[1] ONSAGER L. Crystal Statistics. I. A Two-Dimensional Model with an Order-Disorder Transi- tion[J/OL]. Physical Review, 1944, 65(3–4): 117-149. DOI: 10.1103/PhysRev.65.117.
[2] WALLACE P R. The Band Theory of Graphite[J/OL]. Physical Review, 1947, 71(9): 622-634. DOI: 10.1103/PhysRev.71.622.
[3] WANNIER G H. Antiferromagnetism. The Triangular Ising Net[J/OL]. Physical Review, 1950, 79(2): 357-364. DOI: 10.1103/PhysRev.79.357.
[4] SYOZI I. Statistics of Kagome Lattice[J/OL]. Progress of Theoretical Physics, 1951, 6(3): 306-308. DOI: 10.1143/ptp/6.3.306.
[5] BALENTS L. Spin Liquids in Frustrated Magnets[J/OL]. Nature, 2010, 464(7286): 199-208. DOI: 10.1038/nature08917.
[6] HAN T H, HELTON J S, CHU S, et al. Fractionalized Excitations in the Spin-liquid State of a Kagome-Lattice Antiferromagnet[J/OL]. Nature, 2012, 492(7429): 406-410. DOI: 10.1038/na ture11659.
[7] FåK B, KERMARREC E, MESSIO L, et al. Kapellasite: A Kagome Quantum Spin Liquid with Competing Interactions[J/OL]. Physical Review Letters, 2012, 109(3): 037208. DOI: 10.1103/PhysRevLett.109.037208.
[8] SAVARY L, BALENTS L. Quantum Spin Liquids: A Review[J/OL]. Reports on Progress in Physics, 2016, 80(1): 016502. DOI: 10.1088/0034-4885/80/1/016502.
[9] NORMAN M. Colloquium : Herbertsmithite and the Search for the Quantum Spin Liquid [J/OL]. Reviews of Modern Physics, 2016, 88(4): 041002. DOI: 10.1103/RevModPhys.88.04 1002.
[10] KLITZING K V, DORDA G, PEPPER M. New Method for High-Accuracy Determination of the Fine-Structure Constant Based on Quantized Hall Resistance[J/OL]. Physical Review Letters, 1980, 45(6): 494-497. DOI: 10.1103/PhysRevLett.45.494.
[11] WEN X G. Topological Orders and Edge Excitations in Fractional Quantum Hall States[J/OL]. Advances in Physics, 1995, 44(5): 405-473. DOI: 10.1080/00018739500101566.
[12] AVRON J E, OSADCHY D, SEILER R. A Topological Look at the Quantum Hall Effect[J/OL]. Physics Today, 2003, 56(8): 38-42. DOI: 10.1063/1.1611351.
[13 ]HALDANE F D M. Nobel Lecture: Topological Quantum Matter[J/OL]. Reviews of Modern Physics, 2017, 89(4): 040502. DOI: 10.1103/RevModPhys.89.040502.
[14] NOVOSELOV K S, GEIM A K, MOROZOV S V, et al. Electric Field Effect in Atomically Thin Carbon Films[J/OL]. Science, 2004, 306(5696): 666-669. DOI: 10.1126/science.1102896.
[15] CASTRO NETO A H, GUINEA F, PERES N M R, et al. The Electronic Properties of Graphene [J/OL]. Reviews of Modern Physics, 2009, 81(1): 109-162. DOI: 10.1103/RevModPhys.81.10 9.
[16] YIN J X, LIAN B, HASAN M Z. Topological Kagome Magnets and Superconductors[J/OL]. Nature, 2022, 612(7941): 647-657. DOI: 10.1038/s41586-022-05516-0.
[17] GUO H M, FRANZ M. Topological Insulator on the Kagome Lattice[J/OL]. Physical Review B, 2009, 80(11): 113102. DOI: 10.1103/PhysRevB.80.113102.
[18] KIESEL M L, THOMALE R. Sublattice Interference in the Kagome Hubbard Model[J/OL]. Physical Review B, 2012, 86(12): 121105. DOI: 10.1103/PhysRevB.86.121105.
[19] WANG W S, LI Z Z, XIANG Y Y, et al. Competing Electronic Orders on Kagome Kattices at van Hove Filling[J/OL]. Physical Review B, 2013, 87(11): 115135. DOI:10.1103/PhysRevB.87.115135.
[20] KIESEL M L, PLATT C, THOMALE R. Unconventional Fermi Surface Instabilities in the Kagome Hubbard Model[J/OL]. Physical Review Letters, 2013, 110(12): 126405. DOI: 10.1 103/PhysRevLett.110.126405.
[21] YU S L, LI J X. Chiral Superconducting Phase and Chiral Spin-density-wave Phase in a Hub- bard Model on the Kagome Lattice[J/OL]. Physical Review B, 2012, 85(14): 144402. DOI: 10.1103/PhysRevB.85.144402.
[22] ZHU W, GONG S S, ZENG T S, et al. Interaction-Driven Spontaneous Quantum Hall Effect on a Kagome Lattice[J/OL]. Physical Review Letters, 2016, 117(9): 096402. DOI: 10.1103/Ph ysRevLett.117.096402.
[23] KANG M, FANG S, YE L, et al. Topological Flat Bands in Frustrated Kagome Lattice CoSn [J/OL]. Nature Communications, 2020, 11(1): 4004. DOI: 10.1038/s41467-020-17465-1.
[24]WEHLING T, BLACK-SCHAFFER A, BALATSKY A. Dirac Materials[J/OL]. Advances in Physics, 2014, 63(1): 1-76. DOI: 10.1080/00018732.2014.927109.
[25] LEYKAM D, ANDREANOV A, FLACH S. Artificial Flat Band Systems: from Lattice Models to Experiments[J/OL]. Advances in Physics: X, 2018, 3(1): 1473052. DOI: 10.1080/23746149.2018.1473052.
[26] RHIM J W, YANG B J. Singular Flat Bands[J/OL]. Advances in Physics: X, 2021, 6(1). DOI: 10.1080/23746149.2021.1901606.
[27] NEUPERT T, SANTOS L, CHAMON C, et al. Fractional Quantum Hall States at Zero Magnetic Field[J/OL]. Physical Review Letters, 2011, 106(23): 236804. DOI: 10.1103/PhysRevLett.106.236804.
[28] TANG E, MEI J W, WEN X G. High-Temperature Fractional Quantum Hall States[J/OL]. Physical Review Letters, 2011, 106(23): 236802. DOI: 10.1103/PhysRevLett.106.236802.
[29] YANG S, GU Z C, SUN K, et al. Topological Flat Band Models with Arbitrary Chern Numbers [J/OL]. Physical Review B, 2012, 86(24): 241112. DOI: 10.1103/PhysRevB.86.241112.
[30] LIU Q, YAO H, MA T. Spontaneous Symmetry Breaking in a Two-dimensional Kagome Lattice [J/OL]. Physical Review B, 2010, 82(4): 045102. DOI: 10.1103/PhysRevB.82.045102.
[31] WEN J, RüEGG A, WANG C C J, et al. Interaction-driven Topological Insulators on the Kagome and the Decorated Honeycomb Lattices[J/OL]. Physical Review B, 2010, 82(7): 075125. DOI: 10.1103/PhysRevB.82.075125.
[32] TANAKA A, UEDA H. Stability of Ferromagnetism in the Hubbard Model on the Kagome Lattice[J/OL]. Physical Review Letters, 2003, 90(6): 067204. DOI: 10.1103/PhysRevLett.90.067204.
[33] KATSURA H, MARUYAMA I, TANAKA A, et al. Ferromagnetism in the Hubbard Model with Topological/Non-topological Flat Bands[J/OL]. Europhysics Letters, 2010, 91(5): 57007. DOI: 10.1209/0295-5075/91/57007.
[34] CHEN Y, XU S, XIE Y, et al. Ferromagnetism and Wigner Crystallization in Kagome Graphene and Related Structures[J/OL]. Physical Review B, 2018, 98(3): 035135. DOI: 10.1103/PhysRevB.98.035135.
[35] JAWOROWSKI B, GüçLü A D, KACZMARKIEWICZ P, et al. Wigner Crystallization in Topological Flat Bands[J/OL]. New Journal of Physics, 2018, 20(6): 063023. DOI: 10.1088/ 1367-2630/aac690.
