dimensional lead halide perovskites[J]. Angewandte Chemie International Edition, 2023, 62(30): e202304515.
[147] ZHANG L, FANG Y Y, SUI L Z, et al. Tuning emission and electron–phonon coupling in lead-free halide double perovskite Cs2AgBiCl6 under pressure[J]. ACS Energy Letters, 2019, 4(12): 2975–2982.
[148] FANG Y Y, ZHANG L, WU L W, et al. Pressure-induced emission (PIE) and phase transition of a two-dimensional halide double perovskite (BA)4AgBiBr8 (BA=CH3(CH2)3NH3+)[J]. Angewandte Chemie International Edition, 2019, 131(43): 15393–15397.
[149] ZHANG L, LI S X, SUN H Y, et al. Revealing the mechanism of pressure-induced emission in layered silver-bismuth double perovskites[J]. Angewandte Chemie International Edition, 2023, 62(14): e202301573.
[150] FANG Y Y, WANG J T, ZHANG L, et al. Tailoring the high-brightness "warm" white light emission of two-dimensional perovskite crystals via a pressure-inhibited nonradiative transition[J]. Chemical Science, 2023, 14(10): 2652–2658.
[151] FU R J, ZHAO W Y, WANG L R, et al. Pressure-induced emission toward harvesting cold white light from warm white light[J]. Angewandte Chemie International Edition, 2021, 60(18): 10082–10088.
[152] LI Q, CHEN Z W, YANG B, et al. Pressure-induced remarkable enhancement of selftrapped exciton emission in one-dimensional CsCu2I3 with tetrahedral units[J]. Journal of the American Chemical Society, 2020, 142(4): 1786–1791.
[153] SHI Y, MA Z W, ZHAO D L, et al. Pressure-induced emission (PIE) of onedimensional organic tin bromide perovskites[J]. Journal of the American Chemical Society, 2019, 141(16): 6504–6508.
[154] WANG Y Q, GUO S H, LUO H, et al. Reaching 90% photoluminescence quantum yield in one-dimensional metal halide C4N2H14PbBr4 by pressure-suppressed nonradiative loss[J]. Journal of the American Chemical Society, 2020, 142(37): 16001–16006.
[155] LUO H, GUO S H, ZHANG Y B, et al. Regulating exciton-phonon coupling to achieve a near-unity photoluminescence quantum yield in one-dimensional hybrid metal halides[J]. Advanced Science, 2021, 8(14): e2100786.
[156] SUN M E, GENG T, YONG X, et al. Pressure-triggered blue emission of zerodimensional organic bismuth bromide perovskite[J]. Advanced Science, 2021, 8(9): 2004853.
[157] CHEN M T, GUO S H, BU K J, et al. Pressure-induced robust emission in a zerodimensional hybrid metal halide (C9NH20)6Pb3Br12[J]. Matter and Radiation at Extremes, 2021, 6(5): 058401.
[158] MA Z W, LIU Z, LU S Y, et al. Pressure-induced emission of cesium lead halide perovskite nanocrystals[J]. Nature Communications, 2018, 9(1): 4506.
[159] MA Z W, LI F F, ZHAO D L, et al. Whether or not emission of Cs4PbBr6 nanocrystals: high-pressure experimental evidence[J]. CCS Chemistry, 2020, 2(2): 71–80.
[160] GAO F F, SONG H P, LI Z G, et al. Pressure-tuned multicolor emission of 2D lead halide perovskites with ultrahigh color purity[J]. Angewandte Chemie International Edition, 2023, 62(12): e202218675.
[161] ZHANG L, WU L W, WANG K, et al. Pressure-induced broadband emission of 2D organic–inorganic hybrid perovskite (C6H5C2H4NH3)2PbBr4[J]. Advanced Science, 2019, 6(2): 1801628.
[162] ZHANG H, ZHANG P J, XIE C L, et al. Distinct excitonic emissions in 2D (C7H7N2)2PbX4 (X = Cl, Br) under compression[J]. Advanced Science, 2023, 11(4): e2305597.
[163] LI Q, CHEN Z W, LI M Z, et al. Pressure-engineered photoluminescence tuning in zero-dimensional lead bromide trimer clusters[J]. Angewandte Chemie International Edition, 2021, 6(5): 2583–2587.
[164] MA Z W, LI Q, LUO J J, et al. Pressure-driven reverse intersystem crossing: new path toward bright deep-blue emission of lead-free halide double perovskites[J]. Journal of the American Chemical Society, 2021, 143(37): 15176–15184.
