中文版 | English
题名

MoTe2超导异质结及约瑟夫森结的低温输运性质研究

其他题名
RESEARCH ON THE LOW-TEMPERATURE TRANSPORT PROPERTIES OF MoTe2 SUPERCONDUCTING HETEROSTRUCTURES AND JOSEPHSON JUNCTIONS
姓名
姓名拼音
CHEN Pingbo
学号
11849465
学位类型
博士
学位专业
0702 物理学
学科门类/专业学位类别
07 理学
导师
何洪涛
导师单位
物理系
论文答辩日期
2024-04-17
论文提交日期
2024-06-21
学位授予单位
哈尔滨工业大学
学位授予地点
深圳
摘要

MoTe2是一种第二类拓扑外尔半金属,在温度小于100 mK时,可转变为超导体。然而,MoTe2的超导能隙尚未在输运测量中被直接观测到。MoTe2存在边界态超导现象,但是该边界态是否为高阶拓扑物态的一维拓扑铰链态,又或者其是否在超导相变温度之上依然存在,还有待进一步的研究。此外,MoTe2还具有很强的自旋轨道耦合,且其晶格不具有中心反演对称性,因此非常有望基于MoTe2超导约瑟夫森结实现显著的超导二极管效应。本文利用微纳结构加工技术制备了Nb-MoTe2超导异质结以及Nb-MoTe2-Nb约瑟夫森结,在低温及不同磁场条件下系统深入地研究了这些器件的量子输运性质,取得的主要研究成果如下:

Nb-MoTe2超导异质结中,通过超导邻近效应在MoTe2中诱导产生了两个超导能隙 ΔsΔ ,且能隙 Δs 的临界温度明显大于能隙Δ。随着MoTe2厚度的增加,能隙 Δs 减小得更快。此外,能隙Δ 的面内临界磁场与面外临界磁场的比值高达45,显示出强烈的各向异性。以上结果表明能隙 ΔsΔ应分别来自MoTe2的表面态和体态,而非之前μ子自旋弛豫和扫描隧道显微镜等工作所认为的s+-双能隙超导。能隙 Δs的强各向异性及其随磁场的非单调变化还可能意味着非常规超导的出现。

Nb-MoTe2-Nb约瑟夫森结上发现仅在垂直磁场条件下即可实现非对称约瑟夫森效应,且其大小和符号可被外磁场有效的调节。通过对中心反演对称性破缺的MoTe2点群的分析,我们发现随着MoTe2样品厚度的增加,MoTe2的点群会从C1v变成C2v。由于非对称约瑟夫森效应仅在MoTe2较薄的样品上被观测到,可以将其归因于Edelstein效应。我们还基于Nb-MoTe2-Nb约瑟夫森结进一步演示了对约瑟夫森超流的整流特性,也即超流的单向流动性,实现了高达50.4%的整流效率。

制备了超导电极覆盖MoTe2薄片边缘的约瑟夫森结,并通过Dynes-Fulton方法分析了其超流的空间分布,发现约瑟夫森超流主要通过MoTe2薄片的边缘传输。我们还在同一块MoTe2薄片上进一步制备了超导电极接触和未接触样品边缘的两类约瑟夫森结器件,发现在同样的测量条件下,仅能在超导电极接触样品边缘的这一类器件上观测到约瑟夫森超流。这不仅直接证实了边缘态超流的存在,还排除了边缘态来自于费米弧表面态的可能性。我们认为其很大可能为理论预测的一维拓扑铰链态,从而为证明MoTe2为二阶三维拓扑半金属提供了初步的实验证据。

总而言之,本论文的研究揭示了超导与拓扑半金属的耦合给第二类外尔半金属MoTe2所带来的一系列新奇量子输运现象,找到了MoTe2中存在一维铰链态的实验证据,还实现了极高整流效率的约瑟夫森超导二极管效应。不仅加深了人们对高阶拓扑物态量子输运性质的了解,并进一步展示了其在超导电子学方面的潜在应用。