[36] XU G, LIAN B, ZHANG S C. Intrinsic Quantum Anomalous Hall Effect in the Kagome Lattice Cs2LiMn3F12[J/OL]. Physical Review Letters, 2015, 115(18): 186802. DOI: 10.1103/PhysRevLett.115.186802.
[37] NAKATSUJI S, KIYOHARA N, HIGO T. Large Anomalous Hall Effect in a Non-collinear Antiferromagnet at Room Temperature[J/OL]. Nature, 2015, 527(7577): 212-215. DOI: 10.1038/nature15723.
[38] LI X, XU L, DING L, et al. Anomalous Nernst and Righi-Leduc Effects in Mn3Sn : Berry Curvature and Entropy Flow[J/OL]. Physical Review Letters, 2017, 119(5): 056601. DOI: 10.1103/PhysRevLett.119.056601.
[39] LIU Z, LI M, WANG Q, et al. Orbital-selective Dirac Fermions and Extremely Flat Bands in Frustrated Kagome-lattice Metal CoSn[J/OL]. Nature Communications, 2020, 11(1): 4002. DOI: 10.1038/s41467-020-17462-4.
[40] LIU E, SUN Y, KUMAR N, et al. Giant Anomalous Hall Effect in a Ferromagnetic Kagome- lattice Semimetal[J/OL]. Nature Physics, 2018, 14(11): 1125-1131. DOI: 10.1038/s41567-018-0234-5.
[41] WANG Q, XU Y, LOU R, et al. Large Intrinsic Anomalous Hall Effect in Half-metallic Ferro- magnet Co3Sn2S2 with Magnetic Weyl Fermions[J/OL]. Nature Communications, 2018, 9(1). DOI: 10.1038/s41467-018-06088-2.
[42] ZHANG H, FENG H, XU X, et al. Recent Progress on 2D Kagome Magnets: Binary TmSnn (T = Fe, Co, Mn)[J/OL]. Advanced Quantum Technologies, 2021, 4(11). DOI: 10.1002/qute.2 02100073.
[43] VENTURINI G. Filling the CoSn Host-cell: the HfFe6Ge6-type and the Related Structures [J/OL]. Zeitschrift für Kristallographie - Crystalline Materials, 2006, 221(5–7): 511-520. DOI: 10.1524/zkri.2006.221.5-7.511.
[44] BARANOV N V, GERASIMOV E G, MUSHNIKOV N V. Magnetism of Compounds with a Layered Crystal Structure[J/OL]. The Physics of Metals and Metallography, 2011, 112(7): 711-744. DOI: 10.1134/s0031918x11070039.
[45] YIN J X, PAN S H, ZAHID HASAN M. Probing Topological Quantum Matter with Scanning Tunnelling Microscopy[J/OL]. Nature Reviews Physics, 2021, 3(4): 249-263. DOI: 10.1038/ s42254-021-00293-7.
[46] XU X, YIN J X, QU Z, et al. Quantum Interactions in Topological R166 Kagome Magnet[J/OL]. Reports on Progress in Physics, 2023, 86(11): 114502. DOI: 10.1088/1361-6633/acfd3d.
[47] KANG M, YE L, FANG S, et al. Dirac fermions and flat bands in the ideal kagome metal FeSn [J/OL]. Nature Materials, 2020, 19(2): 163-169. DOI: 10.1038/s41563-019-0531-0.
[48] YE L, KANG M, LIU J, et al. Massive Dirac Fermions in a Ferromagnetic Kagome Metal [J/OL]. Nature, 2018, 555(7698): 638-642. DOI: 10.1038/nature25987.
[49] MA W, XU X, YIN J X, et al. Rare Earth Engineering in Mn6Sn6 ( = Gd−Tm, Lu) Topo- logical Kagome Magnets[J/OL]. Physical Review Letters, 2021, 126(24): 246602. DOI: 10.1103/PhysRevLett.126.246602.
[50] VENTURINI G, WELTER R, MALAMAN B, et al. Magnetic Structure of YMn6Ge6 and Room Temperature Magnetic Structure of LuMn Sn Obtained from Neutron Diffraction Study [J/OL]. Journal of Alloys and Compounds, 1993, 200(1–2): 51-57. DOI: 10.1016/0925-838 8(93)90470-8.
[51] ROSENFELD E, MUSHNIKOV N. Double-flat-spiral Magnetic Structures: Theory and Appli- cation to the Compounds[J/OL]. Physica B: Condensed Matter, 2008, 403(10–11): 1898-1906. DOI:10.1016/j.physb.2007.10.220.
[52] GHIMIRE N J, DALLY R L, POUDEL L, et al. Competing Magnetic Phases and Fluctuation- driven Scalar Spin Chirality in the Kagome Metal YMn6Sn6[J/OL]. Science Advances, 2020,6(51). DOI: 10.1126/sciadv.abe2680.
[53] LI M, WANG Q, WANG G, et al. Dirac Cone, Flat Band and Saddle Point in Kagome Magnet YMn6Sn6[J/OL]. Nature Communications, 2021, 12(1). DOI: 10.1038/s41467-021-23536-8.
[54] VENTURINI G, IDRISSI B E, MALAMAN B. Magnetic Properties of RMn6Sn6 ( R= Sc, Y, Gd−Tm, Lu) Compounds with HfFe Ge Type Structure[J/OL]. Journal of Magnetism and Magnetic Materials, 1991, 94(1–2): 35-42. DOI: 10.1016/0304-8853(91)90108-m.
[55] MALAMAN B, VENTURINI G, WELTER R, et al. Magnetic Properties of RMn6Sn6 ( R= Gd–Er) Compounds from Neutron Diffraction and Mössbauer Measurements[J/OL]. Journal of Magnetism and Magnetic Materials, 1999, 202(2): 519-534. DOI: 10.1016/S0304-8853(99)00300-5.
[56] CLATTERBUCK D, GSCHNEIDNER JR K. Magnetic Properties of RMn6Sn6 (R = Tb, Ho, Er, Tm, Lu) single crystals[J/OL]. Journal of Magnetism and Magnetic Materials, 1999, 207 (1-3): 78-94. DOI: 10.1016/S0304-8853(99)00571-5.
[57] LEE Y, SKOMSKI R, WANG X, et al. Interplay between magnetism and band topology in the kagome magnets Mn6Sn6[J/OL]. Physical Review B, 2023, 108(4): 045132. DOI: 10.1103/PhysRevB.108.045132.
[58] HU J, WANG K Y, HU B P, et al. Magnetic Transition and Coercivity in TbMn6Sn6[J/OL]. Journal of Physics: Condensed Matter, 1995, 7(5): 889-893. DOI: 10.1088/0953-8984/7/5/011.
[59] MIELKE III C, MA W L, POMJAKUSHIN V, et al. Low-temperature Magnetic Crossover in the Topological Kagome Magnet TbMn6Sn6[J/OL]. Communications Physics, 2022, 5(1). DOI: 10.1038/s42005-022-00885-4.
[60] YIN J X, MA W, COCHRAN T A, et al. Quantum-limit Chern Topological Magnetism in TbMn6Sn6[J/OL]. Nature, 2020, 583(7817): 533-536. DOI: 10.1038/s41586-020-2482-7.
[61] CHENG Z, BELOPOLSKI I, TIEN H, et al. Visualization of Tunable Weyl Line in A–A Stacking Kagome Magnets[J/OL]. Advanced Materials, 2022, 35(3). DOI: 10.1002/adma.202 205927.
[62] MIN L, SRETENOVIC M, HEITMANN T W, et al. A Topological Kagome Magnet in High Entropy Form[J/OL]. Communications Physics, 2022, 5(1). DOI: 10.1038/s42005-022-00842-1.
[63]PENG S, HAN Y, POKHAREL G, et al. Realizing Kagome Band Structure in Two-Dimensional Kagome Surface States of RV6Sn6 ( R = Gd, Ho)[J/OL]. Physical Review Letters, 2021, 127(26):266401. DOI: 10.1103/PhysRevLett.127.266401.
[64] HU Y, WU X, ORTIZ B R, et al. Rich Nature of van Hove Singularities in Kagome Supercon- ductor CsV3Sb5[J/OL]. Nature Communications, 2022, 13(1). DOI: 10.1038/s41467-022-298 28-x.
[65] ARACHCHIGE H W S, MEIER W R, MARSHALL M, et al. Charge Density Wave in Kagome Lattice Intermetallic ScV6Sn6[J/OL]. Physical Review Letters, 2022, 129(21). DOI: 10.1103/PhysRevLett.129.216402.