[165] HAN J, LI Q, XU B, et al. Regulating multiple self-trapped exciton emissions in zerodimensional antimony halides with pyramidal units[J]. Journal of Materials Chemistry C, 2023, 11(31): 10625–10633.
[166] SHI Y, ZHAO W Y, MA Z W, et al. Self-trapped exciton emission and piezochromism in conventional 3D lead bromide perovskite nanocrystals under high pressure[J]. Chemical Science, 2021, 12(44): 14711–14717.
[167] ZHAO D L, CONG M, LIU Z, et al. Steric hindrance effects on the retention of pressure-induced emission toward scintillators[J]. Cell Reports Physical Science, 2023, 4(6): 101445.
[168] MA Z W, LI F F, SUI L Z, et al. Tunable color temperatures and emission enhancement in 1D halide perovskites under high pressure[J]. Advanced Optical Materials, 2020, 8(18): 2000713.
[169] FANG Y Y, SHAO T Y, ZHANG L, et al. Harvesting high-quality white-light emitting and remarkable emission enhancement in one-dimensional halide perovskites upon compression[J]. JACS Au, 2021, 1(4): 459–466.
[170] ZHAO D L, XIAO G J, LIU Z, et al. Harvesting cool daylight in hybrid organicinorganic halides microtubules through the reservation of pressure-induced emission[J]. Advanced Materials, 2021, 33(31): e2100323.
[171] LI Q, XU B, CHEN Z W, et al. Excitation-dependent emission color tuning of 0D Cs2InBr5(H2O) at high pressure[J]. Advanced Functional Materials, 2021, 31(38): 2104923.
[172] LEMMERER A, BILLING D G. Lead halide inorganic–organic hybrids incorporating diammonium cations[J]. CrystEngComm, 2012, 14(6): 1954–1966.
[173] BISWAS A, BAKTHAVATSALAM R, SHAIKH S R, et al. Efficient broad-band emission from contorted purely corner-shared one dimensional (1D) organic lead halide perovskite[J]. Chemistry of Materials, 2019, 31(7): 2253–2257.
[174] LI Y Z, JI C M, LI L N, et al. (γ-methoxy propyl amine)2PbBr4: a novel twodimensional halide hybrid perovskite with efficient bluish white-light emission[J]. Inorganic Chemistry Frontiers, 2021, 8(8): 2119–2124.
[175] MCMILLAN P F. Pressing on: the legacy of Percy W. Bridgman[J]. Nature Materials, 2005, 4(10): 715–718.
[176] KANTOR I, PRAKAPENKA V, KANTOR A, et al. BX90: a new diamond anvil cell design for X-ray diffraction and optical measurements[J]. Review of Scientific Instruments 2012, 83(12): 125102.
[177] KATRUSIAK A. High-pressure crystallography[J]. Acta Crystallographica, Section A:Foundations of Crystallography, 2008, 64(1): 135–148.
[178] SPAIN I L, DUNSTAN D J. The technology of diamond anvil high-pressure cells: II. Operation and use[J]. Journal of Physics E: Scientific Instruments, 1989, 22(11): 923–933.
[179] DUNSTAN D J, SPAIN I L. Technology of diamond anvil high-pressure cells: I. Principles, design and construction[J]. Journal of Physics E: Scientific Instruments, 1989, 22(11): 913–923.
[180] DUNSTAN D J. Theory of the gasket in diamond anvil high-pressure cells[J]. Review of Scientific Instruments, 1989, 60(12): 3789–3795.
[181] JIANG D W, CAO M, ZHANG X T, et al. Pressure evolution in a diamond anvil cell without a pressure medium[J]. Journal of Applied Physics, 2022, 131(12): 125904.
[182] CHEN X H, LOU H B, ZENG Z D, et al. Structural transitions of 4:1 methanol–ethanol mixture and silicone oil under high pressure[J]. Matter and Radiation at Extremes, 2021, 6(3): 038402.
[183] KLOTZ S, CHERVIN J C, MUNSCH P, et al. Hydrostatic limits of 11 pressure transmitting media[J]. Journal of Physics D: Applied Physics, 2009, 42(7): 075413.
[184] SYASSEN K. Ruby under pressure[J]. High Pressure Research, 2008, 28(2): 75–126.
[185] MAO H K, BELL P M, SHANER J W, et al. Specific volume measurements of Cu, Mo, Pd, and Ag and calibration of the ruby R1 fluorescence pressure gauge from 0.06 to 1 Mbar[J]. Journal of Applied Physics, 1978, 49(6): 3276–3283.
