[1] 邓起东, 张培震, 冉勇康, 等. 中国活动构造基本特征[J]. 中国科学: D 辑, 2002, 32(12):1020-1030.
[2] 张培震, 邓起东, 张国民, 等. 中国大陆的强震活动与活动地块[J]. 中国科学: D 辑, 2003,33(B04): 12-20.
[3] 中国地震局震灾应急救援司. 2006-2010 年中国大陆地震灾害损失评估汇编[M]. 北京: 地震出版社, 2015.
[4] ZHANG W, CHEN X. Traction image method for irregular free surface boundaries in finite difference seismic wave simulation[J]. Geophysical Journal International, 2006, 167(1): 337-353.
[5] ZHANG W, ZHANG Z, CHEN X. Three-dimensional elastic wave numerical modelling in the presence of surface topography by a collocated-grid finite-difference method on curvilinear grids[J]. Geophysical Journal International, 2012, 190(1): 358-378.
[6] ZHU G, ZHANG Z, WEN J, et al. Preliminary results of strong ground motion simulation for the Lushan earthquake of 20 April 2013, China[J]. Earthquake Science, 2013, 26: 191-197.
[7] SUN Y C, ZHANG W, CHEN X. 3D seismic wavefield modeling in generally anisotropic media with a topographic free surface by the curvilinear grid finite-difference method[J]. Bulletin of the Seismological Society of America, 2018, 108(3A): 1287-1301.
[8] WANG W, LI Y, ZHANG Z, et al. Rapid estimation of disaster losses for the M 6.8 Luding earthquake on September 5, 2022[J]. Science China Earth Sciences, 2023, 66(6): 1334-1344.
[9] KOMATITSCH D, ERLEBACHER G, GÖDDEKE D, et al. High-order finite-element seismic wave propagation modeling with MPI on a large GPU cluster[J]. Journal of Computational Physics, 2010, 229(20): 7692-7714.
[10] OKAMOTO T, TAKENAKA H, NAKAMURA T, et al. Accelerating large-scale simulation of seismic wave propagation by multi-GPUs and three-dimensional domain decomposition[J]. Earth, Planets and Space, 2010, 62: 939-942.
[11] LIU G, LIU Y, REN L, et al. 3D seismic reverse time migration on GPGPU[J]. Computers & Geosciences, 2013, 59: 17-23.
[12] DOROZHINSKII R, BADER M. SeisSol on distributed multi-GPU systems: CUDA code generation for the modal discontinuous Galerkin method[C]//The International Conference on High Performance Computing in Asia-Pacific Region. 2021: 69-82.
[13] CUI Y, OLSEN K B, JORDAN T H, et al. Scalable earthquake simulation on petascale supercomputers[C]//SC’10: Proceedings of the 2010 ACM/IEEE International Conference for High Performance Computing, Networking, Storage and Analysis. IEEE, 2010: 1-20.
[14] ZHANG W, ZHANG Z, FU H, et al. Importance of spatial resolution in ground motion simulations with 3-D basins: An example using the Tangshan earthquake[J]. Geophysical Research Letters, 2019, 46(21): 11915-11924.
[15] BAO H, BIELAK J, GHATTAS O, et al. Earthquake ground motion modeling on parallel computers[C]//Proceedings of the 1996 ACM/IEEE Conference on Supercomputing. 1996:13-es.
[16] KOMATITSCH D, TSUBOI S, JI C, et al. A 14.6 billion degrees of freedom, 5 teraflops, 2.5 terabyte earthquake simulation on the Earth Simulator[C]//Proceedings of the 2003 ACM/IEEE Conference on Supercomputing. 2003: 4.
[17] KOMATITSCH D, MICHÉA D, ERLEBACHER G. Porting a high-order finite-element earthquake modeling application to NVIDIA graphics cards using CUDA[J]. Journal of Parallel and Distributed Computing, 2009, 69(5): 451-460.