[66]CAO S, XU C, FUKUI H, et al. Competing Charge-density Wave Instabilities in the Kagome Metal ScV6Sn6[J/OL]. Nature Communications, 2023, 14(1). DOI: 10.1038/s41467-023-434 54-1.
[67] WANG Q, NEUBAUER K J, DUAN C, et al. Field-induced Topological Hall Effect and Double-fan Spin Structure with a -axis Component in the Metallic Kagome Antiferro- magnetic Compound YMn6Sn6[J/OL]. Physical Review B, 2021, 103(1): 014416. DOI:10.1103/PhysRevB.103.014416.
[68] SIEGFRIED P E, BHANDARI H, JONES D C, et al. Magnetization-driven Lifshitz Transition and Charge-spin Coupling in the Kagome Metal YMn6Sn6[J/OL]. Communications Physics, 2022, 5(1). DOI: 10.1038/s42005-022-00833-2.
[69] LI H, ZHAO H, JIANG K, et al. Manipulation of Dirac Band Curvature and Momentum- dependent g Factor in a Kagome Magnet YMn6Sn6[J/OL]. Nature Physics, 2022, 18(6): 644- 649. DOI: 10.1038/s41567-022-01558-3.
[70] LIU Z, ZHAO N, LI M, et al. Electronic Correlation Effects in the Kagome Magnet GdMn6Sn6 [J/OL]. Physical Review B, 2021, 104(11): 115122. DOI: 10.1103/PhysRevB.104.115122.
[71] GU X, CHEN C, WEI W S, et al. Robust Kagome Electronic Structure in the Topological quantum magnets RMn6Sn6 (R =Dy, Tb, Gd, Y)[J/OL]. Physical Review B, 2022, 105(15): 155108. DOI: 10.1103/PhysRevB.105.155108.
[72] ISHIKAWA H, YAJIMA T, KAWAMURA M, et al. GdV6Sn6: A Multi-carrier Metal with Non-magnetic 3d-electron Kagome Bands and 4 -electron Magnetism[J/OL]. Journal of the Physical Society of Japan, 2021, 90(12). DOI: 10.7566/jpsj.90.124704.
[73] LEE J, MUN E. Anisotropic Magnetic Property of Single Crystals RV6Sn6 ( R = Y, Gd - Tm, Lu)[J/OL]. Physical Review Materials, 2022, 6(8): 083401. DOI: 10.1103/PhysRevMaterials.6.083401.
[74] ZHANG X, LIU Z, CUI Q, et al. Electronic and Magnetic Properties of Intermetallic Kagome Magnets RV6Sn6 ( R = Tb -Tm)[J/OL]. Physical Review Materials, 2022, 6(10): 105001. DOI: 10.1103/PhysRevMaterials.6.105001.
[75] HUANG X, CUI Z, HUANG C, et al. Anisotropic Magnetism and Electronic Properties of the Kagome Metal SmV6Sn6[J/OL]. Physical Review Materials, 2023, 7(5): 054403. DOI: 10.1103/PhysRevMaterials.7.054403.
[76] TAN H, YAN B. Abundant Lattice Instability in Kagome Metal[J/OL]. Physical Review Letters, 2023, 130(26): 266402. DOI: 10.1103/PhysRevLett.130.266402.
[77] HU T, PI H, XU S, et al. Optical Spectroscopy and Band Structure Calculations of the Structural Phase Transition in the Vanadium-based Kagome Metal ScV6Sn6[J/OL]. Physical Review B, 2023, 107(16). DOI: 10.1103/PhysRevB.107.165119.
[78] Tuniz M, Consiglio A, Puntel D, et al. Dynamics and Resilience of the Charge Density Wave in a Bilayer Kagome Metal[A/OL]. 2023. arXiv: 2302.10699.
[79] Kang S H, Li H, Meier W R, et al. Emergence of a New Band and the Lifshitz Transition in Kagome Metal ScV6Sn6 with Charge Density Wave[A/OL]. 2023. arXiv: 2302.14041.
[80] KORSHUNOV A, HU H, SUBIRES D, et al. Softening of a Flat Phonon Mode in the Kagome ScV6Sn6[J/OL]. Nature Communications, 2023, 14(1). DOI: 10.1038/s41467-023-42186-6.
[81] GU Y, RITZ E T, MEIER W R, et al. Phonon Mixing in the Charge Density Wave State of ScV6Sn6[J/OL]. NPJ QUANTUM MATERIALS, 2023, 8(1). DOI: 10.1038/s41535-023-005 90-7.
[82] ZHANG D, HOU Z, MI W. Progress in Magnetic Alloys with Kagome Structure: Materials, Fabrications and Physical Properties[J/OL]. Journal of Materials Chemistry C, 2022, 10(20): 7748-7770. DOI: 10.1039/d2tc01190e.
[83] WANG Y, WU H, MCCANDLESS G T, et al. Quantum states and intertwining phases in kagome materials[J/OL]. Nature Reviews Physics, 2023, 5(11): 635-658. DOI: 10.1038/s422 54-023-00635-7.
[84] HEDO M, INADA Y, YAMAMOTO E, et al. Superconducting Properties of CeRu [J/OL]. Journal of the Physical Society of Japan, 1998, 67(1): 272-279. DOI: 10.1143/jpsj.67.272.
[85] ROY S B, CHADDAH P. Interesting Normal State and Superconducting Properties of the Intermediate Valence Compound CeRu [J/OL]. Pramana, 1999, 53(4): 659-684. DOI: 10.1007/s12043-999-0103-y.
[86] KISHIMOTO Y, OHNO T, HIHARA T, et al. Magnetic Susceptibility Study of LaRu3Si2 [J/OL]. Journal of the Physical Society of Japan, 2002, 71(8): 2035-2038. DOI: 10.1143/jpsj.7 1.2035.
[87] LI S, ZENG B, WAN X, et al. Anomalous Properties in the Normal and Superconducting States of LaRu3Si2[J/OL]. Physical Review B, 2011, 84(21): 214527. DOI: 10.1103/PhysRevB.84. 214527.
[88] MIELKE C, QIN Y, YIN J X, et al. Nodeless Kagome Superconductivity in LaRu3Si2[J/OL]. Physical Review Materials, 2021, 5(3): 034803. DOI: 10.1103/PhysRevMaterials.5.034803.
[89] ORTIZ B R, GOMES L C, MOREY J R, et al. New Kagome Prototype Materials: Discovery of KV3Sb5, RbV3Sb5, and CsV3Sb5 [J/OL]. Physical Review Materials, 2019, 3(9): 094407. DOI: 10.1103/PhysRevMaterials.3.094407.
[90] ORTIZ B R, TEICHER S M L, HU Y, et al. CsV3Sb5: a Z2 Topological Kagome Metal with a Superconducting Ground State[J/OL]. Physical Review Letters, 2020, 125(24): 247002. DOI: 10.1103/PhysRevLett.125.247002.
[91] ORTIZ B R, SARTE P M, KENNEY E M, et al. Superconductivity in the Z2 Kagome Metal KV3Sb5 [J/OL]. Physical Review Materials, 2021, 5(3): 034801. DOI: 10.1103/PhysRevMaterials.5.034801.
[92] YIN Q, TU Z, GONG C, et al. Superconductivity and Normal-state Properties of Kagome Metal RbV3Sb5 Single Crystals[J/OL]. Chinese Physics Letters, 2021, 38(3): 037403. DOI: 10.1088/0256-307x/38/3/037403.
[93] NI S, MA S, ZHANG Y, et al. Anisotropic Superconducting Properties of Kagome Metal CsV3Sb5 [J/OL]. Chinese Physics Letters, 2021, 38(5): 057403. DOI: 10.1088/0256307x/38/5/057403.
[94] XIANG Y, LI Q, LI Y, et al. Twofold symmetry of -axis Resistivity in Topological Kagome Superconductor CsV3Sb5 with in-plane Rotating Magnetic Field[J/OL]. Nature Communica- tions, 2021, 12(1). DOI: 10.1038/s41467-021-27084-z.
[95] KENNEY E M, ORTIZ B R, WANG C, et al. Absence of Local Moments in the Kagome Metal KV3Sb5 as Determined by Muon Spin Spectroscopy[J/OL]. Journal of Physics: Condensed Matter, 2021, 33(23): 235801. DOI: 10.1088/1361-648x/abe8f9.
