[1] ZHOU H, XU X, YAN W, et al. Prevalence of Autism Spectrum Disorder in China: A Nationwide Multi-center Population-based Study Among Children Aged 6 to 12 Years[J/OL]. Neuroscience Bulletin, 2020, 36(9): 961-971. DOI:10.1007/s12264-020-00530-6.
[2] BAILEY A, COUTEUR A L, GOTTESMAN I, et al. Autism as a strongly genetic disorder: evidence from a British twin study[J]. Psychol Med, 1995, 25(1): 63-77. DOI: 10.1017/s0033291700028099.
[3] DURAND C M, BETANCUR C, BOECKERS T M, et al. Mutations in the gene encoding the synaptic scaffolding protein SHANK3 are associated with autism spectrum disorders[J/OL]. Nature Genetics, 2007, 39(1): 25-27. DOI:10.1038/ng1933.
[4] PARIS AUTISM RESEARCH INTERNATIONAL SIBPAIR STUDY, JAMAIN S, QUACH H, et al. Mutations of the X-linked genes encoding neuroligins NLGN3 and NLGN4 are associated with autism[J/OL]. Nature Genetics, 2003, 34(1): 27-29. DOI:10.1038/ng1136.
[5] CHUBYKIN A A, LIU X, COMOLETTI D, et al. Dissection of Synapse Induction by Neuroligins[J/OL]. Journal of Biological Chemistry, 2005, 280(23): 22365-22374. DOI:10.1074/jbc.M410723200.
[6] ALARCÓN M, ABRAHAMS B S, STONE J L, et al. Linkage, Association, and Gene-Expression Analyses Identify CNTNAP2 as an Autism-Susceptibility Gene[J/OL]. The American Journal of Human Genetics, 2008, 82(1): 150-159. DOI:10.1016/j.ajhg.2007.09.005.
[7] MOESSNER R, MARSHALL C R, SUTCLIFFE J S, et al. Contribution of SHANK3 Mutations to Autism Spectrum Disorder[J/OL]. The American Journal of Human Genetics, 2007, 81(6): 1289-1297. DOI:10.1086/522590.
[8] BOCCUTO L, LAURI M, SARASUA S M, et al. Prevalence of SHANK3 variants in patients with different subtypes of autism spectrum disorders[J/OL]. European Journal of Human Genetics, 2013, 21(3): 310-316. DOI:10.1038/ejhg.2012.175.
[9] FRANK Y. The Neurological Manifestations of Phelan-McDermid Syndrome[J/OL]. Pediatric Neurology, 2021, 122: 59-64. DOI:10.1016/j.pediatrneurol.2021.06.002.
[10] LEBLOND C S, NAVA C, POLGE A, et al. Meta-analysis of SHANK Mutations in Autism Spectrum Disorders: A Gradient of Severity in Cognitive Impairments[J/OL]. PLoS Genetics, 2014, 10(9): e1004580. DOI:10.1371/journal.pgen.1004580.
[11] LIM S, NAISBITT S, YOON J, et al. Characterization of the Shank Family of Synaptic Proteins[J/OL]. Journal of Biological Chemistry, 1999, 274(41): 29510-29518. DOI:10.1074/jbc.274.41.29510.
[12] MONTEIRO P, FENG G. SHANK proteins: roles at the synapse and in autism spectrum disorder[J/OL]. Nature Reviews Neuroscience, 2017, 18(3): 147-157. DOI:10.1038/nrn.2016.183.
[13] PEÇA J, FELICIANO C, TING J T, et al. Shank3 mutant mice display autistic-like behaviours and striatal dysfunction[J/OL]. Nature, 2011, 472(7344): 437-442. DOI:10.1038/nature09965.
[14] BOZDAGI O, SAKURAI T, PAPAPETROU D, et al. Haploinsufficiency of the autism-associated Shank3 gene leads to deficits in synaptic function, social interaction, and social communication[J/OL]. Molecular Autism, 2010, 1(1): 1-15. DOI:10.1186/2040-2392-1-15.
