中文版 | English
题名

孤独症模型Shank3B敲除小鼠海马CA1对空间和社交信息的编码

其他题名
SPATIAL AND SOCIAL INFORMATION ENCODING IN THE HIPPOCAMPAL CA1 OF ASD MODEL SHANK3B KNOCKOUT MICE
姓名
姓名拼音
HU Binyan
学号
12133031
学位类型
硕士
学位专业
0710 生物学
学科门类/专业学位类别
07 理学
导师
陈小菁
导师单位
神经生物学系
论文答辩日期
2024-05-10
论文提交日期
2024-06-21
学位授予单位
南方科技大学
学位授予地点
深圳
摘要

孤独症谱系障碍是一种常见的神经发育类疾病,其在中国的发病率约为0.7%,该疾病的社交障碍、感觉异常等症状给患者、家属以及社会带来许多不便,然而人们对该疾病的认识仍然不够深入。已有研究表明,Shank3等基因突变是导致该疾病的原因之一,但基因突变引起的突触功能异常如何对行为产生影响尚未完全阐明。另一方面,孤独症患者在社交和语言之外的其他能力,例如空间导航是否也受到了影响仍然未能确定。

因此我们利用Shank3B纯合敲除(Shank3B-/-)小鼠作为孤独症谱系障碍的模型,在小鼠奔跑于虚拟线性轨道时记录其海马CA1的神经元活动,并与野生型小鼠进行对比。结果显示,在熟悉环境中,Shank3B-/-小鼠的CA1神经元能形成稳定的位置场,但相较野生型小鼠,其钙事件频率和空间信息率更高,位置细胞的比例也更高。在陌生环境中,Shank3B-/-小鼠的CA1神经元同样能编码空间信息,并能通过重映射区分不同环境,但空间信息率和位置细胞的比例较野生型小鼠更低。在存在社交刺激的空间导航范式中,社交刺激使野生型和Shank3B-/-小鼠的CA1神经元的空间信息率下降,但相较野生型小鼠,社交刺激对Shank3B-/-小鼠CA1神经元的空间编码稳定性影响较小。

综上所述,通过对海马CA1兴奋性神经元进行在体钙成像,并对比野生型和Shank3B-/-小鼠的神经元活动,我们发现:Shank3B-/-小鼠的CA1神经元具有更高的钙事件频率,在熟悉环境中具有更高的空间编码能力,在陌生环境中相反,并且对社交刺激不敏感。这些结果提示Shank3基因突变可能使海马CA1兴奋性神经元具有更高的兴奋性,使空间导航能力发生改变。

其他摘要

Autism Spectrum Disorder (ASD) is a common neurodevelopmental condition with a prevalence of approximately 0.7% in China. The disorder's social and sensory symptoms cause significant challenges for individuals, families, and society, yet understanding of ASD remains limited. While prior research has implicated gene mutations like Shank3 as contributing factors, the exact impact of synaptic dysfunction resulting from these mutations on behavior remains elusive. Additionally, it's unclear whether ASD affects abilities beyond social and language domains, such as spatial navigation.

Therefore, we used Shank3B homozygous knockout (Shank3B-/-) mice as a model of ASD. Using in vivo calcium imaging of hippocampal CA1 excitatory neurons, we observed their activity as mice traversed a virtual linear track, comparing them with wild-type mice. Findings revealed that in familiar environment, Shank3B-/- mice's CA1 neurons could form stable place fields, but compared to wild-type mice, they exhibited higher calcium event rate and spatial information, as well as a higher proportion of place cells. In novel environment, CA1 neurons of Shank3B-/- mice could also encode space and distinguish different environments by remapping, but the spatial information and proportion of place cells were lower compared to wild-type mice. In the spatial navigation paradigm involving social stimuli, social stimuli led to a decreasing spatial information of CA1 neurons in both wild-type and Shank3B-/- mice, but the effect of social stimuli on the spatial coding stability of CA1 neurons in Shank3B-/- mice was smaller compared to wild-type mice.