[186] MCCUMBER D E, STURGE M D. Linewidth and temperature shift of the R lines in ruby[J]. Journal of Applied Physics, 1963, 34(6): 1682–1684.
[187] RAGAN D D, GUSTAVSEN R, SCHIFERL D. Calibration of the ruby R1 and R2 fluorescence shifts as a function of temperature from 0 to 600 K[J]. Journal of Applied Physics, 1992, 72(12): 5539–5544.
[188] NAKANO K, AKAHAMA Y, OHISHI Y, et al. Ruby scale at low temperatures calibrated by the NaCl gauge: wavelength shift of ruby R1 fluorescence line at high pressure and low temperature[J]. Japanese Journal of Applied Physics, 2000, 39(1): 1249–1251.
[189] FENG Y J, JARAMILLO R, WANG J Y, et al. Invited article: high-pressure techniques for condensed matter physics at low temperature[J]. Review of Scientific Instruments, 2010, 81(4): 041301.
[190] WU Y L, YIN X, HASAIEN J Z L, et al. On-site in situ high-pressure ultrafast pumpprobe spectroscopy instrument[J]. Review of Scientific Instruments, 2021, 92(11): 113002.
[191] YAN J W, LIU X D, GORELLI F A, et al. Compression rate of dynamic diamond anvil cells from room temperature to 10 K[J]. Review of Scientific Instruments, 2022, 93(6): 063901.
[192] CAO M, JIANG D W, HAN M Y, et al. In situ temperature measurement in the pressure chamber of diamond anvil cell[J]. Review of Scientific Instruments, 2023, 94(8): 083908.
[193] GONCHAROV A F, CROWHURST J C. Pulsed laser Raman spectroscopy in the laserheated diamond anvil cell[J]. Review of Scientific Instruments, 2005, 76(6): 063905.
[194] 郑海飞. 金刚石压腔高温高压实验技术及其应用[M]. 北京:科学出版社, 2014.
[195] PRESCHER C, PRAKAPENKA V B. DIOPTAS: a program for reduction of twodimensional X-ray diffraction data and data exploration[J]. High Pressure Research, 2015, 35(3): 223–230.
[196] TAUC J, GRIGOROVICI R, VANCU A. Optical properties and electronic structure of amorphous germanium[J]. Physica Status Solidi B-Basic Solid State Physics, 1966, 15(2): 627–637.
[197] CLIFFE M J, GOODWIN A L. PASCal: a principal axis strain calculator for thermal expansion and compressibility determination[J]. Journal of Applied Crystallography, 2012, 45(6): 1321–1329.
[198] BLÖCHL P E. Projector augmented-wave method[J]. Physical Review B: Condensed Matter and Materials Physics 1994, 50(24): 17953–17979.
[199] KRESSE G, FURTHMÜLLER J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set[J]. Computational Materials Science, 1996, 6(1): 15–50.
[200] KRESSE G, JOUBERT D. From ultrasoft pseudopotentials to the projector augmented-wave method[J]. Physical Review B, 1999, 59(3): 1758–1775.
[201] PERDEW J P, BURKE K, ERNZERHOF M. Generalized gradient approximation made simple[J]. Physical Review Letters 1996, 77(18): 3865–3868.
[202] KLIMEŠ J, BOWLER D R, MICHAELIDES A. Chemical accuracy for the van der Waals density functional[J]. Journal of Physics: Condensed Matter, 2010, 22(2): 022201.
[203] KLIMEŠ J, BOWLER D R, MICHAELIDES A. Van der Waals density functionals applied to solids[J]. Physical Review B, 2011, 83(19): 195131.
[204] ZHOU C K, LIN H R, WORKU M, et al. Blue emitting single crystalline assembly of metal halide clusters[J]. Journal of the American Chemical Society, 2018, 140(41): 13181–13184.
[205] KASHA M. Characterization of electronic transitions in complex molecules[J]. Discussions of the Faraday Society, 1950, 9(2): 14–19.
[206] GAN Z X, XU H, HAO Y L. Mechanism for excitation-dependent photoluminescence from graphene quantum dots and other graphene oxide derivates: consensus, debates and challenges[J]. Nanoscale, 2016, 8(15): 7794–7807.
[207] ZHOU C K, LIN H, NEU J, et al. Green emitting single-crystalline bulk assembly of metal halide clusters with near-unity photoluminescence quantum efficiency[J]. ACS Energy Letters, 2019, 4(7): 1579–1583.
