中文版 | English
题名

Kagome金属化合物CsV3Sb5和CsTi3Bi5的物性调控和电子结构研究

其他题名
Study on the Regulation of Physical Properties and Electronic Structure of Kagome Metallic Compounds CsV3Sb5 and CsTi3Bi5
姓名
姓名拼音
LIU Yixuan
学号
12031113
学位类型
博士
学位专业
0702 物理学
学科门类/专业学位类别
07 理学
导师
梅佳伟
导师单位
物理系
论文答辩日期
2024-05-08
论文提交日期
2024-06-21
学位授予单位
南方科技大学
学位授予地点
深圳
摘要

凝聚态物理学中,晶体的物理性质与其结构密切相关。其中kagome晶格由于独特的晶体结构,成为研究几何阻挫、电子关联、能带拓扑等性质的理想平台。由V构成kagome晶格的AV3Sb5A = K, Rb, Cs)家族为近年来实验上发现的代表性kagome材料。AV3Sb5由于78 K - 103 K的电荷密度波和0.75 K - 2.5 K的超导态共存而引发了研究者们的极大兴趣,同时还存在条纹序、电子向列相和配对密度波等有序态,表现出极其丰富的物理内涵。在这些有序态中,电荷密度波出现的温度最高,研究电荷密度波的相关机理对于全面理解AV3Sb5家族有着重要意义,通过多种手段调控电荷密度波和超导态也有助于我们揭开这些新奇物态间的有趣关联。

在本论文中,我们通过不同类型的化学掺杂对CsV3Sb5中的电荷密度波、超导态和能带结构进行调控。Ti替换V的空穴掺杂会导致费米能级下降,逐渐抑制CsV3Sb5中的电荷密度波,而Cr替换V的电子掺杂会引入磁性杂质,并迅速抑制超导态,由此我们展开对电荷密度波和超导态相关问题的研究。此外,还合成了一种新型kagome135”材料CsTi3Bi5,并详细研究了相关的物性和能带结构,展现出kagome135”材料丰富的物理性质。

本论文取得的具体研究成果如下:

一、通过Ti的空穴掺杂对CsV3Sb5中的电荷密度波、超导态和能带结构进行调控,研究了电荷密度波的形成机理等问题。对Cs(V1-xTix)3Sb5的物性测试发现随着掺杂浓度的增加,电荷密度波逐渐被抑制,而超导态被加强,表现出电荷密度波和超导态之间的竞争关系。结合ARPES测试和第一性原理计算,发现空穴掺杂导致能带结构向上移动,当M点范霍夫奇点被抬高至费米面以上时,Cs(V1-xTix)3Sb5中的电荷密度波消失,这些结果揭示了范霍夫奇点在CsV3Sb5的电荷密度波中不可或缺的作用。理论计算不同掺杂浓度的声子谱表明声子谱虚频随着空穴掺杂逐渐减弱,当声子谱虚频消失时,对应着系统中电荷密度波的消失,表明声子谱虚频对应的晶格不稳定性同样起着重要作用。此外,我们发现在无电荷密度波样品中,TCSb衍生的电子口袋有效质量变化规律符合良好,表明超导态与Sb衍生能带有关。

二、通过Cr的磁性掺杂抑制CsV3Sb5中的超导态,研究了常压下和高压下磁性掺杂系统Cs(V1-xCrx)3Sb5中超导态的演化。对Cs(V1-xCrx)3Sb5的磁化率测试和低温下居里外斯拟合证明Cr掺杂引入了局域磁矩,是一种有效的磁性掺杂方法。物性测试发现超导态被磁性杂质迅速抑制,而电荷密度波则相对受影响较小。能带结构的研究也证明Cr掺杂为电子掺杂,随着掺杂浓度的增加能带结构逐渐往下移动。特别的,我们对x = 3.1%x = 5.3%样品进行加压电输运测试,发现了x = 3.1%0.99 GPa下电荷密度波的异常增强。随着压力的进一步增加,两个样品中均出现超导转变,类似于CsV3Sb5在高压下出现的第二个超导“穹顶”,且对于掺杂浓度更高的样品,超导态在更低的温度和更高的压强出现。理论计算发现压力会抑制Cr离子的局域磁矩,当局域磁矩逐渐被压力抑制时,超导态重新出现,且局域磁矩越小时TC越高。CsV3Sb5中超导态对磁性的敏感性暗示着系统中可能存在s波超导。

三、合成了新型kagome135”材料CsTi3Bi5,并详细研究了其物性和电子结构。我们通过Bi的助熔剂法成功合成了与CsV3Sb5同构的新型kagome135”材料CsTi3Bi5,并对其晶体结构进行了详细表征。物性测试表明CsTi3Bi5的基态为费米液体态,ARPES测试和第一性原理计算则揭示了CsTi3Bi5中靠近费米面的平带以及Z2拓扑性。此外,对CsTi3Bi5在高压下的结构研究发现在P = 3.3 GPa附近存在六方到单斜的结构相变。这些结果表明了kagome135”材料实现丰富物理现象的潜力,也为后续探索更多可能的新型kagome135”材料提供了参考。

其他摘要

In condensed matter physics, the physical properties of crystals are closely related to their crystal structures. The kagome lattice has emerged as an ideal platform for studying properties such as geometric frustration, electronic correlation, and band topology, owing to its unique crystal structure.

The AV3Sb5 (A = K, Rb, Cs) family, composed of kagome lattices with V ions, represents a prominent class of kagome materials discovered experimentally in recent years. The coexistence of charge density waves at 78 K - 103 K and superconducting states at 0.75 K - 2.5 K in AV3Sb5 has sparked significant interest among researchers. Additionally, there are other ordered states such as stripe orders, electronic nematic phases, and pairing density waves, exhibiting rich physical implications. Among these ordered states, the charge density wave has the highest appearance temperature. Understanding the mechanisms behind charge density waves is crucial for a comprehensive understanding of the AV3Sb5 family. Furthermore, controlling charge density waves and superconducting states through various means helps uncover intriguing correlations among these novel phenomena.

In this paper, we regulated the charge density waves, superconducting states, and band structures in CsV3Sb5 through different types of chemical doping. Hole doping by Ti substitution for V results in a lowering of the Fermi level and suppression of charge density waves in CsV3Sb5, whereas electron doping by Cr substitution for V introduces magnetic impurities and rapidly suppresses the superconducting state in CsV3Sb5. Thus, we delve into the investigation of issues related to charge density waves and superconducting states. Furthermore, we reported a novel kagome “135” material CsTi3Bi5, and its associated physical properties and band structure, demonstrating the abundant potential of kagome “135” materials.

Our research achievements are as follows:

1. By modulating the charge density wave, superconducting state, and band structure in CsV3Sb5 through Ti hole doping, we conducted research and discussion on the formation mechanism of charge density waves and related issues. Physical properties measurements on Cs(V1-xTix)V3Sb5 reveal that with the increase of doping concentration, the charge density wave is gradually suppressed, while the superconducting state is enhanced, showing a competitive relationship between charge density wave and superconducting state. Band structure studies based on ARPES measurements and first-principles calculations unveil that hole doping induces an upward shift in the band structure. When the van Hove singularities at M-point are raised above the Fermi surface due to hole doping, the charge density wave in Cs(V1-xTix)V3Sb5 disappears. Our results demonstrate the important role of van Hove singularities in the charge density wave of CsV3Sb5. Theoretical calculations of the phonon spectra at different doping concentrations show that the imaginary phonon frequency decreases gradually with hole doping, and the disappearance of imaginary phonon frequency corresponded to the disappearance of charge density wave in the system. Therefore, we propose that the electron instability associated with the van Hove singularities and the lattice instability associated with the imaginary phonon frequency jointly cause the charge density wave in CsV3Sb5. Additionally, in samples without charge density waves, we notice a consistent variation pattern in the effective mass of the electronic pocket derived from the Sb orbitals, which parallels that of TC. This observation implies a possible correlation between the superconducting state and the electronic band originating from the Sb orbitals. It also suggests that the CsV3Sb5 system could potentially exhibit s-wave superconductivity.

 

2. Suppressing the superconducting state in CsV3Sb5 through magnetic doping of Cr, we studied the evolution of the superconducting state in Cs(V1-xCrx)V3Sb5 magnetic doping systems under both ambient and high pressures. Magnetization measurements and low-temperature Curie-Weiss fitting on Cs(V1-xCrx)V3Sb5 demonstrate that Cr doping introduces local magnetic moments, serving as an effective method for magnetic doping. We find that the superconducting state is rapidly suppressed by magnetic impurities, while charge density waves are relatively less affected. Band structure studies also demonstrate that Cr doping acts as electron doping, with the band structure gradually shifting downwards with increasing doping concentration. In particular, we performed resistivity measurements under various pressures on samples with x = 3.1% and x = 5.3%, and found an anomalous enhancement of charge density wave for x = 3.1% under 0.99 GPa. With further increase in pressure, superconducting transitions occur in both samples, resembling the second superconducting dome observed in CsV3Sb5 under pressure, and for samples with higher doping concentration, the superconducting state appears at lower temperatures and higher pressures.Theoretical calculations reveal that pressure suppresses the localized magnetic moments of Cr ions. As the localized magnetic moments are gradually suppressed by pressure, the superconducting state reemerges, and the higher the localized magnetic moment, the higher the critical temperature TC. The sensitivity of the superconducting state in CsV3Sb5 to magnetism suggests the possible presence of an s-wave superconductivity in the system.