In summary, through in vivo calcium imaging of hippocampal CA1 excitatory neurons and comparison of neuronal activity between wild-type and Shank3B-/- mice, we found that CA1 neurons of Shank3B-/- mice exhibited higher calcium event rate, higher spatial coding ability in familiar environments, lower spatial coding ability in novel environments, and insensitivity to social stimuli. These results suggest that Shank3 gene mutation may lead to increased excitability of hippocampal CA1 excitatory neurons, resulting in alterations in spatial navigation abilities.

关键词
其他关键词
语种
中文
培养类别
独立培养
入学年份
2021
学位授予年份
2024-06
参考文献列表

[1] ZHOU H, XU X, YAN W, et al. Prevalence of Autism Spectrum Disorder in China: A Nationwide Multi-center Population-based Study Among Children Aged 6 to 12 Years[J/OL]. Neuroscience Bulletin, 2020, 36(9): 961-971. DOI:10.1007/s12264-020-00530-6.
[2] BAILEY A, COUTEUR A L, GOTTESMAN I, et al. Autism as a strongly genetic disorder: evidence from a British twin study[J]. Psychol Med, 1995, 25(1): 63-77. DOI: 10.1017/s0033291700028099.
[3] DURAND C M, BETANCUR C, BOECKERS T M, et al. Mutations in the gene encoding the synaptic scaffolding protein SHANK3 are associated with autism spectrum disorders[J/OL]. Nature Genetics, 2007, 39(1): 25-27. DOI:10.1038/ng1933.
[4] PARIS AUTISM RESEARCH INTERNATIONAL SIBPAIR STUDY, JAMAIN S, QUACH H, et al. Mutations of the X-linked genes encoding neuroligins NLGN3 and NLGN4 are associated with autism[J/OL]. Nature Genetics, 2003, 34(1): 27-29. DOI:10.1038/ng1136.
[5] CHUBYKIN A A, LIU X, COMOLETTI D, et al. Dissection of Synapse Induction by Neuroligins[J/OL]. Journal of Biological Chemistry, 2005, 280(23): 22365-22374. DOI:10.1074/jbc.M410723200.
[6] ALARCÓN M, ABRAHAMS B S, STONE J L, et al. Linkage, Association, and Gene-Expression Analyses Identify CNTNAP2 as an Autism-Susceptibility Gene[J/OL]. The American Journal of Human Genetics, 2008, 82(1): 150-159. DOI:10.1016/j.ajhg.2007.09.005.
[7] MOESSNER R, MARSHALL C R, SUTCLIFFE J S, et al. Contribution of SHANK3 Mutations to Autism Spectrum Disorder[J/OL]. The American Journal of Human Genetics, 2007, 81(6): 1289-1297. DOI:10.1086/522590.
[8] BOCCUTO L, LAURI M, SARASUA S M, et al. Prevalence of SHANK3 variants in patients with different subtypes of autism spectrum disorders[J/OL]. European Journal of Human Genetics, 2013, 21(3): 310-316. DOI:10.1038/ejhg.2012.175.
[9] FRANK Y. The Neurological Manifestations of Phelan-McDermid Syndrome[J/OL]. Pediatric Neurology, 2021, 122: 59-64. DOI:10.1016/j.pediatrneurol.2021.06.002.
[10] LEBLOND C S, NAVA C, POLGE A, et al. Meta-analysis of SHANK Mutations in Autism Spectrum Disorders: A Gradient of Severity in Cognitive Impairments[J/OL]. PLoS Genetics, 2014, 10(9): e1004580. DOI:10.1371/journal.pgen.1004580.
[11] LIM S, NAISBITT S, YOON J, et al. Characterization of the Shank Family of Synaptic Proteins[J/OL]. Journal of Biological Chemistry, 1999, 274(41): 29510-29518. DOI:10.1074/jbc.274.41.29510.
[12] MONTEIRO P, FENG G. SHANK proteins: roles at the synapse and in autism spectrum disorder[J/OL]. Nature Reviews Neuroscience, 2017, 18(3): 147-157. DOI:10.1038/nrn.2016.183.
[13] PEÇA J, FELICIANO C, TING J T, et al. Shank3 mutant mice display autistic-like behaviours and striatal dysfunction[J/OL]. Nature, 2011, 472(7344): 437-442. DOI:10.1038/nature09965.