[96] LI H, ZHANG T T, YILMAZ T, et al. Observation of Unconventional Charge Density Wave without Acoustic Phonon Anomaly in Kagome Superconductors AV3Sb5 (A Rb, Cs)[J/OL]. Physical Review X, 2021, 11(3): 031050. DOI: 10.1103/PhysRevX.11.031050.
[97] MIAO H, LI H X, MEIER W R, et al. Geometry of the Charge Density Wave in the Kagome Metal AV3Sb5 [J/OL]. Physical Review B, 2021, 104(19): 195132. DOI: 10.1103/PhysRevB.104.195132.
[98] LOU R, FEDOROV A, YIN Q, et al. Charge-Density-Wave-Induced Peak-Dip-Hump Structure and the Multiband Superconductivity in a Kagome Superconductor CsV3Sb5 [J/OL]. Physical Review Letters, 2022, 128(3): 036402. DOI: 10.1103/PhysRevLett.128.036402.
[99] KANG M, FANG S, KIM J K, et al. Twofold van Hove Singularity and Origin of Charge Order in Topological Kagome Superconductor CsV3Sb5 [J/OL]. Nature Physics, 2022, 18(3): 301-308. DOI: 10.1038/s41567-021-01451-5.
[100] CHO S, MA H, XIA W, et al. Emergence of New van Hove Singularities in the Charge Density Wave State of a Topological Kagome Metal RbV3Sb5 [J/OL]. Physical Review Letters, 2021, 127(23): 236401. DOI: 10.1103/PhysRevLett.127.236401.
[101]LIU Z, ZHAO N, YIN Q, et al. Charge-Density-Wave-Induced Bands Renormalization and Energy Gaps in a Kagome Superconductor RbV3Sb5 [J/OL]. Physical Review X, 2021, 11(4): 041010. DOI: 10.1103/PhysRevX.11.041010.
[102] HU Y, TEICHER S M, ORTIZ B R, et al. Topological Surface States and Flat Bands in the Kagome Superconductor CsV3Sb5 [J/OL]. Science Bulletin, 2022, 67(5): 495-500. DOI: 10.1016/j.scib.2021.11.026.
[103] LUO H, GAO Q, LIU H, et al. Electronic Nature of Charge Density Wave and Electron-phonon Coupling in Kagome Superconductor KV3Sb5 [J/OL]. Nature Communications, 2022, 13(1). DOI: 10.1038/s41467-021-27946-6.
[104] ORTIZ B R, TEICHER S M, KAUTZSCH L, et al. Fermi Surface Mapping and the Nature of Charge-Density-Wave Order in the Kagome Superconductor CsV3Sb5 [J/OL]. Physical Review X, 2021, 11(4): 041030. DOI: 10.1103/PhysRevX.11.041030.
[105] NAKAYAMA K, LI Y, KATO T, et al. Multiple Energy Scales and Anisotropic Energy Gap in the Charge-density-wave Phase of the Kagome Superconductor CsV3Sb5 [J/OL]. Physical Review B, 2021, 104(16): L161112. DOI: 10.1103/PhysRevB.104.L161112.
[106] ZHAO H, LI H, ORTIZ B R, et al. Cascade of Correlated Electron States in a Kagome Super- conductor CsV3Sb5 [J/OL]. Nature, 2021, 599(7884): 216-221. DOI: 10.1038/s41586-021-0 3946-w.
[107] CHEN H, YANG H, HU B, et al. Roton Pair Density Wave in a Strong-coupling Kagome Superconductor[J/OL]. Nature, 2021, 599(7884): 222-228. DOI: 10.1038/s41586-021-03983-5.
[108] NIE L, SUN K, MA W, et al. Charge-density-wave-driven Electronic Nematicity in a Kagome Superconductor[J/OL]. Nature, 2022, 604(7904): 59-64. DOI: 10.1038/s41586-022-04493-8.
[109] JIANG Y X, YIN J X, DENNER M M, et al. Unconventional Chiral Charge Order in Kagome Superconductor KV3Sb5 [J/OL]. Nature materials, 2021, 20(10): 1353-1357. DOI: 10.1038/s4 1563-021-01034-y.
[110] LIANG Z, HOU X, ZHANG F, et al. Three-Dimensional Charge Density Wave and Surface- Dependent Vortex-Core States in a Kagome Superconductor CsV3Sb5 [J/OL]. Physical Review X, 2021, 11(3): 031026. DOI: 10.1103/PhysRevX.11.031026.
[111] LI H, ZHAO H, ORTIZ B R, et al. Rotation Symmetry Breaking in the Normal State of a Kagome Superconductor KV3Sb5 [J/OL]. Nature Physics, 2022, 18(3): 265-270. DOI: 10.1038/s41567-021-01479-7.
[112] WANG Z, JIANG Y X, YIN J X, et al. Electronic Nature of Chiral Charge Order in the Kagome Superconductor CsV3Sb5 [J/OL]. Physical Review B, 2021, 104(7): 075148. DOI: 10.1103/PhysRevB.104.075148.
[113] SHUMIYA N, HOSSAIN M S, YIN J X, et al. Intrinsic Nature of Chiral Charge Order in the Kagome Superconductor RbV3Sb5 [J/OL]. Physical Review B, 2021, 104(3): 035131. DOI: 10.1103/PhysRevB.104.035131.
[114] RATCLIFF N, HALLETT L, ORTIZ B R, et al. Coherent Phonon Spectroscopy and Interlayer Modulation of Charge Density Wave Order in the Kagome Metal CsV3Sb5 [J/OL]. Physical Review Materials, 2021, 5(11): L111801. DOI: 10.1103/PhysRevMaterials.5.L111801.
[115] SONG D, ZHENG L, YU F, et al. Orbital Ordering and Fluctuations in a Kagome Superconduc- tor CsV3Sb5 [J/OL]. Science China Physics, Mechanics & Astronomy, 2022, 65(4): 247462. DOI: 10.1007/s11433-021-1826-1.
[116] STAHL Q, CHEN D, RITSCHEL T, et al. Temperature-driven Reorganization of Electronic Order in CsV3Sb5 [J/OL]. Physical Review B, 2022, 105(19): 195136. DOI: 10.1103/PhysRevB.105.195136.
[117] TAN H, LIU Y, WANG Z, et al. Charge Density Waves and Electronic Properties of Super- conducting Kagome Metals[J/OL]. Physical Review Letters, 2021, 127(4): 046401. DOI: 10.1103/PhysRevLett.127.046401.
[118] KANG M, FANG S, YOO J, et al. Charge Order landscape and Competition with Supercon- ductivity in Kagome Metals[J/OL]. Nature Materials, 2022(2): 186-193. DOI: 10.1038/s415 63-022-01375-2.
[119] FRASSINETI J, BONFà P, ALLODI G, et al. Microscopic Nature of the Charge-density Wave in the Kagome Superconductor RbV3Sb5 [J/OL]. Physical Review Research, 2023, 5(1): L012017. DOI: 10.1103/PhysRevResearch.5.L012017.
[120] PARK T, YE M, BALENTS L. Electronic Instabilities of Kagome Metals: Saddle Points and Landau Theory[J/OL]. Physical Review B, 2021, 104(3): 035142. DOI: 10.1103/PhysRevB.1 04.035142.
[121] FENG X, ZHANG Y, JIANG K, et al. Low-energy Effective Theory and Symmetry Classifica- tion of Flux Phases on the Kagome Lattice[J/OL]. Physical Review B, 2021, 104(16): 165136. DOI: 10.1103/PhysRevB.104.165136.
[122] LIN Y P, NANDKISHORE R M. Complex Charge Density Waves at van Hove Singularity on Hexagonal Lattices: Haldane-model Phase Diagram and Potential Realization in the Kagome Metals AV3Sb5 (A= K, Rb, Cs)[J/OL]. Physical Review B, 2021, 104(4): 045122. DOI: 10.1103/PhysRevB.104.045122.
[123] CHRISTENSEN M H, BIROL T, ANDERSEN B M, et al. Loop Currents in AV3Sb5 Kagome Metals: Multipolar and Toroidal Magnetic Orders[J/OL]. Physical Review B, 2022, 106(14): 144504. DOI: 10.1103/PhysRevB.106.144504.
[124] GRANDI F, CONSIGLIO A, SENTEF M A, et al. Theory of Nematic Charge Orders in Kagome Metals[J/OL]. Physical Review B, 2023, 107(15): 155131. DOI: 10.1103/PhysRevB.107.155131.