 

3. We synthesized a novel kagome “135” material CsTi3Bi5 and thoroughly investigated its physical properties and electronic structure.Using Bi as a flux, the novel kagome “135” material CsTi3Bi5, isostructural to CsV3Sb5, was successfully synthesized. We characterized its crystal structure and crystallographic information in detail, and through physical properties measurements, we find that the ground state of CsTi3Bi5 is Fermi liquid state. ARPES measurements and first-principles calculations reveal flat bands near the Fermi surface and Z2 topological properties in CsTi3Bi5. Furthermore, we investigated the structure and transport properties of CsTi3Bi5 under high pressure, discovering a structural phase transition from hexagonal to monoclinic around P = 3.3 GPa. These findings underscore the potential of kagome “135” materials to exhibit diverse physical phenomena and provide valuable insights for exploring additional novel kagome “135” materials in the future.

关键词
其他关键词
语种
中文
培养类别
独立培养
入学年份
2020
学位授予年份
2024-06
参考文献列表

[1] ONSAGER L. Crystal Statistics. I. A Two-Dimensional Model with an Order-Disorder Transi- tion[J/OL]. Physical Review, 1944, 65(3–4): 117-149. DOI: 10.1103/PhysRev.65.117.
[2] WALLACE P R. The Band Theory of Graphite[J/OL]. Physical Review, 1947, 71(9): 622-634. DOI: 10.1103/PhysRev.71.622.
[3] WANNIER G H. Antiferromagnetism. The Triangular Ising Net[J/OL]. Physical Review, 1950, 79(2): 357-364. DOI: 10.1103/PhysRev.79.357.
[4] SYOZI I. Statistics of Kagome Lattice[J/OL]. Progress of Theoretical Physics, 1951, 6(3): 306-308. DOI: 10.1143/ptp/6.3.306.
[5] BALENTS L. Spin Liquids in Frustrated Magnets[J/OL]. Nature, 2010, 464(7286): 199-208. DOI: 10.1038/nature08917.
[6] HAN T H, HELTON J S, CHU S, et al. Fractionalized Excitations in the Spin-liquid State of a Kagome-Lattice Antiferromagnet[J/OL]. Nature, 2012, 492(7429): 406-410. DOI: 10.1038/na ture11659.
[7] FåK B, KERMARREC E, MESSIO L, et al. Kapellasite: A Kagome Quantum Spin Liquid with Competing Interactions[J/OL]. Physical Review Letters, 2012, 109(3): 037208. DOI: 10.1103/PhysRevLett.109.037208.
[8] SAVARY L, BALENTS L. Quantum Spin Liquids: A Review[J/OL]. Reports on Progress in Physics, 2016, 80(1): 016502. DOI: 10.1088/0034-4885/80/1/016502.
[9] NORMAN M. Colloquium : Herbertsmithite and the Search for the Quantum Spin Liquid [J/OL]. Reviews of Modern Physics, 2016, 88(4): 041002. DOI: 10.1103/RevModPhys.88.04 1002.
[10] KLITZING K V, DORDA G, PEPPER M. New Method for High-Accuracy Determination of the Fine-Structure Constant Based on Quantized Hall Resistance[J/OL]. Physical Review Letters, 1980, 45(6): 494-497. DOI: 10.1103/PhysRevLett.45.494.
[11] WEN X G. Topological Orders and Edge Excitations in Fractional Quantum Hall States[J/OL]. Advances in Physics, 1995, 44(5): 405-473. DOI: 10.1080/00018739500101566.
[12] AVRON J E, OSADCHY D, SEILER R. A Topological Look at the Quantum Hall Effect[J/OL]. Physics Today, 2003, 56(8): 38-42. DOI: 10.1063/1.1611351.
[13 ]HALDANE F D M. Nobel Lecture: Topological Quantum Matter[J/OL]. Reviews of Modern Physics, 2017, 89(4): 040502. DOI: 10.1103/RevModPhys.89.040502.
[14] NOVOSELOV K S, GEIM A K, MOROZOV S V, et al. Electric Field Effect in Atomically Thin Carbon Films[J/OL]. Science, 2004, 306(5696): 666-669. DOI: 10.1126/science.1102896.
[15] CASTRO NETO A H, GUINEA F, PERES N M R, et al. The Electronic Properties of Graphene [J/OL]. Reviews of Modern Physics, 2009, 81(1): 109-162. DOI: 10.1103/RevModPhys.81.10 9.
[16] YIN J X, LIAN B, HASAN M Z. Topological Kagome Magnets and Superconductors[J/OL]. Nature, 2022, 612(7941): 647-657. DOI: 10.1038/s41586-022-05516-0.
[17] GUO H M, FRANZ M. Topological Insulator on the Kagome Lattice[J/OL]. Physical Review B, 2009, 80(11): 113102. DOI: 10.1103/PhysRevB.80.113102.
[18] KIESEL M L, THOMALE R. Sublattice Interference in the Kagome Hubbard Model[J/OL]. Physical Review B, 2012, 86(12): 121105. DOI: 10.1103/PhysRevB.86.121105.
[19] WANG W S, LI Z Z, XIANG Y Y, et al. Competing Electronic Orders on Kagome Kattices at van Hove Filling[J/OL]. Physical Review B, 2013, 87(11): 115135. DOI:10.1103/PhysRevB.87.115135.
[20] KIESEL M L, PLATT C, THOMALE R. Unconventional Fermi Surface Instabilities in the Kagome Hubbard Model[J/OL]. Physical Review Letters, 2013, 110(12): 126405. DOI: 10.1 103/PhysRevLett.110.126405.
[21] YU S L, LI J X. Chiral Superconducting Phase and Chiral Spin-density-wave Phase in a Hub- bard Model on the Kagome Lattice[J/OL]. Physical Review B, 2012, 85(14): 144402. DOI: 10.1103/PhysRevB.85.144402.
[22] ZHU W, GONG S S, ZENG T S, et al. Interaction-Driven Spontaneous Quantum Hall Effect on a Kagome Lattice[J/OL]. Physical Review Letters, 2016, 117(9): 096402. DOI: 10.1103/Ph ysRevLett.117.096402.
[23] KANG M, FANG S, YE L, et al. Topological Flat Bands in Frustrated Kagome Lattice CoSn [J/OL]. Nature Communications, 2020, 11(1): 4004. DOI: 10.1038/s41467-020-17465-1.
[24]WEHLING T, BLACK-SCHAFFER A, BALATSKY A. Dirac Materials[J/OL]. Advances in Physics, 2014, 63(1): 1-76. DOI: 10.1080/00018732.2014.927109.
[25] LEYKAM D, ANDREANOV A, FLACH S. Artificial Flat Band Systems: from Lattice Models to Experiments[J/OL]. Advances in Physics: X, 2018, 3(1): 1473052. DOI: 10.1080/23746149.2018.1473052.
[26] RHIM J W, YANG B J. Singular Flat Bands[J/OL]. Advances in Physics: X, 2021, 6(1). DOI: 10.1080/23746149.2021.1901606.
[27] NEUPERT T, SANTOS L, CHAMON C, et al. Fractional Quantum Hall States at Zero Magnetic Field[J/OL]. Physical Review Letters, 2011, 106(23): 236804. DOI: 10.1103/PhysRevLett.106.236804.
[28] TANG E, MEI J W, WEN X G. High-Temperature Fractional Quantum Hall States[J/OL]. Physical Review Letters, 2011, 106(23): 236802. DOI: 10.1103/PhysRevLett.106.236802.
[29] YANG S, GU Z C, SUN K, et al. Topological Flat Band Models with Arbitrary Chern Numbers [J/OL]. Physical Review B, 2012, 86(24): 241112. DOI: 10.1103/PhysRevB.86.241112.
[30] LIU Q, YAO H, MA T. Spontaneous Symmetry Breaking in a Two-dimensional Kagome Lattice [J/OL]. Physical Review B, 2010, 82(4): 045102. DOI: 10.1103/PhysRevB.82.045102.
[31] WEN J, RüEGG A, WANG C C J, et al. Interaction-driven Topological Insulators on the Kagome and the Decorated Honeycomb Lattices[J/OL]. Physical Review B, 2010, 82(7): 075125. DOI: 10.1103/PhysRevB.82.075125.
[32] TANAKA A, UEDA H. Stability of Ferromagnetism in the Hubbard Model on the Kagome Lattice[J/OL]. Physical Review Letters, 2003, 90(6): 067204. DOI: 10.1103/PhysRevLett.90.067204.
[33] KATSURA H, MARUYAMA I, TANAKA A, et al. Ferromagnetism in the Hubbard Model with Topological/Non-topological Flat Bands[J/OL]. Europhysics Letters, 2010, 91(5): 57007. DOI: 10.1209/0295-5075/91/57007.
[34] CHEN Y, XU S, XIE Y, et al. Ferromagnetism and Wigner Crystallization in Kagome Graphene and Related Structures[J/OL]. Physical Review B, 2018, 98(3): 035135. DOI: 10.1103/PhysRevB.98.035135.
[35] JAWOROWSKI B, GüçLü A D, KACZMARKIEWICZ P, et al. Wigner Crystallization in Topological Flat Bands[J/OL]. New Journal of Physics, 2018, 20(6): 063023. DOI: 10.1088/ 1367-2630/aac690.
[36] XU G, LIAN B, ZHANG S C. Intrinsic Quantum Anomalous Hall Effect in the Kagome Lattice Cs2LiMn3F12[J/OL]. Physical Review Letters, 2015, 115(18): 186802. DOI: 10.1103/PhysRevLett.115.186802.