[14] BOZDAGI O, SAKURAI T, PAPAPETROU D, et al. Haploinsufficiency of the autism-associated Shank3 gene leads to deficits in synaptic function, social interaction, and social communication[J/OL]. Molecular Autism, 2010, 1(1): 1-15. DOI:10.1186/2040-2392-1-15.
[15] HAN Q, KIM Y H, WANG X, et al. SHANK3 Deficiency Impairs Heat Hyperalgesia and TRPV1 Signaling in Primary Sensory Neurons[J/OL]. Neuron, 2016, 92(6): 1279-1293. DOI:10.1016/j.neuron.2016.11.007.
[16] ROBERTSON C E, BARON-COHEN S. Sensory perception in autism[J/OL]. Nature Reviews Neuroscience, 2017, 18(11): 671-684. DOI:10.1038/nrn.2017.112.
[17] LIND S E, BOWLER D M, RABER J. Spatial navigation, episodic memory, episodic future thinking, and theory of mind in children with autism spectrum disorder: evidence for impairments in mental simulation?[J/OL]. Frontiers in Psychology, 2014, 5:1411. http://journal.frontiersin.org/article/10.3389/fpsyg.2014.01411/abstract. DOI:10.3389/fpsyg.2014.01411.
[18] SMITH A D. Spatial navigation in autism spectrum disorders: a critical review[J/OL]. Frontiers in Psychology, 2015, 6:31. http://journal.frontiersin.org/article/10.3389/fpsyg.2015.00031/abstract. DOI:10.3389/fpsyg.2015.00031.
[19] AMERICAN PSYCHIATRIC ASSOCIATION, AMERICAN PSYCHIATRIC ASSOCIATION. Diagnostic and statistical manual of mental disorders: DSM-5[M]. 5th ed. Washington, D.C: American Psychiatric Association, 2013.
[20] LANE A E, MOLLOY C A, BISHOP S L. Classification of Children With Autism Spectrum Disorder by Sensory Subtype: A Case for Sensory‐Based Phenotypes[J/OL]. Autism Research, 2014, 7(3): 322-333. DOI:10.1002/aur.1368.
[21] STEVENSON R A, BAUM S H, SEGERS M, et al. Multisensory speech perception in autism spectrum disorder: From phoneme to whole‐word perception[J/OL]. Autism Research, 2017, 10(7): 1280-1290. DOI:10.1002/aur.1776.
[22] PELLICANO E, SMITH A D, CRISTINO F, et al. Children with autism are neither systematic nor optimal foragers[J/OL]. Proceedings of the National Academy of Sciences, 2011, 108(1): 421-426. DOI:10.1073/pnas.1014076108.
[23] EDGIN J O, PENNINGTON B F. Spatial Cognition in Autism Spectrum Disorders: Superior, Impaired, or Just Intact?[J/OL]. Journal of Autism and Developmental Disorders, 2005, 35(6): 729-745. DOI:10.1007/s10803-005-0020-y.
[24] FORNASARI L, CHITTARO L, IERONUTTI L, et al. Navigation and exploration of an urban virtual environment by children with autism spectrum disorder compared to children with typical development[J/OL]. Research in Autism Spectrum Disorders, 2013, 7(8): 956-965. DOI:10.1016/j.rasd.2013.04.007.
[25] CARON M. Do high functioning persons with autism present superior spatial abilities?[J/OL]. Neuropsychologia, 2004, 42(4): 467-481. DOI:10.1016/j.neuropsychologia.2003.08.015.
[26] RING M, GAIGG S B, DE CONDAPPA O, et al. Spatial navigation from same and different directions: The role of executive functions, memory and attention in adults with autism spectrum disorder: Same vs different direction navigation in ASD[J/OL]. Autism Research, 2018, 11(5): 798-810. DOI:10.1002/aur.1924.
[27] CAMERON H A, GOULD E. Adult neurogenesis is regulated by adrenal steroids in the dentate gyrus[J/OL]. Neuroscience, 1994, 61(2): 203-209. DOI:10.1016/0306-4522(94)90224-0.
[28] LOPEZ-ROJAS J, KREUTZ M R. Mature granule cells of the dentate gyrus—Passive bystanders or principal performers in hippocampal function?[J/OL]. Neuroscience & Biobehavioral Reviews, 2016, 64: 167-174. DOI:10.1016/j.neubiorev.2016.02.021.