[125] MU C, YIN Q, TU Z, et al. Tri-hexagonal Charge Order in Kagome Metal CsV3Sb5 Revealed by 121Sb Nuclear Quadrupole Resonance[J/OL]. Chinese Physics B, 2022, 31(1): 017105. DOI: 10.1088/1674-1056/ac422c.
[126] WANG Y, WU T, LI Z, et al. Structure of the Kagome Superconductor CsV3Sb5 in the Charge Density Wave State[J/OL]. Physical Review B, 2023, 107(18): 184106. DOI: 10.1103/PhysRevB.107.184106.
[127] BROYLES C, GRAF D, YANG H, et al. Effect of the Interlayer Ordering on the Fermi Sur- face of Kagome Superconductor CsV3Sb5 Revealed by Quantum Oscillations[J/OL]. Physical Review Letters, 2022, 129(15): 157001. DOI: 10.1103/PhysRevLett.129.157001.
[128] HU Y, WU X, ORTIZ B R, et al. Coexistence of Trihexagonal and Star-of-David Pattern in the Charge Density Wave of the Kagome Superconductor[J/OL]. Physical Review B, 2022, 106(24): L241106. DOI: 10.1103/PhysRevB.106.L241106.
[129] KAUTZSCH L, ORTIZ B R, MALLAYYA K, et al. Structural Evolution of the Kagome Super- conductors AV3Sb5 ( A = K, Rb and Cs) through Charge Density Wave Order[J/OL]. Physical Review Materials, 2023, 7(2): 024806. DOI: 10.1103/PhysRevMaterials.7.024806.
[130] XIAO Q, LIN Y, LI Q, et al. Coexistence of Multiple Stacking Charge Density Waves in Kagome Superconductor CsV3Sb5 [J/OL]. Physical Review Research, 2023, 5(1): l012032. DOI: 10.1103/PhysRevResearch.5.L012032.
[131] PEIERLS R E. Quantum theory of solids[M]. Oxford University Press, 1955.
[132] GRUNER G. Density waves in solids[M]. CRC press, 2018.
[133] SOUMYANARAYANAN A, YEE M M, HE Y, et al. Quantum Phase Transition from Triangular to Stripe Charge Order in NbSe2[J/OL]. Proceedings of the National Academy of Sciences, 2013,110(5): 1623-1627. DOI: 10.1073/pnas.1211387110.
[134] WEBER F, ROSENKRANZ S, CASTELLAN J P, et al. Extended Phonon Collapse and the Origin of the Charge-Density Wave in 2H-NbSe2[J/OL]. Physical Review Letters, 2011, 107 (10):107403. DOI: 10.1103/PhysRevLett.107.107403.
[135] ZHU X, CAO Y, ZHANG J, et al. Classification of Charge Density Waves Based on Their Nature[J/OL]. Proceedings of the National Academy of Sciences, 2015, 112(8): 2367. DOI: 10.1073/pnas.1424791112.
[136] XIE Y, LI Y, BOURGES P, et al. Electron-phonon Coupling in the Charge Density Wave State of CsV3Sb5 [J/OL]. Physical Review B, 2022, 105(14): L140501. DOI: 10.1103/PhysRevB.105.L140501.
[137] JOHANNES M D, MAZIN I I. Fermi Surface Nesting and the Origin of Charge Density Waves in Metals[J/OL]. Physical Review B, 2008, 77(16): 165135. DOI: 10.1103/PhysRevB.77.165135.
[138] HOESCH M, BOSAK A, CHERNYSHOV D, et al. Giant Kohn Anomaly and the Phase Tran- sition in Charge Density Wave ZrTe [J/OL]. Physical Review Letters, 2009, 102(8): 086402. DOI: 10.1103/PhysRevLett.102.086402.
[139] MIAO H, ISHIKAWA D, HEID R, et al. Incommensurate Phonon Anomaly and the Nature of Charge Density Waves in Cuprates[J/OL]. Physical Review X, 2018, 8(1): 011008. DOI: 10.1103/PhysRevX.8.011008.
[140] ZHU X, GUO J, ZHANG J, et al. Misconceptions Associated with the Origin of Charge Density Waves[J/OL]. Advances in Physics: X, 2017, 2(3): 622-640. DOI: 10.1080/23746149.2017.1343098.
[141] WANG Z, MA S, ZHANG Y, et al. Distinctive Momentum Dependent Charge-density-wave Gap Observed in CsV3Sb5Superconductor With Topological Kagome Lattice[A]. 2021. arXiv: 2104.05556.
[142] KATO T, LI Y, KAWAKAMI T, et al. Three-dimensional Energy Gap and Origin of Charge- density Wave in Kagome Superconductor KV3Sb5 [J/OL]. Communications Materials, 2022, 3(1). DOI: 10.1038/s43246-022-00255-1.
[143] UYKUR E, ORTIZ B R, IAKUTKINA O, et al. Low-energy Optical Properties of the Non- magnetic Kagome metal CsV3Sb5 [J/OL]. Physical Review B, 2021, 104(4): 045130. DOI: 10.1103/PhysRevB.104.045130.
[144] ZHOU X, LI Y, FAN X, et al. Origin of Charge Density Wave in the Kagome Metal CsV3Sb5 as Revealed by Optical Spectroscopy[J/OL]. Physical Review B, 2021, 104(4): L041101. DOI: 10.1103/PhysRevB.104.L041101.
[145] KABOUDVAND F, TEICHER S M L, WILSON S D, et al. Fermi Surface Nesting and the Lindhard Response Function in the Kagome Superconductor CsV3Sb5 [J/OL]. Applied Physics Letters, 2022, 120(11). DOI: 10.1063/5.0081081.
[146] WANG C, LIU S, JEON H, et al. Origin of Charge Density Wave in the Layered Kagome Metal CsV3Sb5 [J/OL]. Physical Review B, 2022, 105(4): 045135. DOI: 10.1103/PhysRevB.105.045 135.
[147] YE Z, LUO A, YIN J X, et al. Structural Instability and Charge Modulations in the Kagome Superconductor AV3Sb5 [J/OL]. Physical Review B, 2022, 105(24): 245121. DOI: 10.1103/PhysRevB.105.245121.
[148] LIU G, MA X, HE K, et al. Observation of Anomalous Amplitude Modes in the Kagome Metal CsV3Sb5 [J/OL]. Nature Communications, 2022, 13(1). DOI: 10.1038/s41467-022-31162-1.
[149] UYKUR E, ORTIZ B R, WILSON S D, et al. Optical Detection of the Density-wave Instability in the Kagome Metal KV3Sb5 [J/OL]. npj Quantum Materials, 2022, 7(1). DOI: 10.1038/s415 35-021-00420-8.
[150] LI H, ZHAO H, ORTIZ B R, et al. Unidirectional Coherent Quasiparticles in the High- temperature Rotational Symmetry Broken Phase of AV3Sb5 Kagome Superconductors[J/OL]. Nature Physics, 2023, 19(5): 637-643. DOI: 10.1038/s41567-022-01932-1.
[151] JIANG Z, MA H, XIA W, et al. Observation of Electronic Nematicity Driven by the Three- Dimensional Charge Density Wave in Kagome Lattice KV3Sb5 [J/OL]. Nano Letters, 2023, 23(12): 5625-5633. DOI: 10.1021/acs.nanolett.3c01151.
[152] XU Y, NI Z, LIU Y, et al. Three-state Nematicity and Magneto-optical Kerr Effect in the Charge Density Waves in Kagome Superconductors[J/OL]. Nature Physics, 2022, 18(12): 1470-1475. DOI: 10.1038/s41567-022-01805-7.
[153] WU Q, WANG Z X, LIU Q M, et al. Simultaneous Formation of Two-fold Rotation Symmetry with Charge Order in the Kagome Superconductor CsV3Sb5 by Optical Polarization Rotation Measurement[J/OL]. Physical Review B, 2022, 106(20): 205109. DOI: 10.1103/PhysRevB.106.205109.
[154] WULFERDING D, LEE S, CHOI Y, et al. Emergent Nematicity and Intrinsic versus Extrinsic Electronic Scattering Processes in the Kagome Metal[J/OL]. Physical Review Research, 2022, 4(2): 023215. DOI: 10.1103/PhysRevResearch.4.023215.
[155] KHASANOV R, DAS D, GUPTA R, et al. Time-reversal Symmetry Broken by Charge Order in CsV3Sb5 [J/OL]. Physical Review Research, 2022, 4(2): 023244. DOI: 10.1103/physrevresearch.4.023244.