[15] HAN Q, KIM Y H, WANG X, et al. SHANK3 Deficiency Impairs Heat Hyperalgesia and TRPV1 Signaling in Primary Sensory Neurons[J/OL]. Neuron, 2016, 92(6): 1279-1293. DOI:10.1016/j.neuron.2016.11.007.
[16] ROBERTSON C E, BARON-COHEN S. Sensory perception in autism[J/OL]. Nature Reviews Neuroscience, 2017, 18(11): 671-684. DOI:10.1038/nrn.2017.112.
[17] LIND S E, BOWLER D M, RABER J. Spatial navigation, episodic memory, episodic future thinking, and theory of mind in children with autism spectrum disorder: evidence for impairments in mental simulation?[J/OL]. Frontiers in Psychology, 2014, 5:1411. http://journal.frontiersin.org/article/10.3389/fpsyg.2014.01411/abstract. DOI:10.3389/fpsyg.2014.01411.
[18] SMITH A D. Spatial navigation in autism spectrum disorders: a critical review[J/OL]. Frontiers in Psychology, 2015, 6:31. http://journal.frontiersin.org/article/10.3389/fpsyg.2015.00031/abstract. DOI:10.3389/fpsyg.2015.00031.
[19] AMERICAN PSYCHIATRIC ASSOCIATION, AMERICAN PSYCHIATRIC ASSOCIATION. Diagnostic and statistical manual of mental disorders: DSM-5[M]. 5th ed. Washington, D.C: American Psychiatric Association, 2013.
[20] LANE A E, MOLLOY C A, BISHOP S L. Classification of Children With Autism Spectrum Disorder by Sensory Subtype: A Case for Sensory‐Based Phenotypes[J/OL]. Autism Research, 2014, 7(3): 322-333. DOI:10.1002/aur.1368.
[21] STEVENSON R A, BAUM S H, SEGERS M, et al. Multisensory speech perception in autism spectrum disorder: From phoneme to whole‐word perception[J/OL]. Autism Research, 2017, 10(7): 1280-1290. DOI:10.1002/aur.1776.
[22] PELLICANO E, SMITH A D, CRISTINO F, et al. Children with autism are neither systematic nor optimal foragers[J/OL]. Proceedings of the National Academy of Sciences, 2011, 108(1): 421-426. DOI:10.1073/pnas.1014076108.
[23] EDGIN J O, PENNINGTON B F. Spatial Cognition in Autism Spectrum Disorders: Superior, Impaired, or Just Intact?[J/OL]. Journal of Autism and Developmental Disorders, 2005, 35(6): 729-745. DOI:10.1007/s10803-005-0020-y.
[24] FORNASARI L, CHITTARO L, IERONUTTI L, et al. Navigation and exploration of an urban virtual environment by children with autism spectrum disorder compared to children with typical development[J/OL]. Research in Autism Spectrum Disorders, 2013, 7(8): 956-965. DOI:10.1016/j.rasd.2013.04.007.
[25] CARON M. Do high functioning persons with autism present superior spatial abilities?[J/OL]. Neuropsychologia, 2004, 42(4): 467-481. DOI:10.1016/j.neuropsychologia.2003.08.015.
[26] RING M, GAIGG S B, DE CONDAPPA O, et al. Spatial navigation from same and different directions: The role of executive functions, memory and attention in adults with autism spectrum disorder: Same vs different direction navigation in ASD[J/OL]. Autism Research, 2018, 11(5): 798-810. DOI:10.1002/aur.1924.
[27] CAMERON H A, GOULD E. Adult neurogenesis is regulated by adrenal steroids in the dentate gyrus[J/OL]. Neuroscience, 1994, 61(2): 203-209. DOI:10.1016/0306-4522(94)90224-0.
[28] LOPEZ-ROJAS J, KREUTZ M R. Mature granule cells of the dentate gyrus—Passive bystanders or principal performers in hippocampal function?[J/OL]. Neuroscience & Biobehavioral Reviews, 2016, 64: 167-174. DOI:10.1016/j.neubiorev.2016.02.021.