[37] NAKATSUJI S, KIYOHARA N, HIGO T. Large Anomalous Hall Effect in a Non-collinear Antiferromagnet at Room Temperature[J/OL]. Nature, 2015, 527(7577): 212-215. DOI: 10.1038/nature15723.
[38] LI X, XU L, DING L, et al. Anomalous Nernst and Righi-Leduc Effects in Mn3Sn : Berry Curvature and Entropy Flow[J/OL]. Physical Review Letters, 2017, 119(5): 056601. DOI: 10.1103/PhysRevLett.119.056601.
[39] LIU Z, LI M, WANG Q, et al. Orbital-selective Dirac Fermions and Extremely Flat Bands in Frustrated Kagome-lattice Metal CoSn[J/OL]. Nature Communications, 2020, 11(1): 4002. DOI: 10.1038/s41467-020-17462-4.
[40] LIU E, SUN Y, KUMAR N, et al. Giant Anomalous Hall Effect in a Ferromagnetic Kagome- lattice Semimetal[J/OL]. Nature Physics, 2018, 14(11): 1125-1131. DOI: 10.1038/s41567-018-0234-5.
[41] WANG Q, XU Y, LOU R, et al. Large Intrinsic Anomalous Hall Effect in Half-metallic Ferro- magnet Co3Sn2S2 with Magnetic Weyl Fermions[J/OL]. Nature Communications, 2018, 9(1). DOI: 10.1038/s41467-018-06088-2.
[42] ZHANG H, FENG H, XU X, et al. Recent Progress on 2D Kagome Magnets: Binary TmSnn (T = Fe, Co, Mn)[J/OL]. Advanced Quantum Technologies, 2021, 4(11). DOI: 10.1002/qute.2 02100073.
[43] VENTURINI G. Filling the CoSn Host-cell: the HfFe6Ge6-type and the Related Structures [J/OL]. Zeitschrift für Kristallographie - Crystalline Materials, 2006, 221(5–7): 511-520. DOI: 10.1524/zkri.2006.221.5-7.511.
[44] BARANOV N V, GERASIMOV E G, MUSHNIKOV N V. Magnetism of Compounds with a Layered Crystal Structure[J/OL]. The Physics of Metals and Metallography, 2011, 112(7): 711-744. DOI: 10.1134/s0031918x11070039.
[45] YIN J X, PAN S H, ZAHID HASAN M. Probing Topological Quantum Matter with Scanning Tunnelling Microscopy[J/OL]. Nature Reviews Physics, 2021, 3(4): 249-263. DOI: 10.1038/ s42254-021-00293-7.
[46] XU X, YIN J X, QU Z, et al. Quantum Interactions in Topological R166 Kagome Magnet[J/OL]. Reports on Progress in Physics, 2023, 86(11): 114502. DOI: 10.1088/1361-6633/acfd3d.
[47] KANG M, YE L, FANG S, et al. Dirac fermions and flat bands in the ideal kagome metal FeSn [J/OL]. Nature Materials, 2020, 19(2): 163-169. DOI: 10.1038/s41563-019-0531-0.
[48] YE L, KANG M, LIU J, et al. Massive Dirac Fermions in a Ferromagnetic Kagome Metal [J/OL]. Nature, 2018, 555(7698): 638-642. DOI: 10.1038/nature25987.
[49] MA W, XU X, YIN J X, et al. Rare Earth Engineering in Mn6Sn6 ( = Gd−Tm, Lu) Topo- logical Kagome Magnets[J/OL]. Physical Review Letters, 2021, 126(24): 246602. DOI: 10.1103/PhysRevLett.126.246602.
[50] VENTURINI G, WELTER R, MALAMAN B, et al. Magnetic Structure of YMn6Ge6 and Room Temperature Magnetic Structure of LuMn Sn Obtained from Neutron Diffraction Study [J/OL]. Journal of Alloys and Compounds, 1993, 200(1–2): 51-57. DOI: 10.1016/0925-838 8(93)90470-8.
[51] ROSENFELD E, MUSHNIKOV N. Double-flat-spiral Magnetic Structures: Theory and Appli- cation to the Compounds[J/OL]. Physica B: Condensed Matter, 2008, 403(10–11): 1898-1906. DOI:10.1016/j.physb.2007.10.220.
[52] GHIMIRE N J, DALLY R L, POUDEL L, et al. Competing Magnetic Phases and Fluctuation- driven Scalar Spin Chirality in the Kagome Metal YMn6Sn6[J/OL]. Science Advances, 2020,6(51). DOI: 10.1126/sciadv.abe2680.
[53] LI M, WANG Q, WANG G, et al. Dirac Cone, Flat Band and Saddle Point in Kagome Magnet YMn6Sn6[J/OL]. Nature Communications, 2021, 12(1). DOI: 10.1038/s41467-021-23536-8.
[54] VENTURINI G, IDRISSI B E, MALAMAN B. Magnetic Properties of RMn6Sn6 ( R= Sc, Y, Gd−Tm, Lu) Compounds with HfFe Ge Type Structure[J/OL]. Journal of Magnetism and Magnetic Materials, 1991, 94(1–2): 35-42. DOI: 10.1016/0304-8853(91)90108-m.
[55] MALAMAN B, VENTURINI G, WELTER R, et al. Magnetic Properties of RMn6Sn6 ( R= Gd–Er) Compounds from Neutron Diffraction and Mössbauer Measurements[J/OL]. Journal of Magnetism and Magnetic Materials, 1999, 202(2): 519-534. DOI: 10.1016/S0304-8853(99)00300-5.
[56] CLATTERBUCK D, GSCHNEIDNER JR K. Magnetic Properties of RMn6Sn6 (R = Tb, Ho, Er, Tm, Lu) single crystals[J/OL]. Journal of Magnetism and Magnetic Materials, 1999, 207 (1-3): 78-94. DOI: 10.1016/S0304-8853(99)00571-5.
[57] LEE Y, SKOMSKI R, WANG X, et al. Interplay between magnetism and band topology in the kagome magnets Mn6Sn6[J/OL]. Physical Review B, 2023, 108(4): 045132. DOI: 10.1103/PhysRevB.108.045132.
[58] HU J, WANG K Y, HU B P, et al. Magnetic Transition and Coercivity in TbMn6Sn6[J/OL]. Journal of Physics: Condensed Matter, 1995, 7(5): 889-893. DOI: 10.1088/0953-8984/7/5/011.
[59] MIELKE III C, MA W L, POMJAKUSHIN V, et al. Low-temperature Magnetic Crossover in the Topological Kagome Magnet TbMn6Sn6[J/OL]. Communications Physics, 2022, 5(1). DOI: 10.1038/s42005-022-00885-4.
[60] YIN J X, MA W, COCHRAN T A, et al. Quantum-limit Chern Topological Magnetism in TbMn6Sn6[J/OL]. Nature, 2020, 583(7817): 533-536. DOI: 10.1038/s41586-020-2482-7.
[61] CHENG Z, BELOPOLSKI I, TIEN H, et al. Visualization of Tunable Weyl Line in A–A Stacking Kagome Magnets[J/OL]. Advanced Materials, 2022, 35(3). DOI: 10.1002/adma.202 205927.
[62] MIN L, SRETENOVIC M, HEITMANN T W, et al. A Topological Kagome Magnet in High Entropy Form[J/OL]. Communications Physics, 2022, 5(1). DOI: 10.1038/s42005-022-00842-1.
[63]PENG S, HAN Y, POKHAREL G, et al. Realizing Kagome Band Structure in Two-Dimensional Kagome Surface States of RV6Sn6 ( R = Gd, Ho)[J/OL]. Physical Review Letters, 2021, 127(26):266401. DOI: 10.1103/PhysRevLett.127.266401.
[64] HU Y, WU X, ORTIZ B R, et al. Rich Nature of van Hove Singularities in Kagome Supercon- ductor CsV3Sb5[J/OL]. Nature Communications, 2022, 13(1). DOI: 10.1038/s41467-022-298 28-x.
[65] ARACHCHIGE H W S, MEIER W R, MARSHALL M, et al. Charge Density Wave in Kagome Lattice Intermetallic ScV6Sn6[J/OL]. Physical Review Letters, 2022, 129(21). DOI: 10.1103/PhysRevLett.129.216402.
[66]CAO S, XU C, FUKUI H, et al. Competing Charge-density Wave Instabilities in the Kagome Metal ScV6Sn6[J/OL]. Nature Communications, 2023, 14(1). DOI: 10.1038/s41467-023-434 54-1.
[67] WANG Q, NEUBAUER K J, DUAN C, et al. Field-induced Topological Hall Effect and Double-fan Spin Structure with a -axis Component in the Metallic Kagome Antiferro- magnetic Compound YMn6Sn6[J/OL]. Physical Review B, 2021, 103(1): 014416. DOI:10.1103/PhysRevB.103.014416.
[68] SIEGFRIED P E, BHANDARI H, JONES D C, et al. Magnetization-driven Lifshitz Transition and Charge-spin Coupling in the Kagome Metal YMn6Sn6[J/OL]. Communications Physics, 2022, 5(1). DOI: 10.1038/s42005-022-00833-2.
[69] LI H, ZHAO H, JIANG K, et al. Manipulation of Dirac Band Curvature and Momentum- dependent g Factor in a Kagome Magnet YMn6Sn6[J/OL]. Nature Physics, 2022, 18(6): 644- 649. DOI: 10.1038/s41567-022-01558-3.
[70] LIU Z, ZHAO N, LI M, et al. Electronic Correlation Effects in the Kagome Magnet GdMn6Sn6 [J/OL]. Physical Review B, 2021, 104(11): 115122. DOI: 10.1103/PhysRevB.104.115122.
[71] GU X, CHEN C, WEI W S, et al. Robust Kagome Electronic Structure in the Topological quantum magnets RMn6Sn6 (R =Dy, Tb, Gd, Y)[J/OL]. Physical Review B, 2022, 105(15): 155108. DOI: 10.1103/PhysRevB.105.155108.