[156] LI H, WAN S, LI H, et al. No Observation of Chiral Flux Current in the Topological Kagome Metal[J/OL]. Physical Review B, 2022, 105(4): 045102. DOI: 10.1103/PhysRevB.105.045102.
[157] SAYKIN D R, FARHANG C, KOUNTZ E D, et al. High Resolution Polar Kerr Effect Studies of CsV3Sb5: Tests for Time-Reversal Symmetry Breaking below the Charge-Order Transition [J/OL]. Physical Review Letters, 2023, 131(1): 016901. DOI: 10.1103/PhysRevLett.131.016901.
[158] YANG S Y, WANG Y, ORTIZ B R, et al. Giant, Unconventional Anomalous Hall Effect in the Metallic Frustrated Magnet Candidate, KV3Sb5 [J/OL]. Science Advances, 2020, 6(31): eabb6003. DOI: 10.1126/sciadv.abb6003.
[159] YU F H, WU T, WANG Z Y, et al. Concurrence of Anomalous Hall Effect and Charge Density Wave in a Superconducting Topological Kagome Metal[J/OL]. Physical Review B, 2021, 104(4): L041103. DOI: 10.1103/PhysRevB.104.L041103.
[160] CHEN D, HE B, YAO M, et al. Anomalous Thermoelectric Effects and Quantum Oscillations in the Kagome Metal CsV3Sb5 [J/OL]. Physical Review B, 2022, 105(20): l201109. DOI: 10.1103/PhysRevB.105.l201109.
[161] MI X, XIA W, ZHANG L, et al. Multiband Effects in Thermoelectric and Electrical Transport Properties of Kagome Superconductors AV3Sb5 (A = K, Rb, Cs)[J/OL]. New Journal of Physics, 2022, 24(9): 093021. DOI: 10.1088/1367-2630/ac8e24.
[162] ZHOU X, LIU H, WU W, et al. Anomalous Thermal Hall Effect and Anomalous Nernst Effect of CsV3Sb5 [J/OL]. Physical Review B, 2022, 105(20): 205104. DOI: 10.1103/PhysRevB.105.205104.
[163] Yu L, Wang C, Zhang Y, et al. Evidence of a hidden flux phase in the topological kagome metal CsV3Sb5 [A/OL]. 2021. arXiv:2107.10714.
[164] MIELKE C, DAS D, YIN J X, et al. Time-reversal Symmetry-breaking Charge Order in a Kagome Superconductor[J/OL]. Nature, 2022, 602(7896): 245-250. DOI: 10.1038/s41586-0 21-04327-z.
[165] FENG X, JIANG K, WANG Z, et al. Chiral Flux Phase in the Kagome Superconductor AV3Sb5 [J/OL]. Science Bulletin, 2021, 66(14): 1384-1388. DOI: https://doi.org/10.1016/j.scib.2021.04.043.
[166] DENNER M M, THOMALE R, NEUPERT T. Analysis of Charge Order in the Kagome Metal AV3Sb5 [J/OL]. Physical Review Letters, 2021, 127(21): 217601. DOI:10.1103/PhysRevLett.127.217601.
[167] DONG J W, WANG Z, ZHOU S. Loop-current Charge Density Wave Driven by Long-range Coulomb Repulsion on the Kagome Lattice[J/OL]. Physical Review B, 2023, 107(4): 045127. DOI: 10.1103/PhysRevB.107.045127.
[168] HU Y, YAMANE S, MATTONI G, et al. Time-reversal Symmetry Breaking in Charge Density Wave of CsV3Sb5 Detected by Polar Kerr Effect[M/OL]. Research Square Platform LLC, 2022. DOI: 10.21203/rs.3.rs-1794207/v1.
[169] DU F, LUO S, ORTIZ B R, et al. Pressure-induced Double Superconducting Domes and Charge Instability in the Kagome Metal KV3Sb5 [J/OL]. Physical Review B, 2021, 103(22): L220504. DOI: 10.1103/PhysRevB.103.L220504.
[170] CHEN K Y, WANG N N, YIN Q W, et al. Double Superconducting Dome and Triple En- hancement of in the Kagome Superconductor CsV3Sb5 under High Pressure[J/OL]. Physical Review Letters, 2021, 126(24): 247001. DOI: 10.1103/PhysRevLett.126.247001.
[171] YU F H, MA D H, ZHUO W Z, et al. Unusual Competition of Superconductivity and Charge- density-wave State in a Compressed Topological Kagome Metal[J/OL]. Nature Communications, 2021, 12(1): 3645. DOI: 10.1038/s41467-021-23928-w.
[172] ZHANG Z, CHEN Z, ZHOU Y, et al. Pressure-induced Reemergence of Superconductivity in the Topological Kagome Metal CsV Sb [J/OL]. Physical Review B, 2021, 103(22): 224513. DOI: 10.1103/PhysRevB.103.224513.
[173] WANG Q, KONG P, SHI W, et al. Charge Density Wave Orders and Enhanced Superconduc- tivity under Pressure in the Kagome Metal CsV3Sb5 [J/OL]. Advanced Materials, 2021, 33(42). DOI: 10.1002/adma.202102813.
[174] OEY Y M, ORTIZ B R, KABOUDVAND F, et al. Fermi Level Tuning and Double-dome Superconductivity in the Kagome Metal CsV3Sb5-xSnx[J/OL]. Physical Review Materials, 2022, 6(4): L041801. DOI: 10.1103/PhysRevMaterials.6.L041801.
[175] YANG H, HUANG Z, ZHANG Y, et al. Titanium Doped Kagome Superconductor CsV3-xTixSb5 and Two Distinct Phases[J/OL]. Science Bulletin, 2022, 67(21): 2176-2185. DOI: 10.1016/j.scib.2022.10.015.
[176] KATO T, LI Y, NAKAYAMA K, et al. Fermiology and Origin of Enhancement in a Kagome Superconductor Cs V1-xNbx)3Sb5 [J/OL]. Physical Review Letters, 2022, 129(20): 206402. DOI: 10.1103/PhysRevLett.129.206402.
[177] LIU M, HAN T, HU X, et al. Evolution of Superconductivity and Charge Density Wave through Ta and Mo doping in CsV3Sb5[J/OL]. Physical Review B, 2022, 106(14): L140501. DOI: 10.1103/PhysRevB.106.L140501.
[178] DING G, WO H, GU Y, et al. Effect of Chromium Doping on Superconductivity and Charge Density Wave Order in the Kagome Metal Cs(V1-xCrx)3Sb5[J/OL]. Physical Review B, 2022,106(23). DOI: 10.1103/PhysRevB.106.235151.
[179] LUO Y, HAN Y, LIU J, et al. A Unique van Hove Singularity in Kagome Superconductor CsV3-xTaxSb5 with Enhanced Superconductivity[J/OL]. Nature Communications, 2023, 14(1). DOI: 10.1038/s41467-023-39500-7.
[180] SONG Y, YING T, CHEN X, et al. Competition of Superconductivity and Charge Density Wave in Selective Oxidized CsV3Sb5 Thin Flakes[J/OL]. Physical Review Letters, 2021, 127(23): 237001. DOI: 10.1103/PhysRevLett.127.237001.
[181]SONG B, YING T, WU X, et al. Anomalous Enhancement of Charge Density Wave in Kagome Superconductor CsV Sb Approaching the 2D Limit[J/OL]. Nature Communications, 2023,14(1). DOI: 10.1038/s41467-023-38257-3.
[182 ]YIN L, ZHANG D, CHEN C, et al. Strain-sensitive Superconductivity in the Kagome Metals KV Sb and CsV Sb Probed by Point-contact Spectroscopy[J/OL]. Physical Review B, 2021, 104(17): 174507. DOI: 10.1103/PhysRevB.104.174507.
[183] CONSIGLIO A, SCHWEMMER T, WU X, et al. Van Hove Tuning of V Sb Kagome Metals under Pressure and Strain[J/OL]. Physical Review B, 2022, 105(16): 165146. DOI: 10.1103/PhysRevB.105.165146.
[184] WANG N N, CHEN K Y, YIN Q W, et al. Competition between Charge-density-wave and Superconductivity in the Kagome Metal RbV Sb [J/OL]. Physical Review Research, 2021, 3(4): 043018. DOI: 10.1103/PhysRevResearch.3.043018.