[29] NEYLAN T C, SCOVILLE W B, MILNER B. Memory and the Medial Temporal Lobe: Patient H. M.[J]. J Neuropsychiatry Clin Neurosci, 2000, 12(1):103-113.
[30] BLISS T V P, LØMO T. Long‐lasting potentiation of synaptic transmission in the dentate area of the anaesthetized rabbit following stimulation of the perforant path[J/OL]. The Journal of Physiology, 1973, 232(2): 331-356. DOI:10.1113/jphysiol.1973.sp010273.
[31] O’KEEFE J, DOSTROVSKY J. The hippocampus as a spatial map. Preliminary evidence from unit activity in the freely-moving rat[J/OL]. Brain Research, 1971, 34(1): 171-175. DOI:10.1016/0006-8993(71)90358-1.
[32] MULLER R, KUBIE J, RANCK J. Spatial firing patterns of hippocampal complex-spike cells in a fixed environment[J/OL]. The Journal of Neuroscience, 1987, 7(7): 1935-1950. DOI:10.1523/JNEUROSCI.07-07-01935.1987.
[33] HAFTING T, FYHN M, MOLDEN S, et al. Microstructure of a spatial map in the entorhinal cortex[J/OL]. Nature, 2005, 436(7052): 801-806. DOI:10.1038/nature03721.
[34] TAUBE J, MULLER R, RANCK J. Head-direction cells recorded from the postsubiculum in freely moving rats. I. Description and quantitative analysis[J/OL]. The Journal of Neuroscience, 1990, 10(2): 420-435. DOI:10.1523/JNEUROSCI.10-02-00420.1990.
[35] SOLSTAD T, BOCCARA C N, KROPFF E, et al. Representation of Geometric Borders in the Entorhinal Cortex[J/OL]. Science, 2008, 322(5909): 1865-1868. DOI:10.1126/science.1166466.
[36] SAVELLI F, YOGANARASIMHA D, KNIERIM J J. Influence of boundary removal on the spatial representations of the medial entorhinal cortex[J]. Hippocampus. 2008, 18(12): 1270-1282. DOI:10.1002/hipo.20511.
[37] DESHMUKH S S, KNIERIM J J. Influence of local objects on hippocampal representations: Landmark vectors and memory[J/OL]. Hippocampus, 2013, 23(4): 253-267. DOI:10.1002/hipo.22101.
[38] ISSA J B, TOCKER G, HASSELMO M E, et al. Navigating Through Time: A Spatial Navigation Perspective on How the Brain May Encode Time[J]. Annu Rev Neurosci. 2020, 43: 73-93. DOI: 10.1146/annurev-neuro-101419-011117.
[39] HASSAN S I, BIGLER S, SIEGELBAUM S A. Social odor discrimination and its enhancement by associative learning in the hippocampal CA2 region[J/OL]. Neuron, 2023, 111(14):2232-2246. DOI:10.1016/j.neuron.2023.04.026.
[40] MOSER E I, ROUDI Y, WITTER M P, et al. Grid cells and cortical representation[J/OL]. Nature Reviews Neuroscience, 2014, 15(7): 466-481. DOI:10.1038/nrn3766.
[41] TSAO A, MOSER M B, MOSER E I. Traces of Experience in the Lateral Entorhinal Cortex[J/OL]. Current Biology, 2013, 23(5): 399-405. DOI:10.1016/j.cub.2013.01.036.
[42] AMARAL’ D G, ISHIZUKA N, CLAIBORNE B. Neurons, numbers and the hippocampal network[J]. Prog Brain Res. 1990, 83: 1-11. DOI:10.1016/s0079-6123(08)61237-6.
[43] BORZELLO M, RAMIREZ S, TREVES A, et al. Assessments of dentate gyrus function: discoveries and debates[J/OL]. Nature Reviews Neuroscience, 2023, 24(8): 502-517. DOI:10.1038/s41583-023-00710-z.
[44] SENZAI Y. Function of local circuits in the hippocampal dentate gyrus-CA3 system[J/OL]. Neuroscience Research, 2019, 140: 43-52. DOI:10.1016/j.neures.2018.11.003.