[72] ISHIKAWA H, YAJIMA T, KAWAMURA M, et al. GdV6Sn6: A Multi-carrier Metal with Non-magnetic 3d-electron Kagome Bands and 4 -electron Magnetism[J/OL]. Journal of the Physical Society of Japan, 2021, 90(12). DOI: 10.7566/jpsj.90.124704.
[73] LEE J, MUN E. Anisotropic Magnetic Property of Single Crystals RV6Sn6 ( R = Y, Gd - Tm, Lu)[J/OL]. Physical Review Materials, 2022, 6(8): 083401. DOI: 10.1103/PhysRevMaterials.6.083401.
[74] ZHANG X, LIU Z, CUI Q, et al. Electronic and Magnetic Properties of Intermetallic Kagome Magnets RV6Sn6 ( R = Tb -Tm)[J/OL]. Physical Review Materials, 2022, 6(10): 105001. DOI: 10.1103/PhysRevMaterials.6.105001.
[75] HUANG X, CUI Z, HUANG C, et al. Anisotropic Magnetism and Electronic Properties of the Kagome Metal SmV6Sn6[J/OL]. Physical Review Materials, 2023, 7(5): 054403. DOI: 10.1103/PhysRevMaterials.7.054403.
[76] TAN H, YAN B. Abundant Lattice Instability in Kagome Metal[J/OL]. Physical Review Letters, 2023, 130(26): 266402. DOI: 10.1103/PhysRevLett.130.266402.
[77] HU T, PI H, XU S, et al. Optical Spectroscopy and Band Structure Calculations of the Structural Phase Transition in the Vanadium-based Kagome Metal ScV6Sn6[J/OL]. Physical Review B, 2023, 107(16). DOI: 10.1103/PhysRevB.107.165119.
[78] Tuniz M, Consiglio A, Puntel D, et al. Dynamics and Resilience of the Charge Density Wave in a Bilayer Kagome Metal[A/OL]. 2023. arXiv: 2302.10699.
[79] Kang S H, Li H, Meier W R, et al. Emergence of a New Band and the Lifshitz Transition in Kagome Metal ScV6Sn6 with Charge Density Wave[A/OL]. 2023. arXiv: 2302.14041.
[80] KORSHUNOV A, HU H, SUBIRES D, et al. Softening of a Flat Phonon Mode in the Kagome ScV6Sn6[J/OL]. Nature Communications, 2023, 14(1). DOI: 10.1038/s41467-023-42186-6.
[81] GU Y, RITZ E T, MEIER W R, et al. Phonon Mixing in the Charge Density Wave State of ScV6Sn6[J/OL]. NPJ QUANTUM MATERIALS, 2023, 8(1). DOI: 10.1038/s41535-023-005 90-7.
[82] ZHANG D, HOU Z, MI W. Progress in Magnetic Alloys with Kagome Structure: Materials, Fabrications and Physical Properties[J/OL]. Journal of Materials Chemistry C, 2022, 10(20): 7748-7770. DOI: 10.1039/d2tc01190e.
[83] WANG Y, WU H, MCCANDLESS G T, et al. Quantum states and intertwining phases in kagome materials[J/OL]. Nature Reviews Physics, 2023, 5(11): 635-658. DOI: 10.1038/s422 54-023-00635-7.
[84] HEDO M, INADA Y, YAMAMOTO E, et al. Superconducting Properties of CeRu [J/OL]. Journal of the Physical Society of Japan, 1998, 67(1): 272-279. DOI: 10.1143/jpsj.67.272.
[85] ROY S B, CHADDAH P. Interesting Normal State and Superconducting Properties of the Intermediate Valence Compound CeRu [J/OL]. Pramana, 1999, 53(4): 659-684. DOI: 10.1007/s12043-999-0103-y.
[86] KISHIMOTO Y, OHNO T, HIHARA T, et al. Magnetic Susceptibility Study of LaRu3Si2 [J/OL]. Journal of the Physical Society of Japan, 2002, 71(8): 2035-2038. DOI: 10.1143/jpsj.7 1.2035.
[87] LI S, ZENG B, WAN X, et al. Anomalous Properties in the Normal and Superconducting States of LaRu3Si2[J/OL]. Physical Review B, 2011, 84(21): 214527. DOI: 10.1103/PhysRevB.84. 214527.
[88] MIELKE C, QIN Y, YIN J X, et al. Nodeless Kagome Superconductivity in LaRu3Si2[J/OL]. Physical Review Materials, 2021, 5(3): 034803. DOI: 10.1103/PhysRevMaterials.5.034803.
[89] ORTIZ B R, GOMES L C, MOREY J R, et al. New Kagome Prototype Materials: Discovery of KV3Sb5, RbV3Sb5, and CsV3Sb5 [J/OL]. Physical Review Materials, 2019, 3(9): 094407. DOI: 10.1103/PhysRevMaterials.3.094407.
[90] ORTIZ B R, TEICHER S M L, HU Y, et al. CsV3Sb5: a Z2 Topological Kagome Metal with a Superconducting Ground State[J/OL]. Physical Review Letters, 2020, 125(24): 247002. DOI: 10.1103/PhysRevLett.125.247002.
[91] ORTIZ B R, SARTE P M, KENNEY E M, et al. Superconductivity in the Z2 Kagome Metal KV3Sb5 [J/OL]. Physical Review Materials, 2021, 5(3): 034801. DOI: 10.1103/PhysRevMaterials.5.034801.
[92] YIN Q, TU Z, GONG C, et al. Superconductivity and Normal-state Properties of Kagome Metal RbV3Sb5 Single Crystals[J/OL]. Chinese Physics Letters, 2021, 38(3): 037403. DOI: 10.1088/0256-307x/38/3/037403.
[93] NI S, MA S, ZHANG Y, et al. Anisotropic Superconducting Properties of Kagome Metal CsV3Sb5 [J/OL]. Chinese Physics Letters, 2021, 38(5): 057403. DOI: 10.1088/0256307x/38/5/057403.
[94] XIANG Y, LI Q, LI Y, et al. Twofold symmetry of -axis Resistivity in Topological Kagome Superconductor CsV3Sb5 with in-plane Rotating Magnetic Field[J/OL]. Nature Communica- tions, 2021, 12(1). DOI: 10.1038/s41467-021-27084-z.
[95] KENNEY E M, ORTIZ B R, WANG C, et al. Absence of Local Moments in the Kagome Metal KV3Sb5 as Determined by Muon Spin Spectroscopy[J/OL]. Journal of Physics: Condensed Matter, 2021, 33(23): 235801. DOI: 10.1088/1361-648x/abe8f9.
[96] LI H, ZHANG T T, YILMAZ T, et al. Observation of Unconventional Charge Density Wave without Acoustic Phonon Anomaly in Kagome Superconductors AV3Sb5 (A Rb, Cs)[J/OL]. Physical Review X, 2021, 11(3): 031050. DOI: 10.1103/PhysRevX.11.031050.
[97] MIAO H, LI H X, MEIER W R, et al. Geometry of the Charge Density Wave in the Kagome Metal AV3Sb5 [J/OL]. Physical Review B, 2021, 104(19): 195132. DOI: 10.1103/PhysRevB.104.195132.
[98] LOU R, FEDOROV A, YIN Q, et al. Charge-Density-Wave-Induced Peak-Dip-Hump Structure and the Multiband Superconductivity in a Kagome Superconductor CsV3Sb5 [J/OL]. Physical Review Letters, 2022, 128(3): 036402. DOI: 10.1103/PhysRevLett.128.036402.
[99] KANG M, FANG S, KIM J K, et al. Twofold van Hove Singularity and Origin of Charge Order in Topological Kagome Superconductor CsV3Sb5 [J/OL]. Nature Physics, 2022, 18(3): 301-308. DOI: 10.1038/s41567-021-01451-5.
[100] CHO S, MA H, XIA W, et al. Emergence of New van Hove Singularities in the Charge Density Wave State of a Topological Kagome Metal RbV3Sb5 [J/OL]. Physical Review Letters, 2021, 127(23): 236401. DOI: 10.1103/PhysRevLett.127.236401.
[101]LIU Z, ZHAO N, YIN Q, et al. Charge-Density-Wave-Induced Bands Renormalization and Energy Gaps in a Kagome Superconductor RbV3Sb5 [J/OL]. Physical Review X, 2021, 11(4): 041010. DOI: 10.1103/PhysRevX.11.041010.
[102] HU Y, TEICHER S M, ORTIZ B R, et al. Topological Surface States and Flat Bands in the Kagome Superconductor CsV3Sb5 [J/OL]. Science Bulletin, 2022, 67(5): 495-500. DOI: 10.1016/j.scib.2021.11.026.
[103] LUO H, GAO Q, LIU H, et al. Electronic Nature of Charge Density Wave and Electron-phonon Coupling in Kagome Superconductor KV3Sb5 [J/OL]. Nature Communications, 2022, 13(1). DOI: 10.1038/s41467-021-27946-6.
[104] ORTIZ B R, TEICHER S M, KAUTZSCH L, et al. Fermi Surface Mapping and the Nature of Charge-Density-Wave Order in the Kagome Superconductor CsV3Sb5 [J/OL]. Physical Review X, 2021, 11(4): 041030. DOI: 10.1103/PhysRevX.11.041030.
[105] NAKAYAMA K, LI Y, KATO T, et al. Multiple Energy Scales and Anisotropic Energy Gap in the Charge-density-wave Phase of the Kagome Superconductor CsV3Sb5 [J/OL]. Physical Review B, 2021, 104(16): L161112. DOI: 10.1103/PhysRevB.104.L161112.
[106] ZHAO H, LI H, ORTIZ B R, et al. Cascade of Correlated Electron States in a Kagome Super- conductor CsV3Sb5 [J/OL]. Nature, 2021, 599(7884): 216-221. DOI: 10.1038/s41586-021-0 3946-w.
[107] CHEN H, YANG H, HU B, et al. Roton Pair Density Wave in a Strong-coupling Kagome Superconductor[J/OL]. Nature, 2021, 599(7884): 222-228. DOI: 10.1038/s41586-021-03983-5.