其他摘要

Fu Liang and Kane has discovered that when an s-wave superconductor is in proximity to the surface state of a strong topological insulator, the composite structure can induce Majorana bound states at vortices. MoTe2, as a type-II Weyl semimetal, has attracted broad interest in condensed matter physics, especially for its superconductivity below 100 mK. Experiments such as muon spin relaxation and scanning tunneling microscopy have suggested that superconducting MoTe2 may exhibit s+− pairing similar to that found in MgB2 or iron-based superconductors. But up to now, the superconducting gap in MoTe2 has not been directly observed in transport measurements. The edge state supercurrent has drawn widespread attention due to its potential relation to topological superconductivity or Majorana fermions. The Little-Parks experiment has revealed the existence of edge superconductivity in MoTe2, but whether these edge states are one-dimensional topological hinge states or if they persist above the superconducting transition temperature remains to be clarified. Superconducting diode effect has become a hot topic in condensed matter physics and materials science. The strong spin-orbit coupling and the lack of inversion symmetry in MoTe2 make it a prime candidate for realizing the superconducting diode effect, and exploring its mechanism is equally important. Addressing these issues, we have specially prepared Nb-MoTe2 superconducting heterostructures and Nb-MoTe2-Nb Josephson junctions using micro-nano fabrication techniques and systematically investigated the quantum transport properties of these devices at low temperatures and under various magnetic field conditions. The main outcomes are as follows:

In Nb-MoTe2 heterostructures, two superconducting gaps Δs & Δhave been induced in MoTe2 via the superconducting proximity effect. The gap Δhas a much higher critical temperature than Δb . As the thickness of the MoTe2 flake increases, the gap Δb shrinks obviously. Besides, the ratio of the upper out-of-plane critical field to the in-plane one of Δs reaches up to 45, exhibiting very strong field anisotropy. All these lead us to believe that Δs & Δb arise from the surface and bulk states of MoTe2, instead of the s+− two-gap superconductivity reported previously. The strong anisotropy of Δs and its non-monotonic field dependence further suggest the emergence of unconventional superconductivity in the surface states of MoTe2.

Asymmetric Josephson effect (AJE) is observed in perpendicular fields in Nb-MoTe2-Nb Josephson junctions, with highly field-tunable magnitude and sign of the asymmetry. By careful examination of the structural symmetry of MoTe2, it’s revealed that the point group will change from C1v to C2v as the flake thickness increases. Since the AJE is only observed in Josephson junctions with thin MoTe2 flakes, it can be considered very likely that the Edelstein effect gives rise to the observed AJE. Based on this field-tunable AJE, we further demonstrate the efficient rectification of supercurrent in Nb-MoTe2-Nb Josephson junctions, i.e, the supercurrent only flows in one direction, thus realizing the Josephson diode with the giant rectification efficiency of 50.4%.

We have prepared Josephson junctions with the superconducting electrodes covering the edges of the MoTe2 flake. By analyzing the spatial distribution of the Josephson supercurrent with the Dynes-Fulton method, it’s found that the supercurrent mainly flows via the edges of the flake. We have also performed a comparative study of the edge-touched and -untouched Josephson junctions on the same MoTe2 flake. Under the same measurement conditions, only the edge-touched device exhibits the Josephson supercurrent. This not only directly proves the existence of edge supercurrent in MoTe2, but also rules out the possible contribution from the side surface states of MoTe2. The one-dimensional hinge states are believed to be the most plausible source of the observed edge state, thus providing initial transport evidence for the 2nd-order topological insulator phase in MoTe2.

In summary, our study has revealed a series of exotic quantum transport phenomena due to the interplay between superconductivity and topology in MoTe2. It not only deepens our understanding of the physical properties of higher-order topological materials, but also demonstrates the great application potential in superconducting electronics.