[45] KNOBLOCH H S, CHARLET A, HOFFMANN L C, et al. Evoked Axonal Oxytocin Release in the Central Amygdala Attenuates Fear Response[J/OL]. Neuron, 2012, 73(3): 553-566. DOI:10.1016/j.neuron.2011.11.030.
[46] ZHANG L, HERNÁNDEZ V S. Synaptic innervation to rat hippocampus by vasopressin-immuno-positive fibres from the hypothalamic supraoptic and paraventricular nuclei[J/OL]. Neuroscience, 2013, 228: 139-162. DOI:10.1016/j.neuroscience.2012.10.010.
[47] WERSINGER S R, GINNS E I, O’CARROLL A M, et al. Vasopressin V1b receptor knockout reduces aggressive behavior in male mice[J/OL]. Molecular Psychiatry, 2002, 7(9): 975-984. DOI:10.1038/sj.mp.4001195.
[48] YOUNG W S, LI J, WERSINGER S R, et al. The vasopressin 1b receptor is prominent in the hippocampal area CA2 where it is unaffected by restraint stress or adrenalectomy[J/OL]. Neuroscience, 2006, 143(4): 1031-1039. DOI:10.1016/j.neuroscience.2006.08.040.
[49] OETTL L L, RAVI N, SCHNEIDER M, et al. Oxytocin Enhances Social Recognition by Modulating Cortical Control of Early Olfactory Processing[J/OL]. Neuron, 2016, 90(3): 609-621. DOI:10.1016/j.neuron.2016.03.033.
[50] STEVENSON E L, CALDWELL H K. Lesions to the CA2 region of the hippocampus impair social memory in mice[J/OL]. European Journal of Neuroscience, 2014, 40(9): 3294-3301. DOI:10.1111/ejn.12689.
[51] HITTI F L, SIEGELBAUM S A. The hippocampal CA2 region is essential for social memory[J/OL]. Nature, 2014, 508(7494): 88-92. DOI:10.1038/nature13028.
[52] MEIRA T, LEROY F, BUSS E W, et al. A hippocampal circuit linking dorsal CA2 to ventral CA1 critical for social memory dynamics[J/OL]. Nature Communications, 2018, 9(1): 4163. DOI:10.1038/s41467-018-06501-w.
[53] MANKIN E A, DIEHL G W, SPARKS F T, et al. Hippocampal CA2 Activity Patterns Change over Time to a Larger Extent than between Spatial Contexts[J/OL]. Neuron, 2015, 85(1): 190-201. DOI:10.1016/j.neuron.2014.12.001.
[54] ROBERT V, CASSIM S, CHEVALEYRE V, et al. Hippocampal area CA2: properties and contribution to hippocampal function[J/OL]. Cell and Tissue Research, 2018, 373(3): 525-540. DOI:10.1007/s00441-017-2769-7.
[55] LEE H, WANG C, DESHMUKH S S, et al. Neural Population Evidence of Functional Heterogeneity along the CA3 Transverse Axis: Pattern Completion versus Pattern Separation[J/OL]. Neuron, 2015, 87(5): 1093-1105. DOI:10.1016/j.neuron.2015.07.012.
[56] DONEGAN M L. Coding of social novelty in the hippocampal CA2 region and its disruption and rescue in a 22q11.2 microdeletion mouse model[J]. Nature Neuroscience, 2020, 23(11): 1365-1375. DOI:10.1038/s41593-020-00720-5.
[57] OLIVA A, FERNÁNDEZ-RUIZ A, LEROY F, et al. Hippocampal CA2 sharp-wave ripples reactivate and promote social memory[J/OL]. Nature, 2020, 587(7833): 264-269. DOI:10.1038/s41586-020-2758-y.
[58] BOYLE L M, POSANI L, IRFAN S, et al. Tuned geometries of hippocampal representations meet the computational demands of social memory[J/OL]. Neuron, 2024, 112(8):1358-1371. DOI:10.1016/j.neuron.2024.01.021.