[108] NIE L, SUN K, MA W, et al. Charge-density-wave-driven Electronic Nematicity in a Kagome Superconductor[J/OL]. Nature, 2022, 604(7904): 59-64. DOI: 10.1038/s41586-022-04493-8.
[109] JIANG Y X, YIN J X, DENNER M M, et al. Unconventional Chiral Charge Order in Kagome Superconductor KV3Sb5 [J/OL]. Nature materials, 2021, 20(10): 1353-1357. DOI: 10.1038/s4 1563-021-01034-y.
[110] LIANG Z, HOU X, ZHANG F, et al. Three-Dimensional Charge Density Wave and Surface- Dependent Vortex-Core States in a Kagome Superconductor CsV3Sb5 [J/OL]. Physical Review X, 2021, 11(3): 031026. DOI: 10.1103/PhysRevX.11.031026.
[111] LI H, ZHAO H, ORTIZ B R, et al. Rotation Symmetry Breaking in the Normal State of a Kagome Superconductor KV3Sb5 [J/OL]. Nature Physics, 2022, 18(3): 265-270. DOI: 10.1038/s41567-021-01479-7.
[112] WANG Z, JIANG Y X, YIN J X, et al. Electronic Nature of Chiral Charge Order in the Kagome Superconductor CsV3Sb5 [J/OL]. Physical Review B, 2021, 104(7): 075148. DOI: 10.1103/PhysRevB.104.075148.
[113] SHUMIYA N, HOSSAIN M S, YIN J X, et al. Intrinsic Nature of Chiral Charge Order in the Kagome Superconductor RbV3Sb5 [J/OL]. Physical Review B, 2021, 104(3): 035131. DOI: 10.1103/PhysRevB.104.035131.
[114] RATCLIFF N, HALLETT L, ORTIZ B R, et al. Coherent Phonon Spectroscopy and Interlayer Modulation of Charge Density Wave Order in the Kagome Metal CsV3Sb5 [J/OL]. Physical Review Materials, 2021, 5(11): L111801. DOI: 10.1103/PhysRevMaterials.5.L111801.
[115] SONG D, ZHENG L, YU F, et al. Orbital Ordering and Fluctuations in a Kagome Superconduc- tor CsV3Sb5 [J/OL]. Science China Physics, Mechanics & Astronomy, 2022, 65(4): 247462. DOI: 10.1007/s11433-021-1826-1.
[116] STAHL Q, CHEN D, RITSCHEL T, et al. Temperature-driven Reorganization of Electronic Order in CsV3Sb5 [J/OL]. Physical Review B, 2022, 105(19): 195136. DOI: 10.1103/PhysRevB.105.195136.
[117] TAN H, LIU Y, WANG Z, et al. Charge Density Waves and Electronic Properties of Super- conducting Kagome Metals[J/OL]. Physical Review Letters, 2021, 127(4): 046401. DOI: 10.1103/PhysRevLett.127.046401.
[118] KANG M, FANG S, YOO J, et al. Charge Order landscape and Competition with Supercon- ductivity in Kagome Metals[J/OL]. Nature Materials, 2022(2): 186-193. DOI: 10.1038/s415 63-022-01375-2.
[119] FRASSINETI J, BONFà P, ALLODI G, et al. Microscopic Nature of the Charge-density Wave in the Kagome Superconductor RbV3Sb5 [J/OL]. Physical Review Research, 2023, 5(1): L012017. DOI: 10.1103/PhysRevResearch.5.L012017.
[120] PARK T, YE M, BALENTS L. Electronic Instabilities of Kagome Metals: Saddle Points and Landau Theory[J/OL]. Physical Review B, 2021, 104(3): 035142. DOI: 10.1103/PhysRevB.1 04.035142.
[121] FENG X, ZHANG Y, JIANG K, et al. Low-energy Effective Theory and Symmetry Classifica- tion of Flux Phases on the Kagome Lattice[J/OL]. Physical Review B, 2021, 104(16): 165136. DOI: 10.1103/PhysRevB.104.165136.
[122] LIN Y P, NANDKISHORE R M. Complex Charge Density Waves at van Hove Singularity on Hexagonal Lattices: Haldane-model Phase Diagram and Potential Realization in the Kagome Metals AV3Sb5 (A= K, Rb, Cs)[J/OL]. Physical Review B, 2021, 104(4): 045122. DOI: 10.1103/PhysRevB.104.045122.
[123] CHRISTENSEN M H, BIROL T, ANDERSEN B M, et al. Loop Currents in AV3Sb5 Kagome Metals: Multipolar and Toroidal Magnetic Orders[J/OL]. Physical Review B, 2022, 106(14): 144504. DOI: 10.1103/PhysRevB.106.144504.
[124] GRANDI F, CONSIGLIO A, SENTEF M A, et al. Theory of Nematic Charge Orders in Kagome Metals[J/OL]. Physical Review B, 2023, 107(15): 155131. DOI: 10.1103/PhysRevB.107.155131.
[125] MU C, YIN Q, TU Z, et al. Tri-hexagonal Charge Order in Kagome Metal CsV3Sb5 Revealed by 121Sb Nuclear Quadrupole Resonance[J/OL]. Chinese Physics B, 2022, 31(1): 017105. DOI: 10.1088/1674-1056/ac422c.
[126] WANG Y, WU T, LI Z, et al. Structure of the Kagome Superconductor CsV3Sb5 in the Charge Density Wave State[J/OL]. Physical Review B, 2023, 107(18): 184106. DOI: 10.1103/PhysRevB.107.184106.
[127] BROYLES C, GRAF D, YANG H, et al. Effect of the Interlayer Ordering on the Fermi Sur- face of Kagome Superconductor CsV3Sb5 Revealed by Quantum Oscillations[J/OL]. Physical Review Letters, 2022, 129(15): 157001. DOI: 10.1103/PhysRevLett.129.157001.
[128] HU Y, WU X, ORTIZ B R, et al. Coexistence of Trihexagonal and Star-of-David Pattern in the Charge Density Wave of the Kagome Superconductor[J/OL]. Physical Review B, 2022, 106(24): L241106. DOI: 10.1103/PhysRevB.106.L241106.
[129] KAUTZSCH L, ORTIZ B R, MALLAYYA K, et al. Structural Evolution of the Kagome Super- conductors AV3Sb5 ( A = K, Rb and Cs) through Charge Density Wave Order[J/OL]. Physical Review Materials, 2023, 7(2): 024806. DOI: 10.1103/PhysRevMaterials.7.024806.
[130] XIAO Q, LIN Y, LI Q, et al. Coexistence of Multiple Stacking Charge Density Waves in Kagome Superconductor CsV3Sb5 [J/OL]. Physical Review Research, 2023, 5(1): l012032. DOI: 10.1103/PhysRevResearch.5.L012032.
[131] PEIERLS R E. Quantum theory of solids[M]. Oxford University Press, 1955.
[132] GRUNER G. Density waves in solids[M]. CRC press, 2018.
[133] SOUMYANARAYANAN A, YEE M M, HE Y, et al. Quantum Phase Transition from Triangular to Stripe Charge Order in NbSe2[J/OL]. Proceedings of the National Academy of Sciences, 2013,110(5): 1623-1627. DOI: 10.1073/pnas.1211387110.
[134] WEBER F, ROSENKRANZ S, CASTELLAN J P, et al. Extended Phonon Collapse and the Origin of the Charge-Density Wave in 2H-NbSe2[J/OL]. Physical Review Letters, 2011, 107 (10):107403. DOI: 10.1103/PhysRevLett.107.107403.
[135] ZHU X, CAO Y, ZHANG J, et al. Classification of Charge Density Waves Based on Their Nature[J/OL]. Proceedings of the National Academy of Sciences, 2015, 112(8): 2367. DOI: 10.1073/pnas.1424791112.
[136] XIE Y, LI Y, BOURGES P, et al. Electron-phonon Coupling in the Charge Density Wave State of CsV3Sb5 [J/OL]. Physical Review B, 2022, 105(14): L140501. DOI: 10.1103/PhysRevB.105.L140501.
[137] JOHANNES M D, MAZIN I I. Fermi Surface Nesting and the Origin of Charge Density Waves in Metals[J/OL]. Physical Review B, 2008, 77(16): 165135. DOI: 10.1103/PhysRevB.77.165135.
[138] HOESCH M, BOSAK A, CHERNYSHOV D, et al. Giant Kohn Anomaly and the Phase Tran- sition in Charge Density Wave ZrTe [J/OL]. Physical Review Letters, 2009, 102(8): 086402. DOI: 10.1103/PhysRevLett.102.086402.
[139] MIAO H, ISHIKAWA D, HEID R, et al. Incommensurate Phonon Anomaly and the Nature of Charge Density Waves in Cuprates[J/OL]. Physical Review X, 2018, 8(1): 011008. DOI: 10.1103/PhysRevX.8.011008.
[140] ZHU X, GUO J, ZHANG J, et al. Misconceptions Associated with the Origin of Charge Density Waves[J/OL]. Advances in Physics: X, 2017, 2(3): 622-640. DOI: 10.1080/23746149.2017.1343098.
[141] WANG Z, MA S, ZHANG Y, et al. Distinctive Momentum Dependent Charge-density-wave Gap Observed in CsV3Sb5Superconductor With Topological Kagome Lattice[A]. 2021. arXiv: 2104.05556.
[142] KATO T, LI Y, KAWAKAMI T, et al. Three-dimensional Energy Gap and Origin of Charge- density Wave in Kagome Superconductor KV3Sb5 [J/OL]. Communications Materials, 2022, 3(1). DOI: 10.1038/s43246-022-00255-1.