[185] ZHU C C, YANG X F, XIA W, et al. Double-dome superconductivity under pressure in the V- based kagome metals AV3Sb5 (A = Rb, K)[J/OL]. Physical Review B, 2022, 105(9): 094507. DOI: 10.1103/PhysRevB.105.094507.
[186]ZHENG L, WU Z, YANG Y, et al. Emergent Charge Order in Pressurized Kagome Supercon- ductor CsV3Sb5[J/OL]. Nature, 2022, 611(7937): 682-687. DOI: 10.1038/s41586-022-05351-3.
[187] TSIRLIN A A, ORTIZ B R, DRESSEL M, et al. Effect of Nonhydrostatic Pressure on the Superconducting Kagome Metal CsV3Sb5[J/OL]. Physical Review B, 2023, 107(17): 174107. DOI: 10.1103/PhysRevB.107.174107.
[188] TSIRLIN A, FERTEY P, ORTIZ B R, et al. Role of Sb in the Superconducting Kagome Metal CsV3Sb5 Revealed by its Anisotropic Compression[J/OL]. SciPost Physics, 2022, 12(2). DOI: 10.21468/ScipostPhys.12.2.049.
[189]CHEN X, ZHAN X, WANG X, et al. Highly Robust Reentrant Superconductivity in CsV3Sb5 under Pressure[J/OL]. Chinese Physical Letters, 2021, 38(5): 057402. DOI: 10.1088/0256-307x/38/5/057402.
[190] LI Y, LI Q, FAN X, et al. Tuning the Competition between Superconductivity and Charge Order in the Kagome Superconductor Cs(V1-xNbx)3Sb5[J/OL]. Physical Review B, 2022, 105(18): L180507. DOI: 10.1103/PhysRevB.105.L180507.
[191] ZHONG Y, LIU J, WU X, et al. Nodeless Electron Pairing in CsV3Sb5-derived Kagome Su- perconductors[J/OL]. Nature, 2023, 617(7961): 488-492. DOI: 10.1038/s41586-023-05907-x.
[192] LIU Y, WANG Y, CAI Y, et al. Doping Evolution of Superconductivity, Charge order, and Band topology in Hole-doped Topological Kagome Superconductors Cs(V1-xTix)3Sb5[J/OL]. Physical Review Materials, 2023, 7(6): 064801. DOI: 10.1103/PhysRevMaterials.7.064801.
[193] OEY Y M, KABOUDVAND F, ORTIZ B R, et al. Tuning Charge Density Wave Order and Superconductivity in the Kagome metals KV3Sb5-xSnx and RbV3Sb5-xSnx[J/OL]. Physical Review Materials, 2022, 6(7): 074802. DOI: 10.1103/PhysRevMaterials.6.074802.
[194] JIANG Y, YU Z, WANG Y, et al. Screening Promising CsV3Sb5-like Kagome Materials from Systematic First-Principles Evaluation[J/OL]. Chinese Physics Letters, 2022, 39(4): 047402. DOI: 10.1088/0256-307X/39/4/047402.
[195 ]YI X W, MA X Y, ZHANG Z, et al. Large Kagome Family Candidates with Topological Super- conductivity and Charge Density Waves[J/OL]. Physical Review B, 2022, 106(22): l220505. DOI: 10.1103/PhysRevB.106.l220505.
[196] SI J G, SHI L T, LIU P F, et al. Superconductivity and Topological Properties in the Kagome Metals CsM3Te5 ( =Ti, Zr, Hf): A First-principles Investigation[J/OL]. Physical Review B, 2022, 106(21): 214527. DOI: 10.1103/PhysRRevB.106.214527.
[197] GOVINDHAN D, KULLAIAH B, VISHWANATH P, et al. Handbook of Crystal Growth [M/OL]. Springer Berlin Heidelberg, 2010. DOI: 10.1007/978-3-540-74761-1.
[198] ZHENG D N. Superconducting Quantum Interference Devices[J/OL]. Acta Physica Sinica, 2021, 70(1): 018502. DOI: 10.7498/aps.70.20202131.
[199] KASL C, HOCH M J R. Effects of Sample Thickness on the Van der Pauw Technique for Resistivity Measurements[J/OL]. Review of Scientific Instruments, 2005, 76(3). DOI: 10.106 3/1.1866232.
[200] YANG H, LIANG A, CHEN C, et al. Visualizing Electronic Structures of quantum Materials by Angle-resolved Photoemission Spectroscopy[J/OL]. Nature Reviews Materials, 2018, 3(9): 341-353. DOI: 10.1038/s41578-018-0047-2.
[201] HAO Z, CAI Y, LIU Y, et al. Dirac Nodal Lines and Nodal Loops in the Topological Kagome Superconductor CsV Sb [J/OL]. Physical Review B, 2022, 106(8): l081101. DOI: 10.1103/ PhysRevB.106.L081101.
[202] FRADKIN E, KIVELSON S A, TRANQUADA J M. Colloquium: Theory of Intertwined Orders in High Temperature Superconductors[J/OL]. Reviews of Modern Physics, 2015, 87(2): 457-482. DOI: 10.1103/RevModPhys.87.457.
[203] DAI Z, ZHANG Y H, SENTHIL T, et al. Pair-density Waves, Charge-density Waves, and Vortices in High-TC Cuprates[J/OL]. Physical Review B, 2018, 97(17): 174511. DOI: 10.1103/PhysRevB.97.174511.
[204] WILSON S D. Competition under Pressure[J/OL]. Nature Physics, 2021, 17(8): 885-886. DOI: 10.1038/s41567-021-01319-8.
[205] MU C, YIN Q, TU Z, et al. S-Wave Superconductivity in Kagome Metal CsV3Sb5 Revealed by Sb NQR and V NMR Measurements[J/OL]. Chinese Physics Letters, 2021, 38(7): 077402. DOI: 10.1088/0256-307x/38/7/077402.
[206] DUAN W, NIE Z, LUO S, et al. Nodeless Superconductivity in the Kagome Metal CsV3Sb5 [J/OL]. Science China Physics, Mechanics & Astronomy, 2021, 64(10): 107462. DOI: 10.100 7/s11433-021-1747-7.
[207] Zhao C C, Wang L S, Xia W, et al. Nodal Superconductivity and Superconducting Domes in the Topological Kagome Metal CsV3Sb5 [A/OL]. 2021. arXiv: 2102.08356.
[208] ROPPONGI M, ISHIHARA K, TANAKA Y, et al. Bulk Evidence of Anisotropic -wave Pair- ing with no Sign Change in the Kagome Superconductor CsV3Sb5 [J/OL]. Nature Communica- tions, 2023, 14(1). DOI: 10.1038/s41467-023-36273-x.
[209] XU H S, YAN Y J, YIN R, et al. Multiband Superconductivity with Sign-Preserving Order Parameter in Kagome Superconductor CsV3Sb5 [J/OL]. Physical Review Letters, 2021, 127(18): 187004. DOI: 10.1103/PhysRevLett.127.187004.
[210] KATO T, LI Y, NAKAYAMA K, et al. Polarity-dependent Charge Density Wave in the Kagome Superconductor CsV Sb [J/OL]. Physical Review B, 2022, 106(12): l121112. DOI: 10.1103/PhysRevB.106.L121112.
[211] JIANG H M, LIU M X, YU S L. Impact of the Orbital Current Order on the Superconducting Properties of the Kagome Superconductors[J/OL]. Physical Review B, 2023, 107(6): 064506. DOI: 10.1103/PhysRevB.107.064506.
[212] GU Y, ZHANG Y, FENG X, et al. Gapless Excitations inside the Fully Gapped Kagome Su- perconductors AV3Sb5 [J/OL]. Physical Review B, 2022, 105(10): l100502. DOI: 10.1103/PhysRevB.105.L100502.
[213] GUPTA R, DAS D, MIELKE III C H, et al. Microscopic Evidence for Anisotropic Multigap Superconductivity in the CsV3Sb5 Kagome Superconductor[J/OL]. npj Quantum Materials, 2022, 7(1). DOI: 10.1038/s41535-022-00453-7.
[214] SHAN Z, BISWAS P K, GHOSH S K, et al. Muon Spin Relaxation Study of the Layered Kagome Superconductor CsV3Sb5 [J/OL]. Physical Review Research, 2022, 4(3): 033145. DOI: 10.1103/PhysRevResearch.4.033145.