[59] OKUYAMA T, KITAMURA T, ROY D S, et al. Ventral CA1 neurons store social memory[J]. Science. 2016, 353(6307): 1536-1541. DOI:10.1126/science.aaf7003.
[60] COPE E C, WANG S H, WATERS R C, et al. Activation of the CA2-ventral CA1 pathway reverses social discrimination dysfunction in Shank3B knockout mice[J/OL]. Nature Communications, 2023, 14(1): 1750. DOI:10.1038/s41467-023-37248-8.
[61] MACDONALD C J, LEPAGE K Q, EDEN U T, et al. Hippocampal “Time Cells” Bridge the Gap in Memory for Discontiguous Events[J/OL]. Neuron, 2011, 71(4): 737-749. DOI:10.1016/j.neuron.2011.07.012.
[62] WOOD E R, DUDCHENKO P A, ROBITSEK R J, et al. Hippocampal Neurons Encode Information about Different Types of Memory Episodes Occurring in the Same Location[J/OL]. Neuron, 2000, 27(3): 623-633. DOI:10.1016/S0896-6273(00)00071-4.
[63] DIBA K, BUZSÁKI G. Forward and reverse hippocampal place-cell sequences during ripples[J/OL]. Nature Neuroscience, 2007, 10(10): 1241-1242. DOI:10.1038/nn1961.
[64] EGO‐STENGEL V, WILSON M A. Disruption of ripple‐associated hippocampal activity during rest impairs spatial learning in the rat[J/OL]. Hippocampus, 2010, 20(1): 1-10. DOI:10.1002/hipo.20707.
[65] JUST M A, CHERKASSKY V L, KELLER T A, et al. Functional and Anatomical Cortical Underconnectivity in Autism: Evidence from an fMRI Study of an Executive Function Task and Corpus Callosum Morphometry[J/OL]. Cerebral Cortex, 2007, 17(4): 951-961. DOI:10.1093/cercor/bhl006.
[66] DUCH W. Autism Spectrum Disorder and Deep Attractors in Neurodynamics[M/OL]//CUTSURIDIS V. Multiscale Models of Brain Disorders: Cham: Springer International Publishing, 2019: 135-146. http://link.springer.com/10.1007/978-3-030-18830-6_13. DOI:10.1007/978-3-030-18830-6_13.
[67] RUBENSTEIN J L R, MERZENICH M M. Model of autism: increased ratio of excitation/inhibition in key neural systems: Model of autism[J/OL]. Genes, Brain and Behavior, 2003, 2(5): 255-267. DOI:10.1034/j.1601-183X.2003.00037.x.
[68] LEE J, CHUNG C, HA S, et al. Shank3-mutant mice lacking exon 9 show altered excitation/inhibition balance, enhanced rearing, and spatial memory deficit[J/OL]. Frontiers in Cellular Neuroscience, 2015, 9:94. http://www.frontiersin.org/Cellular_Neuroscience/10.3389/fncel.2015.00094/abstract. DOI:10.3389/fncel.2015.00094.
[69] LAING B T, SIEMIAN J N, SARSFIELD S, et al. Fluorescence microendoscopy for in vivo deep-brain imaging of neuronal circuits[J/OL]. Journal of Neuroscience Methods, 2021, 348: 109015. DOI:10.1016/j.jneumeth.2020.109015.
[70] PAREDES R M, ETZLER J C, WATTS L T, et al. Chemical calcium indicators[J/OL]. Methods, 2008, 46(3): 143-151. DOI:10.1016/j.ymeth.2008.09.025.
[71] CHEN T W, WARDILL T J, SUN Y, et al. Ultrasensitive fluorescent proteins for imaging neuronal activity[J/OL]. Nature, 2013, 499(7458): 295-300. DOI:10.1038/nature12354.
[72] DANA H, SUN Y, MOHAR B, et al. High-performance calcium sensors for imaging activity in neuronal populations and microcompartments[J/OL]. Nature Methods, 2019, 16(7): 649-657. DOI:10.1038/s41592-019-0435-6.