[29] NEYLAN T C, SCOVILLE W B, MILNER B. Memory and the Medial Temporal Lobe: Patient H. M.[J]. J Neuropsychiatry Clin Neurosci, 2000, 12(1):103-113.
[30] BLISS T V P, LØMO T. Long‐lasting potentiation of synaptic transmission in the dentate area of the anaesthetized rabbit following stimulation of the perforant path[J/OL]. The Journal of Physiology, 1973, 232(2): 331-356. DOI:10.1113/jphysiol.1973.sp010273.
[31] O’KEEFE J, DOSTROVSKY J. The hippocampus as a spatial map. Preliminary evidence from unit activity in the freely-moving rat[J/OL]. Brain Research, 1971, 34(1): 171-175. DOI:10.1016/0006-8993(71)90358-1.
[32] MULLER R, KUBIE J, RANCK J. Spatial firing patterns of hippocampal complex-spike cells in a fixed environment[J/OL]. The Journal of Neuroscience, 1987, 7(7): 1935-1950. DOI:10.1523/JNEUROSCI.07-07-01935.1987.
[33] HAFTING T, FYHN M, MOLDEN S, et al. Microstructure of a spatial map in the entorhinal cortex[J/OL]. Nature, 2005, 436(7052): 801-806. DOI:10.1038/nature03721.
[34] TAUBE J, MULLER R, RANCK J. Head-direction cells recorded from the postsubiculum in freely moving rats. I. Description and quantitative analysis[J/OL]. The Journal of Neuroscience, 1990, 10(2): 420-435. DOI:10.1523/JNEUROSCI.10-02-00420.1990.
[35] SOLSTAD T, BOCCARA C N, KROPFF E, et al. Representation of Geometric Borders in the Entorhinal Cortex[J/OL]. Science, 2008, 322(5909): 1865-1868. DOI:10.1126/science.1166466.
[36] SAVELLI F, YOGANARASIMHA D, KNIERIM J J. Influence of boundary removal on the spatial representations of the medial entorhinal cortex[J]. Hippocampus. 2008, 18(12): 1270-1282. DOI:10.1002/hipo.20511.
[37] DESHMUKH S S, KNIERIM J J. Influence of local objects on hippocampal representations: Landmark vectors and memory[J/OL]. Hippocampus, 2013, 23(4): 253-267. DOI:10.1002/hipo.22101.
[38] ISSA J B, TOCKER G, HASSELMO M E, et al. Navigating Through Time: A Spatial Navigation Perspective on How the Brain May Encode Time[J]. Annu Rev Neurosci. 2020, 43: 73-93. DOI: 10.1146/annurev-neuro-101419-011117.
[39] HASSAN S I, BIGLER S, SIEGELBAUM S A. Social odor discrimination and its enhancement by associative learning in the hippocampal CA2 region[J/OL]. Neuron, 2023, 111(14):2232-2246. DOI:10.1016/j.neuron.2023.04.026.
[40] MOSER E I, ROUDI Y, WITTER M P, et al. Grid cells and cortical representation[J/OL]. Nature Reviews Neuroscience, 2014, 15(7): 466-481. DOI:10.1038/nrn3766.
[41] TSAO A, MOSER M B, MOSER E I. Traces of Experience in the Lateral Entorhinal Cortex[J/OL]. Current Biology, 2013, 23(5): 399-405. DOI:10.1016/j.cub.2013.01.036.
[42] AMARAL’ D G, ISHIZUKA N, CLAIBORNE B. Neurons, numbers and the hippocampal network[J]. Prog Brain Res. 1990, 83: 1-11. DOI:10.1016/s0079-6123(08)61237-6.
[43] BORZELLO M, RAMIREZ S, TREVES A, et al. Assessments of dentate gyrus function: discoveries and debates[J/OL]. Nature Reviews Neuroscience, 2023, 24(8): 502-517. DOI:10.1038/s41583-023-00710-z.
[44] SENZAI Y. Function of local circuits in the hippocampal dentate gyrus-CA3 system[J/OL]. Neuroscience Research, 2019, 140: 43-52. DOI:10.1016/j.neures.2018.11.003.