[18] RIETMANN M, MESSMER P, NISSEN-MEYER T, et al. Forward and adjoint simulations of seismic wave propagation on emerging large-scale GPU architectures[C]//SC’12: Proceedings of the International Conference on High Performance Computing, Networking, Storage and Analysis. IEEE, 2012: 1-11.
[19] ICHIMURA T, FUJITA K, TANAKA S, et al. Physics-Based Urban Earthquake Simulation Enhanced by 10.7 BlnDOF × 30 K Time-Step Unstructured FE Non-Linear Seismic Wave Simulation[C/OL]//SC ’14: Proceedings of the International Conference for High Performance Computing, Networking, Storage and Analysis. 2014: 15-26. DOI: 10.1109/SC.2014.7.
[20] ICHIMURA T, FUJITA K, QUINAY P E B, et al. Implicit nonlinear wave simulation with 1.08 T DOF and 0.270 T unstructured finite elements to enhance comprehensive earthquake simulation[C]//Proceedings of the International Conference for High Performance Computing, Networking, Storage and Analysis. 2015: 1-12.
[21] ICHIMURA T, FUJITA K, KOYAMA K, et al. 152K-computer-node parallel scalable implicit solver for dynamic nonlinear earthquake simulation[C]//International Conference on High Performance Computing in Asia-Pacific Region. 2022: 18-29.
[22] KÄSER M, DUMBSER M. An arbitrary high-order discontinuous Galerkin method for elastic waves on unstructured meshes—I. The two-dimensional isotropic case with external source terms[J]. Geophysical Journal International, 2006, 166(2): 855-877.
[23] DUMBSER M, KÄSER M. An arbitrary high-order discontinuous Galerkin method for elastic waves on unstructured meshes—II. The three-dimensional isotropic case[J]. Geophysical Journal International, 2006, 167(1): 319-336.
[24] HEINECKE A, BREUER A, RETTENBERGER S, et al. Petascale high order dynamic rupture earthquake simulations on heterogeneous supercomputers[C]//SC’14: Proceedings of the International Conference for High Performance Computing, Networking, Storage and Analysis. IEEE, 2014: 3-14.
[25] BREUER A, HEINECKE A, CUI Y. EDGE: Extreme scale fused seismic simulations with the discontinuous Galerkin method[C]//International Conference on High Performance Computing. Springer, 2017: 41-60.
[26] MADARIAGA R. Dynamics of an expanding circular fault[J]. Bulletin of the Seismological Society of America, 1976, 66(3): 639-666.
[27] VIRIEUX J. P-SV wave propagation in heterogeneous media: Velocity-stress finite-difference method[J]. Geophysics, 1986, 51(4): 889-901.
[28] GRAVES R W. Simulating seismic wave propagation in 3D elastic media using staggered-grid finite differences[J]. Bulletin of the Seismological Society of America, 1996, 86(4): 1091-1106.
[29] CUI Y, POYRAZ E, OLSEN K B, et al. Physics-based seismic hazard analysis on petascale heterogeneous supercomputers[C]//Proceedings of the International Conference on High Performance Computing, Networking, Storage and Analysis. 2013: 1-12.
[30] FU H, HE C, CHEN B, et al. 18.9-Pflops nonlinear earthquake simulation on Sunway TaihuLight: enabling depiction of 18-Hz and 8-meter scenarios[C]//Proceedings of the International Conference for High Performance Computing, Networking, Storage and Analysis. 2017: 1-12.
[31] CHEN B, FU H, WEI Y, et al. Simulating the Wenchuan earthquake with accurate surface topography on Sunway TaihuLight[C]//SC18: International Conference for High Performance Computing, Networking, Storage and Analysis. IEEE, 2018: 517-528.
[32] WAN W, GAN L, WANG W, et al. 69.7-PFlops Extreme Scale Earthquake Simulation with Crossing Multi-faults and Topography on Sunway[C]//Proceedings of the International Conference for High Performance Computing, Networking, Storage and Analysis. 2023: 1-15.