[73] ZHANG Y, RÓZSA M, LIANG Y, et al. Fast and sensitive GCaMP calcium indicators for imaging neural populations[J/OL]. Nature, 2023, 615(7954): 884-891. DOI:10.1038/s41586-023-05828-9.
[74] AHARONI D, HOOGLAND T M. Circuit Investigations With Open-Source Miniaturized Microscopes: Past, Present and Future[J/OL]. Frontiers in Cellular Neuroscience, 2019, 13: 141. DOI:10.3389/fncel.2019.00141.
[75] GÖPPERT‐MAYER M. Über Elementarakte mit zwei Quantensprüngen[J/OL]. Annalen der Physik, 1931, 401(3): 273-294. DOI:10.1002/andp.19314010303.
[76] ZHOU Y, KAISER T, MONTEIRO P, et al. Mice with Shank3 Mutations Associated with ASD and Schizophrenia Display Both Shared and Distinct Defects[J/OL]. Neuron, 2016, 89(1): 147-162. DOI:10.1016/j.neuron.2015.11.023.
[77] KOUSER M, SPEED H E, DEWEY C M, et al. Loss of Predominant Shank3 Isoforms Results in Hippocampus-Dependent Impairments in Behavior and Synaptic Transmission[J/OL]. The Journal of Neuroscience, 2013, 33(47): 18448-18468. DOI:10.1523/JNEUROSCI.3017-13.2013.
[78] JARAMILLO T C, SPEED H E, XUAN Z, et al. Novel Shank3 mutant exhibits behaviors with face validity for autism and altered striatal and hippocampal function[J]. Autism Res. 2017, 10(1): 42-65. DOI:10.1002/aur.1664.
[79] SATO M, MIZUTA K, ISLAM T, et al. Distinct Mechanisms of Over-Representation of Landmarks and Rewards in the Hippocampus[J/OL]. Cell Reports, 2020, 32(1): 107864. DOI:10.1016/j.celrep.2020.107864.
[80] CHEN Q, DEISTER C A, GAO X, et al. Dysfunction of cortical GABAergic neurons leads to sensory hyper-reactivity in a Shank3 mouse model of ASD[J/OL]. Nature Neuroscience, 2020, 23(4): 520-532. DOI:10.1038/s41593-020-0598-6.
[81] TAO K, CHUNG M, WATARAI A, et al. Disrupted social memory ensembles in the ventral hippocampus underlie social amnesia in autism-associated Shank3 mutant mice[J/OL]. Molecular Psychiatry, 2022, 27(4): 2095-2105. https://www.nature.com/articles/s41380-021-01430-5. DOI:10.1038/s41380-021-01430-5.
[82] TOMCHEK S D, DUNN W. Sensory Processing in Children With and Without Autism: A Comparative Study Using the Short Sensory Profile[J/OL]. The American Journal of Occupational Therapy, 2007, 61(2): 190-200. DOI:10.5014/ajot.61.2.190.
[83] ZHOU P, RESENDEZ S L, RODRIGUEZ-ROMAGUERA J, et al. Efficient and accurate extraction of in vivo calcium signals from microendoscopic video data[J/OL]. eLife, 2018, 7: e28728. DOI:10.7554/eLife.28728.
[84] SKAGGS W E, MCNAUGHTON B L, GOTHARD K M. An Information-Theoretic Approach to Deciphering the Hippocampal Code[C] // Proceedings of the 5th International Conference on Neural Information Processing Systems. Morgan Kaufmann Publishers Inc, 1992: 1030-1037.
[85] SHEINTUCH L, RUBIN A, BRANDE-EILAT N, et al. Tracking the Same Neurons across Multiple Days in Ca2+ Imaging Data[J/OL]. Cell Reports, 2017, 21(4): 1102-1115. DOI:10.1016/j.celrep.2017.10.013.
[86] SHIN J, LEE H W, JIN S W, et al. Subtle visual change in a virtual environment induces heterogeneous remapping systematically in CA1, but not CA3[J/OL]. Cell Reports, 2022, 41(11): 111823. DOI:10.1016/j.celrep.2022.111823.
修改评论