[45] KNOBLOCH H S, CHARLET A, HOFFMANN L C, et al. Evoked Axonal Oxytocin Release in the Central Amygdala Attenuates Fear Response[J/OL]. Neuron, 2012, 73(3): 553-566. DOI:10.1016/j.neuron.2011.11.030.
[46] ZHANG L, HERNÁNDEZ V S. Synaptic innervation to rat hippocampus by vasopressin-immuno-positive fibres from the hypothalamic supraoptic and paraventricular nuclei[J/OL]. Neuroscience, 2013, 228: 139-162. DOI:10.1016/j.neuroscience.2012.10.010.
[47] WERSINGER S R, GINNS E I, O’CARROLL A M, et al. Vasopressin V1b receptor knockout reduces aggressive behavior in male mice[J/OL]. Molecular Psychiatry, 2002, 7(9): 975-984. DOI:10.1038/sj.mp.4001195.
[48] YOUNG W S, LI J, WERSINGER S R, et al. The vasopressin 1b receptor is prominent in the hippocampal area CA2 where it is unaffected by restraint stress or adrenalectomy[J/OL]. Neuroscience, 2006, 143(4): 1031-1039. DOI:10.1016/j.neuroscience.2006.08.040.
[49] OETTL L L, RAVI N, SCHNEIDER M, et al. Oxytocin Enhances Social Recognition by Modulating Cortical Control of Early Olfactory Processing[J/OL]. Neuron, 2016, 90(3): 609-621. DOI:10.1016/j.neuron.2016.03.033.
[50] STEVENSON E L, CALDWELL H K. Lesions to the CA2 region of the hippocampus impair social memory in mice[J/OL]. European Journal of Neuroscience, 2014, 40(9): 3294-3301. DOI:10.1111/ejn.12689.
[51] HITTI F L, SIEGELBAUM S A. The hippocampal CA2 region is essential for social memory[J/OL]. Nature, 2014, 508(7494): 88-92. DOI:10.1038/nature13028.
[52] MEIRA T, LEROY F, BUSS E W, et al. A hippocampal circuit linking dorsal CA2 to ventral CA1 critical for social memory dynamics[J/OL]. Nature Communications, 2018, 9(1): 4163. DOI:10.1038/s41467-018-06501-w.
[53] MANKIN E A, DIEHL G W, SPARKS F T, et al. Hippocampal CA2 Activity Patterns Change over Time to a Larger Extent than between Spatial Contexts[J/OL]. Neuron, 2015, 85(1): 190-201. DOI:10.1016/j.neuron.2014.12.001.
[54] ROBERT V, CASSIM S, CHEVALEYRE V, et al. Hippocampal area CA2: properties and contribution to hippocampal function[J/OL]. Cell and Tissue Research, 2018, 373(3): 525-540. DOI:10.1007/s00441-017-2769-7.
[55] LEE H, WANG C, DESHMUKH S S, et al. Neural Population Evidence of Functional Heterogeneity along the CA3 Transverse Axis: Pattern Completion versus Pattern Separation[J/OL]. Neuron, 2015, 87(5): 1093-1105. DOI:10.1016/j.neuron.2015.07.012.
[56] DONEGAN M L. Coding of social novelty in the hippocampal CA2 region and its disruption and rescue in a 22q11.2 microdeletion mouse model[J]. Nature Neuroscience, 2020, 23(11): 1365-1375. DOI:10.1038/s41593-020-00720-5.
[57] OLIVA A, FERNÁNDEZ-RUIZ A, LEROY F, et al. Hippocampal CA2 sharp-wave ripples reactivate and promote social memory[J/OL]. Nature, 2020, 587(7833): 264-269. DOI:10.1038/s41586-020-2758-y.
[58] BOYLE L M, POSANI L, IRFAN S, et al. Tuned geometries of hippocampal representations meet the computational demands of social memory[J/OL]. Neuron, 2024, 112(8):1358-1371. DOI:10.1016/j.neuron.2024.01.021.
[59] OKUYAMA T, KITAMURA T, ROY D S, et al. Ventral CA1 neurons store social memory[J]. Science. 2016, 353(6307): 1536-1541. DOI:10.1126/science.aaf7003.