关键词
语种
中文
培养类别
联合培养
入学年份
2018
学位授予年份
2024-06
参考文献列表

[1] FEYNMAN R. Quantum mechanical computers[J]. Optics News, 1985, 11(2):11-20.
[2] DEUTSCH D. Quantum theory, the church–turing principle and the universalquantum computer[J]. Proceedings of the Royal Society of London. A. Mathematicaland Physical Sciences, 1985, 400(1818): 97-117.
[3] FREEDMAN M H, LARSEN M, WANG Z. A modular functor which is universalfor quantum computation[J]. Communications in Mathematical Physics, 2002,227: 605-622.
[4] SHOR P W. Polynomial-time algorithms for prime factorization and discrete logarithmson a quantum computer[J]. SIAM review, 1999, 41(2): 303-332.
[5] QUANTUM G A, COLLABORATORS, ARUTE F, et al. Hartree-fock on a superconductingqubit quantum computer[J]. Science, 2020, 369(6507): 1084-1089.
[6] LOSS D, DIVINCENZO D P. Quantum computation with quantum dots[J]. PhysicalReview A, 1998, 57(1): 120.
[7] HÄFFNER H, ROOS C F, BLATT R. Quantum computing with trapped ions[J].Physics Reports, 2008, 469(4): 155-203.
[8] GOTTESMAN D, CHUANG I L. Demonstrating the viability of universal quantumcomputation using teleportation and single-qubit operations[J]. Nature, 1999,402(6760): 390-393.
[9] O’BRIEN J L. Optical quantum computing[J]. Science, 2007, 318(5856): 1567-1570.
[10] ITHIER G, COLLIN E, JOYEZ P, et al. Decoherence in a superconducting quantumbit circuit[J]. Physical Review B, 2005, 72(13): 134519.
[11] BLAIS A, VAN DEN BRINK A M, ZAGOSKIN A M. Tunable coupling of superconductingqubits[J]. Physical Review Letters, 2003, 90(12): 127901.
[12] YOU J, TSAI J, NORI F. Scalable quantum computing with josephson chargequbits[J]. Physical Review Letters, 2002, 89(19): 197902.- 108 -哈尔滨工业大学博士学位论文
[13] WINELAND D J, BARRETT M, BRITTON J, et al. Quantum information processingwith trapped ions[J]. Philosophical Transactions of the Royal Society ofLondon. Series A: Mathematical, Physical and Engineering Sciences, 2003, 361(1808): 1349-1361.
[14] DEBNATH S, LINKE N M, FIGGATT C, et al. Demonstration of a small programmablequantum computer with atomic qubits[J]. Nature, 2016, 536(7614):63-66.
[15] KITAEV A Y. Quantum computations: algorithms and error correction[J]. RussianMathematical Surveys, 1997, 52(6): 1191.
[16] WILCZEK F. Majorana returns[J]. Nature Physics, 2009, 5(9): 614-618.
[17] BEENAKKER C. Search for majorana fermions in superconductors[J]. Annu.Reviews of Condensed Matter Physics, 2013, 4(1): 113-136.
[18] LEIJNSE M, FLENSBERG K. Introduction to topological superconductivity andmajorana fermions[J]. Semiconductor Science and Technology, 2012, 27(12):124003.
[19] KITAEV A Y. Unpaired majorana fermions in quantum wires[J]. Physics-uspekhi,2001, 44(10S): 131.
[20] DEVICES S S N. Signatures of majorana fermions in hybrid[J]. Cell, 1995, 81:967.
[21] DAS A, RONEN Y, MOST Y, et al. Zero-bias peaks and splitting in an al–inasnanowire topological superconductor as a signature of majorana fermions[J]. NaturePhysics, 2012, 8(12): 887-895.
[22] DENG M, YU C, HUANG G, et al. Anomalous zero-bias conductance peak in aNb–InSb nanowire–Nb hybrid device[J]. Nano Letters, 2012, 12(12): 6414-6419.
[23] DENG M, VAITIEKĖNAS S, HANSEN E B, et al. Majorana bound state in acoupled quantum-dot hybrid-nanowire system[J]. Science, 2016, 354(6319): 1557-1562.
[24] GÜL Ö, ZHANG H, BOMMER J D, et al. Ballistic majorana nanowire devices[J].Nature Nanotechnology, 2018, 13(3): 192-197.