[143] UYKUR E, ORTIZ B R, IAKUTKINA O, et al. Low-energy Optical Properties of the Non- magnetic Kagome metal CsV3Sb5 [J/OL]. Physical Review B, 2021, 104(4): 045130. DOI: 10.1103/PhysRevB.104.045130.
[144] ZHOU X, LI Y, FAN X, et al. Origin of Charge Density Wave in the Kagome Metal CsV3Sb5 as Revealed by Optical Spectroscopy[J/OL]. Physical Review B, 2021, 104(4): L041101. DOI: 10.1103/PhysRevB.104.L041101.
[145] KABOUDVAND F, TEICHER S M L, WILSON S D, et al. Fermi Surface Nesting and the Lindhard Response Function in the Kagome Superconductor CsV3Sb5 [J/OL]. Applied Physics Letters, 2022, 120(11). DOI: 10.1063/5.0081081.
[146] WANG C, LIU S, JEON H, et al. Origin of Charge Density Wave in the Layered Kagome Metal CsV3Sb5 [J/OL]. Physical Review B, 2022, 105(4): 045135. DOI: 10.1103/PhysRevB.105.045 135.
[147] YE Z, LUO A, YIN J X, et al. Structural Instability and Charge Modulations in the Kagome Superconductor AV3Sb5 [J/OL]. Physical Review B, 2022, 105(24): 245121. DOI: 10.1103/PhysRevB.105.245121.
[148] LIU G, MA X, HE K, et al. Observation of Anomalous Amplitude Modes in the Kagome Metal CsV3Sb5 [J/OL]. Nature Communications, 2022, 13(1). DOI: 10.1038/s41467-022-31162-1.
[149] UYKUR E, ORTIZ B R, WILSON S D, et al. Optical Detection of the Density-wave Instability in the Kagome Metal KV3Sb5 [J/OL]. npj Quantum Materials, 2022, 7(1). DOI: 10.1038/s415 35-021-00420-8.
[150] LI H, ZHAO H, ORTIZ B R, et al. Unidirectional Coherent Quasiparticles in the High- temperature Rotational Symmetry Broken Phase of AV3Sb5 Kagome Superconductors[J/OL]. Nature Physics, 2023, 19(5): 637-643. DOI: 10.1038/s41567-022-01932-1.
[151] JIANG Z, MA H, XIA W, et al. Observation of Electronic Nematicity Driven by the Three- Dimensional Charge Density Wave in Kagome Lattice KV3Sb5 [J/OL]. Nano Letters, 2023, 23(12): 5625-5633. DOI: 10.1021/acs.nanolett.3c01151.
[152] XU Y, NI Z, LIU Y, et al. Three-state Nematicity and Magneto-optical Kerr Effect in the Charge Density Waves in Kagome Superconductors[J/OL]. Nature Physics, 2022, 18(12): 1470-1475. DOI: 10.1038/s41567-022-01805-7.
[153] WU Q, WANG Z X, LIU Q M, et al. Simultaneous Formation of Two-fold Rotation Symmetry with Charge Order in the Kagome Superconductor CsV3Sb5 by Optical Polarization Rotation Measurement[J/OL]. Physical Review B, 2022, 106(20): 205109. DOI: 10.1103/PhysRevB.106.205109.
[154] WULFERDING D, LEE S, CHOI Y, et al. Emergent Nematicity and Intrinsic versus Extrinsic Electronic Scattering Processes in the Kagome Metal[J/OL]. Physical Review Research, 2022, 4(2): 023215. DOI: 10.1103/PhysRevResearch.4.023215.
[155] KHASANOV R, DAS D, GUPTA R, et al. Time-reversal Symmetry Broken by Charge Order in CsV3Sb5 [J/OL]. Physical Review Research, 2022, 4(2): 023244. DOI: 10.1103/physrevresearch.4.023244.
[156] LI H, WAN S, LI H, et al. No Observation of Chiral Flux Current in the Topological Kagome Metal[J/OL]. Physical Review B, 2022, 105(4): 045102. DOI: 10.1103/PhysRevB.105.045102.
[157] SAYKIN D R, FARHANG C, KOUNTZ E D, et al. High Resolution Polar Kerr Effect Studies of CsV3Sb5: Tests for Time-Reversal Symmetry Breaking below the Charge-Order Transition [J/OL]. Physical Review Letters, 2023, 131(1): 016901. DOI: 10.1103/PhysRevLett.131.016901.
[158] YANG S Y, WANG Y, ORTIZ B R, et al. Giant, Unconventional Anomalous Hall Effect in the Metallic Frustrated Magnet Candidate, KV3Sb5 [J/OL]. Science Advances, 2020, 6(31): eabb6003. DOI: 10.1126/sciadv.abb6003.
[159] YU F H, WU T, WANG Z Y, et al. Concurrence of Anomalous Hall Effect and Charge Density Wave in a Superconducting Topological Kagome Metal[J/OL]. Physical Review B, 2021, 104(4): L041103. DOI: 10.1103/PhysRevB.104.L041103.
[160] CHEN D, HE B, YAO M, et al. Anomalous Thermoelectric Effects and Quantum Oscillations in the Kagome Metal CsV3Sb5 [J/OL]. Physical Review B, 2022, 105(20): l201109. DOI: 10.1103/PhysRevB.105.l201109.
[161] MI X, XIA W, ZHANG L, et al. Multiband Effects in Thermoelectric and Electrical Transport Properties of Kagome Superconductors AV3Sb5 (A = K, Rb, Cs)[J/OL]. New Journal of Physics, 2022, 24(9): 093021. DOI: 10.1088/1367-2630/ac8e24.
[162] ZHOU X, LIU H, WU W, et al. Anomalous Thermal Hall Effect and Anomalous Nernst Effect of CsV3Sb5 [J/OL]. Physical Review B, 2022, 105(20): 205104. DOI: 10.1103/PhysRevB.105.205104.
[163] Yu L, Wang C, Zhang Y, et al. Evidence of a hidden flux phase in the topological kagome metal CsV3Sb5 [A/OL]. 2021. arXiv:2107.10714.
[164] MIELKE C, DAS D, YIN J X, et al. Time-reversal Symmetry-breaking Charge Order in a Kagome Superconductor[J/OL]. Nature, 2022, 602(7896): 245-250. DOI: 10.1038/s41586-0 21-04327-z.
[165] FENG X, JIANG K, WANG Z, et al. Chiral Flux Phase in the Kagome Superconductor AV3Sb5 [J/OL]. Science Bulletin, 2021, 66(14): 1384-1388. DOI: https://doi.org/10.1016/j.scib.2021.04.043.
[166] DENNER M M, THOMALE R, NEUPERT T. Analysis of Charge Order in the Kagome Metal AV3Sb5 [J/OL]. Physical Review Letters, 2021, 127(21): 217601. DOI:10.1103/PhysRevLett.127.217601.
[167] DONG J W, WANG Z, ZHOU S. Loop-current Charge Density Wave Driven by Long-range Coulomb Repulsion on the Kagome Lattice[J/OL]. Physical Review B, 2023, 107(4): 045127. DOI: 10.1103/PhysRevB.107.045127.
[168] HU Y, YAMANE S, MATTONI G, et al. Time-reversal Symmetry Breaking in Charge Density Wave of CsV3Sb5 Detected by Polar Kerr Effect[M/OL]. Research Square Platform LLC, 2022. DOI: 10.21203/rs.3.rs-1794207/v1.
[169] DU F, LUO S, ORTIZ B R, et al. Pressure-induced Double Superconducting Domes and Charge Instability in the Kagome Metal KV3Sb5 [J/OL]. Physical Review B, 2021, 103(22): L220504. DOI: 10.1103/PhysRevB.103.L220504.
[170] CHEN K Y, WANG N N, YIN Q W, et al. Double Superconducting Dome and Triple En- hancement of in the Kagome Superconductor CsV3Sb5 under High Pressure[J/OL]. Physical Review Letters, 2021, 126(24): 247001. DOI: 10.1103/PhysRevLett.126.247001.
[171] YU F H, MA D H, ZHUO W Z, et al. Unusual Competition of Superconductivity and Charge- density-wave State in a Compressed Topological Kagome Metal[J/OL]. Nature Communications, 2021, 12(1): 3645. DOI: 10.1038/s41467-021-23928-w.
[172] ZHANG Z, CHEN Z, ZHOU Y, et al. Pressure-induced Reemergence of Superconductivity in the Topological Kagome Metal CsV Sb [J/OL]. Physical Review B, 2021, 103(22): 224513. DOI: 10.1103/PhysRevB.103.224513.
[173] WANG Q, KONG P, SHI W, et al. Charge Density Wave Orders and Enhanced Superconduc- tivity under Pressure in the Kagome Metal CsV3Sb5 [J/OL]. Advanced Materials, 2021, 33(42). DOI: 10.1002/adma.202102813.
[174] OEY Y M, ORTIZ B R, KABOUDVAND F, et al. Fermi Level Tuning and Double-dome Superconductivity in the Kagome Metal CsV3Sb5-xSnx[J/OL]. Physical Review Materials, 2022, 6(4): L041801. DOI: 10.1103/PhysRevMaterials.6.L041801.
[175] YANG H, HUANG Z, ZHANG Y, et al. Titanium Doped Kagome Superconductor CsV3-xTixSb5 and Two Distinct Phases[J/OL]. Science Bulletin, 2022, 67(21): 2176-2185. DOI: 10.1016/j.scib.2022.10.015.
[176] KATO T, LI Y, NAKAYAMA K, et al. Fermiology and Origin of Enhancement in a Kagome Superconductor Cs V1-xNbx)3Sb5 [J/OL]. Physical Review Letters, 2022, 129(20): 206402. DOI: 10.1103/PhysRevLett.129.206402.