[33] IEEE. IEEE Standard for Floating-Point Arithmetic[J/OL]. IEEE Std 754-2008, 2008: 1-70. DOI: 10.1109/IEEESTD.2008.4610935.
[34] BABOULIN M, BUTTARI A, DONGARRA J, et al. Accelerating scientific computations with mixed precision algorithms[J]. Computer Physics Communications, 2009, 180(12): 2526-2533.
[35] CLARK M A, BABICH R, BARROS K, et al. Solving Lattice QCD systems of equations using mixed precision solvers on GPUs[J]. Computer Physics Communications, 2010, 181(9): 1517-1528.
[36] WU H, JUDD P, ZHANG X, et al. Integer quantization for deep learning inference: Principles and empirical evaluation[A]. 2020.
[37] MICIKEVICIUS P, NARANG S, ALBEN J, et al. Mixed precision training[A]. 2017.
[38] DAS D, MELLEMPUDI N, MUDIGERE D, et al. Mixed precision training of convolutional neural networks using integer operations[A]. 2018.
[39] JIA X, SONG S, HE W, et al. Highly scalable deep learning training system with mixedprecision: Training imagenet in four minutes[A]. 2018.
[40] DENG L, LI G, HAN S, et al. Model compression and hardware acceleration for neural networks: A comprehensive survey[J]. Proceedings of the IEEE, 2020, 108(4): 485-532.
[41] DÖRRICH M, FAN M, KIST A M. Impact of Mixed Precision Techniques on Training and Inference Efficiency of Deep Neural Networks[J]. IEEE Access, 2023.
[42] HAIDAR A, WU P, TOMOV S, et al. Investigating half precision arithmetic to accelerate dense linear system solvers[C]//Proceedings of the 8th Workshop on Latest Advances in Scalable Algorithms for Large-Scale Systems. 2017: 1-8.
[43] OO K L, VOGEL A. Accelerating geometric multigrid preconditioning with half-precision arithmetic on GPUs[A]. 2020.
[44] FREYTAG G, LIMA J V, RECH P, et al. Impact of Reduced and Mixed-Precision on the Efficiency of a Multi-GPU Platform on CFD Applications[C]//International Conference on Computational Science and Its Applications. Springer, 2022: 570-587.
[45] HIGHAM N J, MARY T. Mixed precision algorithms in numerical linear algebra[J]. Acta Numerica, 2022, 31: 347-414.
[46] FABIEN-OUELLET G. Seismic modeling and inversion using half-precision floating-point numbers[J]. Geophysics, 2020, 85(3): F65-F76.
[47] WANG W, ZHANG Z, ZHANG W, et al. Implementation of efficient low-storage techniques for 3-D seismic simulation using the curved grid finite-difference method[J]. Geophysical Journal International, 2023, 234(3): 2214-2230.
[48] ABDELKHALEK R, CALANDRA H, COULAUD O, et al. Fast seismic modeling and reverse time migration on a GPU cluster[C]//2009 International Conference on High Performance Computing & Simulation. IEEE, 2009: 36-43.
[49] JESPERSEN D C. Acceleration of a CFD code with a GPU[J]. Scientific Programming, 2010,18(3-4): 193-201.
[50] EKLUND A, DUFORT P, FORSBERG D, et al. Medical image processing on the GPU–Past, present and future[J]. Medical Image Analysis, 2013, 17(8): 1073-1094.
[51] PHILLIPS J C, HARDY D J, MAIA J D, et al. Scalable molecular dynamics on CPU and GPU architectures with NAMD[J]. The Journal of Chemical Physics, 2020, 153(4).
[52] NVIDIA. NVIDIA Pascal Architecture Whitepaper.[EB/OL]. 2016. https://images.nvidia.com/content/pdf/tesla/whitepaper/pascal-architecture-whitepaper.pdf.
[53] NVIDIA. NVIDIA Volta Architecture Whitepaper.[EB/OL]. 2017. https://images.nvidia.com/content/volta-architecture/pdf/volta-architecture-whitepaper.pdf.