[25] ZHANG H, LIU D E, WIMMER M, et al. Next steps of quantum transport inmajorana nanowire devices[J]. Nature Communications, 2019, 10(1): 5128.- 109 -参考文献
[26] ANTIPOV A E, BARGERBOS A, WINKLER G W, et al. Effects of gate-inducedelectric fields on semiconductor majorana nanowires[J]. Physical Review X, 2018,8(3): 031041.
[27] MACKENZIE A P, MAENO Y. The superconductivity of Sr2RuO4 and the physicsof spin-triplet pairing[J]. Reviews of Modern Physics, 2003, 75(2): 657.
[28] LIU Q, CHEN C, ZHANG T, et al. Robust and clean majorana zero mode in thevortex core of high-temperature superconductor (Li0.84Fe0.16)OHFeSe[J]. PhysicalReview X, 2018, 8(4): 041056.
[29] YUAN H, GROSCHE F, DEPPE M, et al. Observation of two distinct superconductingphases in CeCu2Si2[J]. Science, 2003, 302(5653): 2104-2107.
[30] GURARIE V, RADZIHOVSKY L, ANDREEV A. Quantum phase transitionsacross a p-wave feshbach resonance[J]. Physical Review Letters, 2005, 94(23):230403.
[31] LUKE G M, FUDAMOTO Y, KOJIMA K, et al. Time-reversal symmetry-breakingsuperconductivity in Sr2RuO4[J]. Nature, 1998, 394(6693): 558-561.
[32] FU L, KANE C. Superconducting proximity effect and majorana fermions atthe surface of a topological insulator[J]. Physical Review Letters, 2008, 100(9):096407.
[33] SUN H H, ZHANG K W, HU L H, et al. Majorana zero mode detected with spinselective andreev reflection in the vortex of a topological superconductor[J]. PhysicalReview Letters, 2016, 116(25): 257003.
[34] XU J P, WANG M X, LIU Z L, et al. Experimental detection of a majoranamode in the core of a magnetic vortex inside a topological insulator-superconductorBi2Te3/NbSe2 heterostructure[J]. Physical Review Letters, 2015, 114(1): 017001.
[35] SUN H H, JIA J F. Detection of majorana zero mode in the vortex[J]. NPJ QuantumMaterials, 2017, 2(1): 34.
[36] CHU C G, CHEN J J, WANG A Q, et al. Broad and colossal edge supercurrentin dirac semimetal Cd3As2 josephson junctions[J]. Nature Communications, 2023,14(1): 6162.
[37] KEZILEBIEKE S, HUDA M N, VAŇO V, et al. Topological superconductivity ina van der waals heterostructure[J]. Nature, 2020, 588(7838): 424-428.
[38] FROLOV S, MANFRA M, SAU J. Topological superconductivity in hybrid devices[J]. Nature Physics, 2020, 16(7): 718-724.- 110 -哈尔滨工业大学博士学位论文
[39] BURSET P, LU B, TKACHOV G, et al. Superconducting proximity effect in threedimensionaltopological insulators in the presence of a magnetic field[J]. PhysicalReview B, 2015, 92(20): 205424.
[40] 杨振宁, 杨振玉. 基本粒子发现简史[M]. 上海科学技术出版社, 1963.
[41] 阎守胜. 固体物理基础[M]. 北京大学出版社, 2000.
[42] ANDERSON P W. More is different: Broken symmetry and the nature of the hierarchicalstructure of science.[J]. Science, 1972, 177(4047): 393-396.
[43] ANDERSON P W. Concepts in solids: lectures on the theory of solids: Vol. 58[M]. World Scientific, 1997.
[44] ANDERSON P W. Basic notions of condensed matter physics[M]. CRC press,2018.
[45] GINZBURG V L, GINZBURG V L, LANDAU L. On the theory of superconductivity[M]. Springer, 2009.
[46] KLITZING K V, DORDA G, PEPPER M. New method for high-accuracy determinationof the fine-structure constant based on quantized hall resistance[J]. PhysicalReview Letters, 1980, 45(6): 494.
[47] KANE C L, MELE E J. A new spin on the insulating state[J]. Science, 2006, 314(5806): 1692-1693.
[48] THOULESS D J, KOHMOTO M, NIGHTINGALE M P, et al. Quantized hallconductance in a two-dimensional periodic potential[J]. Physical Review Letters,1982, 49(6): 405.