[177] LIU M, HAN T, HU X, et al. Evolution of Superconductivity and Charge Density Wave through Ta and Mo doping in CsV3Sb5[J/OL]. Physical Review B, 2022, 106(14): L140501. DOI: 10.1103/PhysRevB.106.L140501.
[178] DING G, WO H, GU Y, et al. Effect of Chromium Doping on Superconductivity and Charge Density Wave Order in the Kagome Metal Cs(V1-xCrx)3Sb5[J/OL]. Physical Review B, 2022,106(23). DOI: 10.1103/PhysRevB.106.235151.
[179] LUO Y, HAN Y, LIU J, et al. A Unique van Hove Singularity in Kagome Superconductor CsV3-xTaxSb5 with Enhanced Superconductivity[J/OL]. Nature Communications, 2023, 14(1). DOI: 10.1038/s41467-023-39500-7.
[180] SONG Y, YING T, CHEN X, et al. Competition of Superconductivity and Charge Density Wave in Selective Oxidized CsV3Sb5 Thin Flakes[J/OL]. Physical Review Letters, 2021, 127(23): 237001. DOI: 10.1103/PhysRevLett.127.237001.
[181]SONG B, YING T, WU X, et al. Anomalous Enhancement of Charge Density Wave in Kagome Superconductor CsV Sb Approaching the 2D Limit[J/OL]. Nature Communications, 2023,14(1). DOI: 10.1038/s41467-023-38257-3.
[182 ]YIN L, ZHANG D, CHEN C, et al. Strain-sensitive Superconductivity in the Kagome Metals KV Sb and CsV Sb Probed by Point-contact Spectroscopy[J/OL]. Physical Review B, 2021, 104(17): 174507. DOI: 10.1103/PhysRevB.104.174507.
[183] CONSIGLIO A, SCHWEMMER T, WU X, et al. Van Hove Tuning of V Sb Kagome Metals under Pressure and Strain[J/OL]. Physical Review B, 2022, 105(16): 165146. DOI: 10.1103/PhysRevB.105.165146.
[184] WANG N N, CHEN K Y, YIN Q W, et al. Competition between Charge-density-wave and Superconductivity in the Kagome Metal RbV Sb [J/OL]. Physical Review Research, 2021, 3(4): 043018. DOI: 10.1103/PhysRevResearch.3.043018.
[185] ZHU C C, YANG X F, XIA W, et al. Double-dome superconductivity under pressure in the V- based kagome metals AV3Sb5 (A = Rb, K)[J/OL]. Physical Review B, 2022, 105(9): 094507. DOI: 10.1103/PhysRevB.105.094507.
[186]ZHENG L, WU Z, YANG Y, et al. Emergent Charge Order in Pressurized Kagome Supercon- ductor CsV3Sb5[J/OL]. Nature, 2022, 611(7937): 682-687. DOI: 10.1038/s41586-022-05351-3.
[187] TSIRLIN A A, ORTIZ B R, DRESSEL M, et al. Effect of Nonhydrostatic Pressure on the Superconducting Kagome Metal CsV3Sb5[J/OL]. Physical Review B, 2023, 107(17): 174107. DOI: 10.1103/PhysRevB.107.174107.
[188] TSIRLIN A, FERTEY P, ORTIZ B R, et al. Role of Sb in the Superconducting Kagome Metal CsV3Sb5 Revealed by its Anisotropic Compression[J/OL]. SciPost Physics, 2022, 12(2). DOI: 10.21468/ScipostPhys.12.2.049.
[189]CHEN X, ZHAN X, WANG X, et al. Highly Robust Reentrant Superconductivity in CsV3Sb5 under Pressure[J/OL]. Chinese Physical Letters, 2021, 38(5): 057402. DOI: 10.1088/0256-307x/38/5/057402.
[190] LI Y, LI Q, FAN X, et al. Tuning the Competition between Superconductivity and Charge Order in the Kagome Superconductor Cs(V1-xNbx)3Sb5[J/OL]. Physical Review B, 2022, 105(18): L180507. DOI: 10.1103/PhysRevB.105.L180507.
[191] ZHONG Y, LIU J, WU X, et al. Nodeless Electron Pairing in CsV3Sb5-derived Kagome Su- perconductors[J/OL]. Nature, 2023, 617(7961): 488-492. DOI: 10.1038/s41586-023-05907-x.
[192] LIU Y, WANG Y, CAI Y, et al. Doping Evolution of Superconductivity, Charge order, and Band topology in Hole-doped Topological Kagome Superconductors Cs(V1-xTix)3Sb5[J/OL]. Physical Review Materials, 2023, 7(6): 064801. DOI: 10.1103/PhysRevMaterials.7.064801.
[193] OEY Y M, KABOUDVAND F, ORTIZ B R, et al. Tuning Charge Density Wave Order and Superconductivity in the Kagome metals KV3Sb5-xSnx and RbV3Sb5-xSnx[J/OL]. Physical Review Materials, 2022, 6(7): 074802. DOI: 10.1103/PhysRevMaterials.6.074802.
[194] JIANG Y, YU Z, WANG Y, et al. Screening Promising CsV3Sb5-like Kagome Materials from Systematic First-Principles Evaluation[J/OL]. Chinese Physics Letters, 2022, 39(4): 047402. DOI: 10.1088/0256-307X/39/4/047402.
[195 ]YI X W, MA X Y, ZHANG Z, et al. Large Kagome Family Candidates with Topological Super- conductivity and Charge Density Waves[J/OL]. Physical Review B, 2022, 106(22): l220505. DOI: 10.1103/PhysRevB.106.l220505.
[196] SI J G, SHI L T, LIU P F, et al. Superconductivity and Topological Properties in the Kagome Metals CsM3Te5 ( =Ti, Zr, Hf): A First-principles Investigation[J/OL]. Physical Review B, 2022, 106(21): 214527. DOI: 10.1103/PhysRRevB.106.214527.
[197] GOVINDHAN D, KULLAIAH B, VISHWANATH P, et al. Handbook of Crystal Growth [M/OL]. Springer Berlin Heidelberg, 2010. DOI: 10.1007/978-3-540-74761-1.
[198] ZHENG D N. Superconducting Quantum Interference Devices[J/OL]. Acta Physica Sinica, 2021, 70(1): 018502. DOI: 10.7498/aps.70.20202131.
[199] KASL C, HOCH M J R. Effects of Sample Thickness on the Van der Pauw Technique for Resistivity Measurements[J/OL]. Review of Scientific Instruments, 2005, 76(3). DOI: 10.106 3/1.1866232.
[200] YANG H, LIANG A, CHEN C, et al. Visualizing Electronic Structures of quantum Materials by Angle-resolved Photoemission Spectroscopy[J/OL]. Nature Reviews Materials, 2018, 3(9): 341-353. DOI: 10.1038/s41578-018-0047-2.
[201] HAO Z, CAI Y, LIU Y, et al. Dirac Nodal Lines and Nodal Loops in the Topological Kagome Superconductor CsV Sb [J/OL]. Physical Review B, 2022, 106(8): l081101. DOI: 10.1103/ PhysRevB.106.L081101.
[202] FRADKIN E, KIVELSON S A, TRANQUADA J M. Colloquium: Theory of Intertwined Orders in High Temperature Superconductors[J/OL]. Reviews of Modern Physics, 2015, 87(2): 457-482. DOI: 10.1103/RevModPhys.87.457.
[203] DAI Z, ZHANG Y H, SENTHIL T, et al. Pair-density Waves, Charge-density Waves, and Vortices in High-TC Cuprates[J/OL]. Physical Review B, 2018, 97(17): 174511. DOI: 10.1103/PhysRevB.97.174511.
[204] WILSON S D. Competition under Pressure[J/OL]. Nature Physics, 2021, 17(8): 885-886. DOI: 10.1038/s41567-021-01319-8.
[205] MU C, YIN Q, TU Z, et al. S-Wave Superconductivity in Kagome Metal CsV3Sb5 Revealed by Sb NQR and V NMR Measurements[J/OL]. Chinese Physics Letters, 2021, 38(7): 077402. DOI: 10.1088/0256-307x/38/7/077402.
[206] DUAN W, NIE Z, LUO S, et al. Nodeless Superconductivity in the Kagome Metal CsV3Sb5 [J/OL]. Science China Physics, Mechanics & Astronomy, 2021, 64(10): 107462. DOI: 10.100 7/s11433-021-1747-7.
[207] Zhao C C, Wang L S, Xia W, et al. Nodal Superconductivity and Superconducting Domes in the Topological Kagome Metal CsV3Sb5 [A/OL]. 2021. arXiv: 2102.08356.
[208] ROPPONGI M, ISHIHARA K, TANAKA Y, et al. Bulk Evidence of Anisotropic -wave Pair- ing with no Sign Change in the Kagome Superconductor CsV3Sb5 [J/OL]. Nature Communica- tions, 2023, 14(1). DOI: 10.1038/s41467-023-36273-x.
[209] XU H S, YAN Y J, YIN R, et al. Multiband Superconductivity with Sign-Preserving Order Parameter in Kagome Superconductor CsV3Sb5 [J/OL]. Physical Review Letters, 2021, 127(18): 187004. DOI: 10.1103/PhysRevLett.127.187004.
[210] KATO T, LI Y, NAKAYAMA K, et al. Polarity-dependent Charge Density Wave in the Kagome Superconductor CsV Sb [J/OL]. Physical Review B, 2022, 106(12): l121112. DOI: 10.1103/PhysRevB.106.L121112.
[211] JIANG H M, LIU M X, YU S L. Impact of the Orbital Current Order on the Superconducting Properties of the Kagome Superconductors[J/OL]. Physical Review B, 2023, 107(6): 064506. DOI: 10.1103/PhysRevB.107.064506.