[60] COPE E C, WANG S H, WATERS R C, et al. Activation of the CA2-ventral CA1 pathway reverses social discrimination dysfunction in Shank3B knockout mice[J/OL]. Nature Communications, 2023, 14(1): 1750. DOI:10.1038/s41467-023-37248-8.
[61] MACDONALD C J, LEPAGE K Q, EDEN U T, et al. Hippocampal “Time Cells” Bridge the Gap in Memory for Discontiguous Events[J/OL]. Neuron, 2011, 71(4): 737-749. DOI:10.1016/j.neuron.2011.07.012.
[62] WOOD E R, DUDCHENKO P A, ROBITSEK R J, et al. Hippocampal Neurons Encode Information about Different Types of Memory Episodes Occurring in the Same Location[J/OL]. Neuron, 2000, 27(3): 623-633. DOI:10.1016/S0896-6273(00)00071-4.
[63] DIBA K, BUZSÁKI G. Forward and reverse hippocampal place-cell sequences during ripples[J/OL]. Nature Neuroscience, 2007, 10(10): 1241-1242. DOI:10.1038/nn1961.
[64] EGO‐STENGEL V, WILSON M A. Disruption of ripple‐associated hippocampal activity during rest impairs spatial learning in the rat[J/OL]. Hippocampus, 2010, 20(1): 1-10. DOI:10.1002/hipo.20707.
[65] JUST M A, CHERKASSKY V L, KELLER T A, et al. Functional and Anatomical Cortical Underconnectivity in Autism: Evidence from an fMRI Study of an Executive Function Task and Corpus Callosum Morphometry[J/OL]. Cerebral Cortex, 2007, 17(4): 951-961. DOI:10.1093/cercor/bhl006.
[66] DUCH W. Autism Spectrum Disorder and Deep Attractors in Neurodynamics[M/OL]//CUTSURIDIS V. Multiscale Models of Brain Disorders: Cham: Springer International Publishing, 2019: 135-146. http://link.springer.com/10.1007/978-3-030-18830-6_13. DOI:10.1007/978-3-030-18830-6_13.
[67] RUBENSTEIN J L R, MERZENICH M M. Model of autism: increased ratio of excitation/inhibition in key neural systems: Model of autism[J/OL]. Genes, Brain and Behavior, 2003, 2(5): 255-267. DOI:10.1034/j.1601-183X.2003.00037.x.
[68] LEE J, CHUNG C, HA S, et al. Shank3-mutant mice lacking exon 9 show altered excitation/inhibition balance, enhanced rearing, and spatial memory deficit[J/OL]. Frontiers in Cellular Neuroscience, 2015, 9:94. http://www.frontiersin.org/Cellular_Neuroscience/10.3389/fncel.2015.00094/abstract. DOI:10.3389/fncel.2015.00094.
[69] LAING B T, SIEMIAN J N, SARSFIELD S, et al. Fluorescence microendoscopy for in vivo deep-brain imaging of neuronal circuits[J/OL]. Journal of Neuroscience Methods, 2021, 348: 109015. DOI:10.1016/j.jneumeth.2020.109015.
[70] PAREDES R M, ETZLER J C, WATTS L T, et al. Chemical calcium indicators[J/OL]. Methods, 2008, 46(3): 143-151. DOI:10.1016/j.ymeth.2008.09.025.
[71] CHEN T W, WARDILL T J, SUN Y, et al. Ultrasensitive fluorescent proteins for imaging neuronal activity[J/OL]. Nature, 2013, 499(7458): 295-300. DOI:10.1038/nature12354.
[72] DANA H, SUN Y, MOHAR B, et al. High-performance calcium sensors for imaging activity in neuronal populations and microcompartments[J/OL]. Nature Methods, 2019, 16(7): 649-657. DOI:10.1038/s41592-019-0435-6.
[73] ZHANG Y, RÓZSA M, LIANG Y, et al. Fast and sensitive GCaMP calcium indicators for imaging neural populations[J/OL]. Nature, 2023, 615(7954): 884-891. DOI:10.1038/s41586-023-05828-9.
[74] AHARONI D, HOOGLAND T M. Circuit Investigations With Open-Source Miniaturized Microscopes: Past, Present and Future[J/OL]. Frontiers in Cellular Neuroscience, 2019, 13: 141. DOI:10.3389/fncel.2019.00141.