[208] SCHMIDT T, LISCHKA K, ZULEHNER W. Excitation-power dependence of the near-band-edge photoluminescence of semiconductors[J]. Physical Review B: Condensed Matter and Materials Physics, 1992, 45(16): 8989–8994.
[209] WILSON J S, CHAWDHURY N, AL-MANDHARY M R, et al. The energy gap law for triplet states in Pt-containing conjugated polymers and monomers[J]. Journal of the American Chemical Society, 2001, 123(38): 9412–9417.
[210] LUO Y F, XU Y Y, ZHANG W T, et al. Theoretical Insights into the phosphorescence quantum yields of cyclometalated (C^C*) platinum(II) NHC complexes: conjugation controls the radiative and nonradiative decay processes[J]. The Journal of Physical Chemistry C, 2016, 120(6): 3462–3471.
[211] BENIN B M, DIRIN D N, MORAD V, et al. Highly emissive self-trapped excitons in fully inorganic zero-dimensional tin halides[J]. Angewandte Chemie International Edition, 2018, 57(35): 11329–11333.
[212] LIAO J F, ZHANG Z, WEI J H, et al. Emission-color-tunable Pb−Sn alloyed single crystals with high luminescent efficiency and stability[J]. Advanced Optical Materials, 2022, 10(6): 2102426.
[213] LI Z Y, SONG G M, LI Y, et al. Realizing tunable white light emission in lead-free indium(III) bromine hybrid single crystals through antimony(III) cation doping[J]. The Journal of Physical Chemistry Letters, 2020, 11(23): 10164–10172.
[214] AKSHINAMURTHY A C, GUPTA M, NANDA B R K, et al. Anionic alloying in hybrid halide Cs2AgBiBr6–xClx double perovskites: is it true alloying or preferential occupation of halide ions in MX6 octahedra?[J]. The Journal of Physical Chemistry C, 2023, 127(3): 1588–1597.
[215] YANG X M, WANG Y, JIANG J J, et al. Composition effects on structure and optical properties in double perovskite derivatives semiconductors Cs2SnI6−xBrx (x = 0–6)[J]. APL Materials, 2020, 8(2): 021102.
[216] KUBICKI D J, PROCHOWICZ D, SALAGER E, et al. Local structure and dynamics in methylammonium, formamidinium, and cesium tin(II) mixed-halide perovskites from (119)Sn solid-state NMR[J]. Journal of the American Chemical Society, 2020, 142(17): 7813–7826.
[217] CHEN D, DAI F L, HAO S Q, et al. Crystal structure and luminescence properties of lead-free metal halides: (C6H5CH2NH3)3MBr6 (M = Bi and Sb)[J]. Journal of Materials Chemistry C, 2020, 8(2): 7322–7329.
[218] LIU H C, GU Y R, DAI Y X, et al. Pressure-induced blue-shifted and enhanced emission: a cooperative effect between aggregation-induced emission and energytransfer suppression[J]. Journal of the American Chemical Society, 2020, 142(3): 1153–1158.
[219] JIANG Y Z, SUN C J, XU J, et al. Synthesis-on-substrate of quantum dot solids[J]. Nature, 2022, 612(7941): 679–684.
[220] FU Y P, ZHU H M, CHEN J, et al. Metal halide perovskite nanostructures for optoelectronic applications and the study of physical properties[J]. Nature Reviews Materials, 2019, 4(3): 169–188.
[221] GUO Q X, ZHAO X, SONG B X, et al. Light emission of self-trapped excitons in inorganic metal halides for optoelectronic applications[J]. Advanced Materials, 2022, 34(52): e2201008.
[222] LI X, GAO X P, ZHANG X T, et al. Lead-free halide perovskites for light emission: recent advances and perspectives[J]. Advanced Science, 2020, 8(4): 2003334.
[223] SMITH M D, CONNOR B A, KARUNADASA H I. Tuning the luminescence of layered halide perovskites[J]. Chemical Review, 2019, 119(5): 3104–3139.
[224] CHEN H T, XIANG H Y, ZOU Y T, et al. Perspective on metal halides with selftrapped exciton toward white light-emitting diodes[J]. Advanced Optical Materials, 2022, 10(5): 2101900.
[225] HAN D, SHI H L, MING W M, et al. Unraveling luminescence mechanisms in zerodimensional halide perovskites[J]. Journal of Materials Chemistry C, 2018, 6(24): 6398–6405.
[226] VOLONAKIS G, HAGHIGHIRAD A A, MILOT R L, et al. Cs2InAgCl6: a new leadfree halide double perovskite with direct band gap[J]. The Journal of Physical Chemistry Letters 2017, 8(4): 772–778.