[212] GU Y, ZHANG Y, FENG X, et al. Gapless Excitations inside the Fully Gapped Kagome Su- perconductors AV3Sb5 [J/OL]. Physical Review B, 2022, 105(10): l100502. DOI: 10.1103/PhysRevB.105.L100502.
[213] GUPTA R, DAS D, MIELKE III C H, et al. Microscopic Evidence for Anisotropic Multigap Superconductivity in the CsV3Sb5 Kagome Superconductor[J/OL]. npj Quantum Materials, 2022, 7(1). DOI: 10.1038/s41535-022-00453-7.
[214] SHAN Z, BISWAS P K, GHOSH S K, et al. Muon Spin Relaxation Study of the Layered Kagome Superconductor CsV3Sb5 [J/OL]. Physical Review Research, 2022, 4(3): 033145. DOI: 10.1103/PhysRevResearch.4.033145.
[215]GUPTA R, DAS D, MIELKE C, et al. Two Types of Charge Order with Distinct Interplay with Superconductivity in the Kagome Material CsV3Sb5 [J/OL]. Communications Physics, 2022, 5(1). DOI: 10.1038/s42005-022-01011-0.
[216] GUGUCHIA Z, MIELKE C, DAS D, et al. Tunable Unconventional Kagome Superconductivity in Charge Ordered KV3Sb5 and RbV3Sb5 [J/OL]. Nature Communications, 2023, 14(1). DOI: 10.1038/s41467-022-35718-z.
[217] YANG Y, FAN W, ZHANG Q, et al. Discovery of Two Families of V-Based Compounds with V-Kagome Lattice[J/OL]. Chinese Physics Letters, 2021, 38(12): 127102. DOI: 10.1088/0256-307x/38/12/127102.
[218] YIN Q, TU Z, GONG C, et al. Structures and Physical Properties of V-based Kagome Metals CsV6Sb6 and CsV8Sb12[J/OL]. Chinese Physics Letters, 2021, 38(12): 127401. DOI: 10.1088/0256-307x/38/12/127401.
[219] Yang H, Zhao Z, Yi X W, et al. Titanium-based kagome superconductor CsTi3Bi5 and topolog- ical states[A/OL]. 2022. arXiv: 2209.03840.
[220] WERHAHN D, ORTIZ B R, HAY A K, et al. The kagomé metals RbTi3Bi5 and CsTi3Bi5 [J/OL]. Zeitschrift für Naturforschung B, 2022, 77(11–12): 757-764. DOI: 10.1515/znb-202 2-0125.
[221] Liu Y, Liu Z Y, Bao J K, et al. Superconductivity Emerged from Density-wave Order in a Kagome Bad Metal[A/OL]. 2023. arXiv: 2309.13514.
[222] Xu C, Wu S, Zhi G X, et al. Frustrated Altermagnetism and Charge Density Wave in Kagome Superconductor CsCr3Sb5[A/OL]. 2023. arXiv: 2309.14812.
[223] SHI M, YU F, YANG Y, et al. A New Class of Bilayer Kagome Lattice Compounds with Dirac Nodal Lines and Pressure-induced Superconductivity[J/OL]. Nature Communications, 2022,13(1). DOI: 10.1038/s41467-022-30442-0.
[224] CAI Y, WANG J, WANG Y, et al. Type‐II Dirac Nodal Lines in a Double‐Kagome‐Layered Semimetal[J/OL]. Advanced Electronic Materials, 2023, 9(7). DOI: 10.1002/aelm.202300212.
[225] WANG Y, LIU Y, HAO Z, et al. Flat Band and Z2 Topology of Kagome Metal CsTi3Bi5 [J/OL]. Chinese Physics Letters, 2023, 40(3): 037102. DOI: 10.1088/0256-307x/40/3/037102.
[226] YANG J, YI X, ZHAO Z, et al. Observation of Flat Band, Dirac Nodal Lines and Topological Surface States in Kagome Superconductor CsTi3Bi5 [J/OL]. Nature Communications, 2023, 14(1). DOI: 10.1038/s41467-023-39620-0.
[227] Zhou Y, Chen L, Ji X, et al. Physical Properties, Electronic Structure, and Strain-tuned Monolayer of the Weak Topological Insulator RbTi3Bi5 with Kagome Lattice[A/OL]. 2023. 2301.01633.
[228] LIU B, KUANG M Q, LUO Y, et al. Tunable Van Hove Singularity without Structural Instability in Kagome Metal CsTi3Bi5 [J/OL]. Physical Review Letters, 2023, 131(2): 026701. DOI:10.1103/PhysRevLett.131.026701.
[229]YANG H, YE Y, ZHAO Z, et al. Superconductivity and Orbital-selective Nematic Order in a New Titanium-based Kagome Metal CsTi3Bi5 [A/OL]. 2022. arXiv: 2211.12264.
[230] LI H, CHENG S, ORTIZ B R, et al. Electronic Nematicity without Charge Density Waves in Titanium-based Kagome Metal[J/OL]. Nature Physics, 2023, 19(11): 1591-1598. DOI: 10.1038/s41567-023-02176-3.
[231] 唐仁政田荣璋. 二元合金相图及中间相晶体结构[M]. 中南大学出版社, 2009.
[232] ROBERTS B W. Survey of Superconductive Materials and Critical Evaluation of Selected Properties[J/OL]. Journal of Physical and Chemical Reference Data, 1976, 5(3): 581-822. DOI: 10.1063/1.555540.
[233] WILSON K G. The Renormalization Group: Critical Phenomena and the Kondo Problem [J/OL]. Reviews of Modern Physics, 1975, 47(4): 773-840. DOI: 10.1103/revmodphys.47.773.
[234] LIMELETTE P, SCHMALTZ B, BRAULT D, et al. Metallic-like Wilson Ratio in the Polyaniline Hydrochloride Conducting Polymer[J/OL]. Journal of Applied Physics, 2015, 117(12): 123907. DOI: 10.1063/1.4915342.
[235] HU Y, WU X, ORTIZ B R, et al. Rich Nature of Van Hove Singularities in Kagome Supercon- ductor CsV3Sb5 [A]. 2021. arXiv: 2106.05922.
[236] CAI Y, WANG Y, HAO Z, et al. Emergence of Quantum Confinement in Topological Kagome Superconductor CsV3Sb5 [J/OL]. Communications Materials, 2024, 5(1): 31. DOI: 10.1038/s4 3246-024-00461-z.
[237] ZHANG P, QIAN T, RICHARD P, et al. Observation of Two Distinct d/dz/dyz Band Splittings in FeSe[J/OL]. Physical Review B, 2015, 91(5): 214503. DOI: 10.1103/PhysRevB.91.214503.
[238] JIANG K, HU J, DING H, et al. Interatomic Coulomb Interaction and Electron Nematic Bond Order in FeSe[J/OL]. Physical Review B, 2016, 93(13): 115138. DOI: 10.1103/PhysRevB.93. 115138.
[239] NAYAK A K, FISCHER J E, SUN Y, et al. Large Anomalous Hall Effect Driven by a Nonvan- ishing Berry Curvature in the Noncolinear Antiferromagnet Mn3Ge[J/OL]. Science Advances, 2016, 2(4). DOI: 10.1126/sciadv.1501870.
[240] KIYOHARA N, TOMITA T, NAKATSUJI S. Giant Anomalous Hall Effect in the Chi- ral Antiferromagnet Mn3Ge[J/OL]. Physical Review Applied, 2016, 5(6): 064009. DOI: 10.1103/PhysRevApplied.5.064009.
[241] VAQUEIRO P, SOBANY G G. A Powder Neutron Diffraction Study of the Metallic Ferro- magnet Co3Sn2S2[J/OL]. Solid State Sciences, 2009, 11(2): 513-518. DOI: 10.1016/j.solidstatesciences.2008.06.017.
[242] MORALI N, BATABYAL R, NAG P K, et al. Fermi-arc Diversity on Surface Terminations of the Magnetic Weyl Semimetal Co3Sn2S2 [J/OL]. Science, 2019, 365(6459): 1286-1291. DOI: 10.1126/science.aav2334.
[243] FU L, KANE C L. Topological Insulators with Inversion Symmetry[J/OL]. Physical Review B, 2007, 76(4): 045302. DOI: 10.1103/PhysRevB.76.045302.
[244] Nie J Y, Yang X F, Zhang X, et al. Pressure-induced Double-dome Superconductivity in Kagome Metal CsTi3Bi5[A/OL]. 2023. arXiv: 2308.10129.
[245] ZHOU Y, WU J, NING W, et al. Pressure-induced Superconductivity in a Three-dimensional Topological Material ZrTe5[J/OL]. Proceedings of the National Academy of Sciences, 2016, 113(11): 2904-2909. DOI: 10.1073/pnas.1601262113.
[246] ELGHAZALI M A, NAUMOV P G, MIRHOSSEINI H, et al. Pressure-induced Superconduc- tivity up to 13.1 K in the Pyrite Phase of Palladium Diselenide PdSe2[J/OL]. Physical Review B, 2017, 96(6): 060509. DOI: 10.1103/PhysRevB.96.060509.
[247] CHENG E, XIA W, SHI X, et al. Pressure-induced Superconductivity and Topological Phase Transitions in the Topological Nodal-line Semimetal SrAs3[J/OL]. npj Quantum Materials, 2020, 5(1). DOI: 10.1038/s41535-020-0240-6.

所在学位评定分委会
物理学
国内图书分类号
O469
来源库
人工提交
成果类型学位论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/765800
专题南方科技大学
理学院_物理系
推荐引用方式
GB/T 7714
刘以轩. Kagome金属化合物CsV3Sb5和CsTi3Bi5的物性调控和电子结构研究[D]. 深圳. 南方科技大学,2024.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可 操作
12031113-刘以轩-物理系.pdf(26930KB)----限制开放--请求全文
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[刘以轩]的文章
百度学术
百度学术中相似的文章
[刘以轩]的文章
必应学术
必应学术中相似的文章
[刘以轩]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。