[75] GÖPPERT‐MAYER M. Über Elementarakte mit zwei Quantensprüngen[J/OL]. Annalen der Physik, 1931, 401(3): 273-294. DOI:10.1002/andp.19314010303.
[76] ZHOU Y, KAISER T, MONTEIRO P, et al. Mice with Shank3 Mutations Associated with ASD and Schizophrenia Display Both Shared and Distinct Defects[J/OL]. Neuron, 2016, 89(1): 147-162. DOI:10.1016/j.neuron.2015.11.023.
[77] KOUSER M, SPEED H E, DEWEY C M, et al. Loss of Predominant Shank3 Isoforms Results in Hippocampus-Dependent Impairments in Behavior and Synaptic Transmission[J/OL]. The Journal of Neuroscience, 2013, 33(47): 18448-18468. DOI:10.1523/JNEUROSCI.3017-13.2013.
[78] JARAMILLO T C, SPEED H E, XUAN Z, et al. Novel Shank3 mutant exhibits behaviors with face validity for autism and altered striatal and hippocampal function[J]. Autism Res. 2017, 10(1): 42-65. DOI:10.1002/aur.1664.
[79] SATO M, MIZUTA K, ISLAM T, et al. Distinct Mechanisms of Over-Representation of Landmarks and Rewards in the Hippocampus[J/OL]. Cell Reports, 2020, 32(1): 107864. DOI:10.1016/j.celrep.2020.107864.
[80] CHEN Q, DEISTER C A, GAO X, et al. Dysfunction of cortical GABAergic neurons leads to sensory hyper-reactivity in a Shank3 mouse model of ASD[J/OL]. Nature Neuroscience, 2020, 23(4): 520-532. DOI:10.1038/s41593-020-0598-6.
[81] TAO K, CHUNG M, WATARAI A, et al. Disrupted social memory ensembles in the ventral hippocampus underlie social amnesia in autism-associated Shank3 mutant mice[J/OL]. Molecular Psychiatry, 2022, 27(4): 2095-2105. https://www.nature.com/articles/s41380-021-01430-5. DOI:10.1038/s41380-021-01430-5.
[82] TOMCHEK S D, DUNN W. Sensory Processing in Children With and Without Autism: A Comparative Study Using the Short Sensory Profile[J/OL]. The American Journal of Occupational Therapy, 2007, 61(2): 190-200. DOI:10.5014/ajot.61.2.190.
[83] ZHOU P, RESENDEZ S L, RODRIGUEZ-ROMAGUERA J, et al. Efficient and accurate extraction of in vivo calcium signals from microendoscopic video data[J/OL]. eLife, 2018, 7: e28728. DOI:10.7554/eLife.28728.
[84] SKAGGS W E, MCNAUGHTON B L, GOTHARD K M. An Information-Theoretic Approach to Deciphering the Hippocampal Code[C] // Proceedings of the 5th International Conference on Neural Information Processing Systems. Morgan Kaufmann Publishers Inc, 1992: 1030-1037.
[85] SHEINTUCH L, RUBIN A, BRANDE-EILAT N, et al. Tracking the Same Neurons across Multiple Days in Ca2+ Imaging Data[J/OL]. Cell Reports, 2017, 21(4): 1102-1115. DOI:10.1016/j.celrep.2017.10.013.
[86] SHIN J, LEE H W, JIN S W, et al. Subtle visual change in a virtual environment induces heterogeneous remapping systematically in CA1, but not CA3[J/OL]. Cell Reports, 2022, 41(11): 111823. DOI:10.1016/j.celrep.2022.111823.

所在学位评定分委会
生物学
国内图书分类号
Q189
来源库
人工提交
成果类型学位论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/765797
专题生命科学学院_生物系
推荐引用方式
GB/T 7714
胡滨雁. 孤独症模型Shank3B敲除小鼠海马CA1对空间和社交信息的编码[D]. 深圳. 南方科技大学,2024.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可 操作
12133031-胡滨雁-生物系.pdf(53729KB)----限制开放--请求全文
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[胡滨雁]的文章
百度学术
百度学术中相似的文章
[胡滨雁]的文章
必应学术
必应学术中相似的文章
[胡滨雁]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。