[215]GUPTA R, DAS D, MIELKE C, et al. Two Types of Charge Order with Distinct Interplay with Superconductivity in the Kagome Material CsV3Sb5 [J/OL]. Communications Physics, 2022, 5(1). DOI: 10.1038/s42005-022-01011-0.
[216] GUGUCHIA Z, MIELKE C, DAS D, et al. Tunable Unconventional Kagome Superconductivity in Charge Ordered KV3Sb5 and RbV3Sb5 [J/OL]. Nature Communications, 2023, 14(1). DOI: 10.1038/s41467-022-35718-z.
[217] YANG Y, FAN W, ZHANG Q, et al. Discovery of Two Families of V-Based Compounds with V-Kagome Lattice[J/OL]. Chinese Physics Letters, 2021, 38(12): 127102. DOI: 10.1088/0256-307x/38/12/127102.
[218] YIN Q, TU Z, GONG C, et al. Structures and Physical Properties of V-based Kagome Metals CsV6Sb6 and CsV8Sb12[J/OL]. Chinese Physics Letters, 2021, 38(12): 127401. DOI: 10.1088/0256-307x/38/12/127401.
[219] Yang H, Zhao Z, Yi X W, et al. Titanium-based kagome superconductor CsTi3Bi5 and topolog- ical states[A/OL]. 2022. arXiv: 2209.03840.
[220] WERHAHN D, ORTIZ B R, HAY A K, et al. The kagomé metals RbTi3Bi5 and CsTi3Bi5 [J/OL]. Zeitschrift für Naturforschung B, 2022, 77(11–12): 757-764. DOI: 10.1515/znb-202 2-0125.
[221] Liu Y, Liu Z Y, Bao J K, et al. Superconductivity Emerged from Density-wave Order in a Kagome Bad Metal[A/OL]. 2023. arXiv: 2309.13514.
[222] Xu C, Wu S, Zhi G X, et al. Frustrated Altermagnetism and Charge Density Wave in Kagome Superconductor CsCr3Sb5[A/OL]. 2023. arXiv: 2309.14812.
[223] SHI M, YU F, YANG Y, et al. A New Class of Bilayer Kagome Lattice Compounds with Dirac Nodal Lines and Pressure-induced Superconductivity[J/OL]. Nature Communications, 2022,13(1). DOI: 10.1038/s41467-022-30442-0.
[224] CAI Y, WANG J, WANG Y, et al. Type‐II Dirac Nodal Lines in a Double‐Kagome‐Layered Semimetal[J/OL]. Advanced Electronic Materials, 2023, 9(7). DOI: 10.1002/aelm.202300212.
[225] WANG Y, LIU Y, HAO Z, et al. Flat Band and Z2 Topology of Kagome Metal CsTi3Bi5 [J/OL]. Chinese Physics Letters, 2023, 40(3): 037102. DOI: 10.1088/0256-307x/40/3/037102.
[226] YANG J, YI X, ZHAO Z, et al. Observation of Flat Band, Dirac Nodal Lines and Topological Surface States in Kagome Superconductor CsTi3Bi5 [J/OL]. Nature Communications, 2023, 14(1). DOI: 10.1038/s41467-023-39620-0.
[227] Zhou Y, Chen L, Ji X, et al. Physical Properties, Electronic Structure, and Strain-tuned Monolayer of the Weak Topological Insulator RbTi3Bi5 with Kagome Lattice[A/OL]. 2023. 2301.01633.
[228] LIU B, KUANG M Q, LUO Y, et al. Tunable Van Hove Singularity without Structural Instability in Kagome Metal CsTi3Bi5 [J/OL]. Physical Review Letters, 2023, 131(2): 026701. DOI:10.1103/PhysRevLett.131.026701.
[229]YANG H, YE Y, ZHAO Z, et al. Superconductivity and Orbital-selective Nematic Order in a New Titanium-based Kagome Metal CsTi3Bi5 [A/OL]. 2022. arXiv: 2211.12264.
[230] LI H, CHENG S, ORTIZ B R, et al. Electronic Nematicity without Charge Density Waves in Titanium-based Kagome Metal[J/OL]. Nature Physics, 2023, 19(11): 1591-1598. DOI: 10.1038/s41567-023-02176-3.
[231] 唐仁政田荣璋. 二元合金相图及中间相晶体结构[M]. 中南大学出版社, 2009.
[232] ROBERTS B W. Survey of Superconductive Materials and Critical Evaluation of Selected Properties[J/OL]. Journal of Physical and Chemical Reference Data, 1976, 5(3): 581-822. DOI: 10.1063/1.555540.
[233] WILSON K G. The Renormalization Group: Critical Phenomena and the Kondo Problem [J/OL]. Reviews of Modern Physics, 1975, 47(4): 773-840. DOI: 10.1103/revmodphys.47.773.
[234] LIMELETTE P, SCHMALTZ B, BRAULT D, et al. Metallic-like Wilson Ratio in the Polyaniline Hydrochloride Conducting Polymer[J/OL]. Journal of Applied Physics, 2015, 117(12): 123907. DOI: 10.1063/1.4915342.
[235] HU Y, WU X, ORTIZ B R, et al. Rich Nature of Van Hove Singularities in Kagome Supercon- ductor CsV3Sb5 [A]. 2021. arXiv: 2106.05922.
[236] CAI Y, WANG Y, HAO Z, et al. Emergence of Quantum Confinement in Topological Kagome Superconductor CsV3Sb5 [J/OL]. Communications Materials, 2024, 5(1): 31. DOI: 10.1038/s4 3246-024-00461-z.
[237] ZHANG P, QIAN T, RICHARD P, et al. Observation of Two Distinct d/dz/dyz Band Splittings in FeSe[J/OL]. Physical Review B, 2015, 91(5): 214503. DOI: 10.1103/PhysRevB.91.214503.
[238] JIANG K, HU J, DING H, et al. Interatomic Coulomb Interaction and Electron Nematic Bond Order in FeSe[J/OL]. Physical Review B, 2016, 93(13): 115138. DOI: 10.1103/PhysRevB.93. 115138.
[239] NAYAK A K, FISCHER J E, SUN Y, et al. Large Anomalous Hall Effect Driven by a Nonvan- ishing Berry Curvature in the Noncolinear Antiferromagnet Mn3Ge[J/OL]. Science Advances, 2016, 2(4). DOI: 10.1126/sciadv.1501870.
[240] KIYOHARA N, TOMITA T, NAKATSUJI S. Giant Anomalous Hall Effect in the Chi- ral Antiferromagnet Mn3Ge[J/OL]. Physical Review Applied, 2016, 5(6): 064009. DOI: 10.1103/PhysRevApplied.5.064009.
[241] VAQUEIRO P, SOBANY G G. A Powder Neutron Diffraction Study of the Metallic Ferro- magnet Co3Sn2S2[J/OL]. Solid State Sciences, 2009, 11(2): 513-518. DOI: 10.1016/j.solidstatesciences.2008.06.017.
[242] MORALI N, BATABYAL R, NAG P K, et al. Fermi-arc Diversity on Surface Terminations of the Magnetic Weyl Semimetal Co3Sn2S2 [J/OL]. Science, 2019, 365(6459): 1286-1291. DOI: 10.1126/science.aav2334.
[243] FU L, KANE C L. Topological Insulators with Inversion Symmetry[J/OL]. Physical Review B, 2007, 76(4): 045302. DOI: 10.1103/PhysRevB.76.045302.
[244] Nie J Y, Yang X F, Zhang X, et al. Pressure-induced Double-dome Superconductivity in Kagome Metal CsTi3Bi5[A/OL]. 2023. arXiv: 2308.10129.
[245] ZHOU Y, WU J, NING W, et al. Pressure-induced Superconductivity in a Three-dimensional Topological Material ZrTe5[J/OL]. Proceedings of the National Academy of Sciences, 2016, 113(11): 2904-2909. DOI: 10.1073/pnas.1601262113.
[246] ELGHAZALI M A, NAUMOV P G, MIRHOSSEINI H, et al. Pressure-induced Superconduc- tivity up to 13.1 K in the Pyrite Phase of Palladium Diselenide PdSe2[J/OL]. Physical Review B, 2017, 96(6): 060509. DOI: 10.1103/PhysRevB.96.060509.
[247] CHENG E, XIA W, SHI X, et al. Pressure-induced Superconductivity and Topological Phase Transitions in the Topological Nodal-line Semimetal SrAs3[J/OL]. npj Quantum Materials, 2020, 5(1). DOI: 10.1038/s41535-020-0240-6.
修改评论