[49] KANE C L, MELE E J. Z2 topological order and the quantum spin hall effect[J].Physical Review Letters, 2005, 95(14): 146802.
[50] BERNEVIG B A, HUGHES T L, ZHANG S C. Quantum spin hall effect andtopological phase transition in HgTe quantum wells[J]. Science, 2006, 314(5806):1757-1761.
[51] PETER Y, CARDONA M. Fundamentals of semiconductors: physics and materialsproperties[M]. Springer Science & Business Media, 2010.
[52] KONIG M, WIEDMANN S, BRUNE C, et al. Quantum spin hall insulator state inhgte quantum wells[J]. Science, 2007, 318(5851): 766-770.
[53] FU L, KANE C L, MELE E J. Topological insulators in three dimensions[J]. PhysicalReview Letters, 2007, 98(10): 106803.- 111 -参考文献
[54] HASAN M Z, KANE C L. Colloquium: topological insulators[J]. Reviews ofModern Physics, 2010, 82(4): 3045.
[55] HASAN M Z, MOORE J E. Three-dimensional topological insulators[J]. AnnualReview of Condensed Matter Physics, 2011, 2(1): 55-78.
[56] SHEN S Q. Topological insulators: Vol. 174[M]. Springer, 2012.
[57] MOORE J E. The birth of topological insulators[J]. Nature, 2010, 464(7286):194-198.
[58] QI X L, ZHANG S C. Topological insulators and superconductors[J]. Reviews ofModern Physics, 2011, 83(4): 1057.
[59] TOKURA Y, YASUDA K, TSUKAZAKI A. Magnetic topological insulators[J].Nature Reviews Physics, 2019, 1(2): 126-143.
[60] ZHANG H, LIU C X, QI X L, et al. Topological insulators in bi2se3, bi2te3 andsb2te3 with a single dirac cone on the surface[J]. Nature Physics, 2009, 5(6): 438-442.
[61] XIA Y, QIAN D, HSIEH D, et al. Observation of a large-gap topological-insulatorclass with a single dirac cone on the surface[J]. Nature Physics, 2009, 5(6): 398-402.
[62] LU H Z, SHI J, SHEN S Q. Competition between weak localization and antilocalizationin topological surface states[J]. Physical Review Letters, 2011, 107(7):076801.
[63] HE H T, WANG G, ZHANG T, et al. Impurity effect on weak antilocalization in thetopological insulator Bi2Te3[J]. Physical Review Letters, 2011, 106(16): 166805.
[64] ZHANG H, LI H, WANG H, et al. Linear positive and negative magnetoresistancein topological insulator Bi2Te3 flakes[J]. Applied Physics Letters, 2018, 113(11).
[65] LIU H, LIU S, YI Y, et al. Shubnikov–de haas oscillations in n and p type Bi2Te3flakes[J]. 2D Materials, 2015, 2(4): 045002.
[66] WANG Z, SUN Y, CHEN X Q, et al. Dirac semimetal and topological phase transitionsin A3Bi (A= Na, K, Rb)[J]. Physical Review B, 2012, 85(19): 195320.
[67] LV B, WENG H, FU B, et al. Experimental discovery of weyl semimetal TaAs[J].Physical Review X, 2015, 5(3): 031013.
[68] XU S Y, BELOPOLSKI I, ALIDOUST N, et al. Discovery of a weyl fermionsemimetal and topological fermi arcs[J]. Science, 2015, 349(6248): 613-617.- 112 -哈尔滨工业大学博士学位论文
[69] WEYL H, et al. Electron and gravitation[J]. Zeitschrift für Physik, 1929, 56: 330-352.
[70] BURKOV A, HOOK M, BALENTS L. Topological nodal semimetals[J]. PhysicalReview B, 2011, 84(23): 235126.
[71] YAN B, FELSER C. Topological materials: Weyl semimetals[J]. Annual Reviewof Condensed Matter Physics, 2017, 8: 337-354.
[72] JIA S, XU S Y, HASAN M Z. Weyl semimetals, fermi arcs and chiral anomalies[J]. Nature Materials, 2016, 15(11): 1140-1144.
[73] XU S Y, ALIDOUST N, BELOPOLSKI I, et al. Discovery of a weyl fermion statewith fermi arcs in niobium arsenide[J]. Nature Physics, 2015, 11(9): 748-754.
[74] XU N, WENG H, LV B, et al. Observation of weyl nodes and fermi arcs in tantalumphosphide[J]. Nature Communications, 2016, 7(1): 11006.