[227] LUO J J, LI S R, WU H D, et al. Cs2AgInCl6 double perovskite single crystals: parity forbidden transitions and their application for sensitive and fast UV photodetectors[J]. ACS Photonics, 2018, 5(2): 398–405.
[228] MATHEU R, VIGIL J A, CRACE E J, et al. The halogen chemistry of halide perovskites[J]. Trends in Chemistry, 2022, 4(3): 206–219.
[229] HARIS M P U, BAKTHAVATSALAM R, SHAIKH S, et al. Synthetic control on structure/dimensionality and photophysical properties of low dimensional organic lead bromide perovskite[J]. Inorganic Chemistry, 2018, 57(21): 13443–13452.
[230] JACOBS P W M. Alkali halide crystals containing impurity ions with the ns2 groundstate electronic configuration[J]. Journal of Physics and Chemistry of Solids, 1991, 52(1): 35–67.
[231] MORAD V, SHYNKARENKO Y, YAKUNIN S, et al. Disphenoidal zero-dimensional lead, tin, and germanium halides: highly emissive singlet and triplet self-trapped excitons and X-ray scintillation[J]. Journal of the American Chemical Society, 2019, 141(25): 9764–9768.
[232] LIU S, SUN S S, GAN C K, et al. Manipulating efficient light emission in twodimensional perovskite crystals by pressure-induced anisotropic deformation[J]. Sci Adv, 2019, 5(7): eaav9445.
[233] MA X M, PAN F, LI H Q, et al. Mechanism of single-photon upconversion photoluminescence in all-inorganic perovskite nanocrystals: the role of self-trapped excitons[J]. The Journal of Physical Chemistry Letters 2019, 10(20): 5989–5996.
[234] KE F, YAN J J, MATHEU R, et al. Quasi-one-dimensional metallicity in compressed CsSnI3[J]. Journal of the American Chemical Society, 2022, 144(51): 26595–23602.
[235] LI S X, QIN Z H, WU H, et al. Anomalous thermal transport under high pressure in boron arsenide[J]. Nature, 2022, 612(7940): 459–464.
[236] HOFFMAN J M, CHE X Y, SIDHIK S, et al. From 2D to 1D electronic dimensionality in halide perovskites with stepped and flat layers using propylammonium as a spacer[J]. Journal of the American Chemical Society, 2019, 141(27): 10661–10676.
[237] HAN Y, YIN J, CAO G Y, et al. Exciton self-trapping for white emission in 100-oriented two-dimensional perovskites via halogen substitution[J]. ACS Energy Letters, 2021, 7(1): 453–460.
[238] FEBRIANSYAH B, BORZDA T, CORTECCHIA D, et al. Metal coordination sphere deformation induced highly stokes-shifted, ultra broadband emission in 2D hybrid lead-bromide perovskites and investigation of its origin[J]. Angewandte Chemie International Edition, 2020, 59(27): 10791–10796.
[239] ZU H-Y, FAN C-C, LIU C-D, et al. Establishing a relationship between the bandgap and the structure in 2D lead halide perovskite semiconductors[J]. Chemistry of Materials, 2023, 35(15): 5854–5863.
[240] LI X T, HOFFMAN J M, KANATZIDIS M G. The 2D halide perovskite rulebook: how the spacer influences everything from the structure to optoelectronic device efficiency[J]. Chemical Review, 2021, 121(4): 2230–2291.
[241] GAO C F, LI R P, LI Y R, et al. Direct-indirect transition of pressurized twodimensional halide perovskite: role of benzene ring stack ordering[J]. The Journal of Physical Chemistry Letters, 2019, 10(19): 5687–5693.
[242] LIU G, GONG J, KONG L P, et al. Isothermal pressure-derived metastable states in 2D hybrid perovskites showing enduring bandgap narrowing[J]. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115(32): 8076–8081.
[243] HAN X B, JING C Q, ZU H Y, et al. Structural descriptors to correlate Pb ion displacement and broadband emission in 2D halide perovskites[J]. Journal of the American Chemical Society, 2022, 144(40): 18595–18606.
[244] KOEGEL A A, MOZUR E M, OSWALD I W H, et al. Correlating broadband photoluminescence with structural dynamics in layered hybrid halide perovskites[J]. Journal of the American Chemical Society, 2022, 144(3): 1313–1322.
[245] NIU L D, ZHAO L L, LI D Y, et al. Predictably synthesizing a library of white-lightemitting perovskites[J]. Science China Chemistry, 2023, 66(3): 760–766
修改评论