[54] HO N M, WONG W F. Exploiting half precision arithmetic in Nvidia GPUs[C]//2017 IEEE High Performance Extreme Computing Conference (HPEC). IEEE, 2017: 1-7.
[55] TAM C K, WEBB J C. Dispersion-relation-preserving finite difference schemes for computational acoustics[J]. Journal of Computational Physics, 1993, 107(2): 262-281.
[56] HIXON R. On increasing the accuracy of MacCormack schemes for aeroacoustic applications[C]//3rd AIAA/CEAS Aeroacoustics Conference. 1997: 1586.
[57] 韦尔迪. 有限差分方法模拟地震波传播计算中自由表面边界条件的实现方法的研究[D].中国科学技术大学, 2018.
[58] ZHANG W, SHEN Y. Unsplit complex frequency-shifted PML implementation using auxiliarydifferential equations for seismic wave modeling[J]. Geophysics, 2010, 75(4): T141-T154.
[59] ZHANG Z, ZHANG W, CHEN X. Complex frequency-shifted multi-axial perfectly matched layer for elastic wave modelling on curvilinear grids[J]. Geophysical Journal International, 2014, 198(1): 140-153.
[60] BAILEY D H. High-precision floating-point arithmetic in scientific computation[J]. Computing in Science & Engineering, 2005, 7(3): 54-61.
[61] CHENG J, GROSSMAN M, MCKERCHER T. Professional CUDA c programming[M]. John Wiley & Sons, 2014.
[62] WANG W, ZHANG Z, ZHANG W, et al. CGFDM3D-EQR: A platform for rapid response to earthquake disasters in 3D complex media[J]. Seismological Society of America, 2022, 93(4): 2320-2334.
[63] MICIKEVICIUS P. 3D finite difference computation on GPUs using CUDA[C]//Proceedings of 2nd Workshop on General Purpose Processing on Graphics Processing Units. 2009: 79-84.
[64] VIZITIU A, ITU L, NIŢĂ C, et al. Optimized three-dimensional stencil computation on Fermi and Kepler GPUs[C]//2014 IEEE High Performance Extreme Computing Conference (HPEC). IEEE, 2014: 1-6.
[65] MARUYAMA N, AOKI T. Optimizing stencil computations for NVIDIA Kepler GPUs[C]//Proceedings of the 1st International Workshop on High-Performance Stencil Computations, Vi enna. Citeseer, 2014: 89-95.
[66] CHOQUETTE J, GIROUX O, FOLEY D. Volta: Performance and programmability[J]. Ieee Micro, 2018, 38(2): 42-52.
[67] FARSTAD M R. Understanding the key performance trends of optimized iterative stencil loop kernels on high-end gpus[D]. NTNU, 2021.
[68] WANG W, ZHANG Z, ZHANG W, et al. CGFDM3D-EQR: A Platform for Rapid Response to Earthquake Disasters in 3D Complex Media[J]. Seismological Research Letters, 2022, 93:2320-2334.
[69] KRISTEKOVÁ M, KRISTEK J, MOCZO P, et al. Misfit criteria for quantitative comparison of seismograms[J]. Bulletin of the Seismological Society of America, 2006, 96(5): 1836-1850.
[70] KRISTEKOVÁ M, KRISTEK J, MOCZO P. Time-frequency misfit and goodness-of-fit criteria for quantitative comparison of time signals[J]. Geophysical Journal International, 2009, 178(2): 813-825.
[71] BROUGOIS A, BOURGET M, LAILLY P, et al. Marmousi, model and data[C]//EAEGWorkshop-Practical Aspects of Seismic Data Inversion. European Association of Geoscientists & Engineers, 1990: cp-108.
[72] MARTIN G S, WILEY R, MARFURT K J. Marmousi2: An elastic upgrade for Marmousi[J]. The Leading Edge, 2006, 25(2): 156-166.
[73] WILLIAMS S, WATERMAN A, PATTERSON D. Roofline: an insightful visual performance model for multicore architectures[J]. Communications of the ACM, 2009, 52(4): 65-76.
修改评论