[75] HUANG X, ZHAO L, LONG Y, et al. Observation of the chiral-anomaly-inducednegative magnetoresistance in 3d weyl semimetal TaAs[J]. Physical Review X,2015, 5(3): 031023.
[76] YANG L, LIU Z, SUN Y, et al. Weyl semimetal phase in the non-centrosymmetriccompound taas[J]. Nature Physics, 2015, 11(9): 728-732.
[77] DENG K, WAN G, DENG P, et al. Experimental observation of topological fermiarcs in type-II weyl semimetal MoTe2[J]. Nature Physics, 2016, 12(12): 1105-1110.
[78] SOLUYANOV A A, GRESCH D, WANG Z, et al. Type-II weyl semimetals[J].Nature, 2015, 527(7579): 495-498.
[79] LI P, WEN Y, HE X, et al. Evidence for topological type-II weyl semimetal WTe2[J]. Nature Communications, 2017, 8(1): 2150.
[80] WANG Y, LIU E, LIU H, et al. Gate-tunable negative longitudinal magnetoresistancein the predicted type-II weyl semimetal WTe2[J]. Nature Communications,2016, 7(1): 13142.
[81] FRENZEL A J, HOMES C C, GIBSON Q D, et al. Anisotropic electrodynamicsof type-II weyl semimetal candidate WTe2[J]. Physical Review B, 2017, 95(24):245140.
[82] LI P, ZHANG C, WEN Y, et al. Anisotropic planar hall effect in the type-II topologicalweyl semimetal WTe2[J]. Physical Review B, 2019, 100(20): 205128.
[83] ALI M N, XIONG J, FLYNN S, et al. Large, non-saturating magnetoresistance inWTe2[J]. Nature, 2014, 514(7521): 205-208.- 113 -参考文献
[84] BELOPOLSKI I, XU S Y, SANCHEZ D S, et al. Criteria for directly detectingtopological fermi arcs in weyl semimetals[J]. Physical Review Letters, 2016, 116(6): 066802.
[85] BERASTEGUI P, HULL S, ERIKSSON S. A low-temperature structural phasetransition in CsPbF3[J]. Journal of Physics: Condensed Matter, 2001, 13(22): 5077.
[86] MANOLIKAS C, VAN LANDUYT J, AMELINCKX S. Electron microscopy andelectron diffraction study of the domain structures, the dislocation fine structure,and the phase transformations in 𝛽-MoTe2[J]. Physica Status Solidi (a), 1979, 53(1): 327-338.
[87] ZHOU Q, RHODES D, ZHANG Q, et al. Hall effect within the colossal magnetoresistivesemimetallic state of MoTe2[J]. Physical Review B, 2016, 94(12):121101.
[88] QI Y, NAUMOV P G, ALI M N, et al. Superconductivity in weyl semimetal candidateMoTe2[J]. Nature Communications, 2016, 7(1): 11038.
[89] PAN X C, CHEN X, LIU H, et al. Pressure-driven dome-shaped superconductivityand electronic structural evolution in tungsten ditelluride[J]. Nature Communications,2015, 6(1): 7805.
[90] SUDEROW H, TISSEN V, BRISON J, et al. Pressure induced effects on the fermisurface of superconducting 2H- NbSe2[J]. Physical Review Letters, 2005, 95(11):117006.
[91] FUCHS G, DRECHSLER S L, KOZLOVA N, et al. High-field pauli-limiting behaviorand strongly enhanced upper critical magnetic fields near the transition temperatureof an arsenic-deficient LaO0.9F0.1FeAs1􀀀𝛿 superconductor[J]. PhysicalReview Letters, 2008, 101(23): 237003.
[92] RHODES D A, JINDAL A, YUAN N F, et al. Enhanced superconductivity inmonolayer T𝑑-MoTe2[J]. Nano Letters, 2021, 21(6): 2505-2511.
[93] CHEN F, LUO X, XIAO R, et al. Superconductivity enhancement in the S-dopedweyl semimetal candidate MoTe2[J]. Applied Physics Letters, 2016, 108(16).
[94] JINDAL A, SAHA A, LI Z, et al. Coupled ferroelectricity and superconductivityin bilayer T𝑑-MoTe2[J]. Nature, 2023, 613(7942): 48-52.
[95] TAKAHASHI H, AKIBA T, IMURA K, et al. Anticorrelation between polar latticeinstability and superconductivity in the weyl semimetal candidate MoTe2[J].Physical Review B, 2017, 95(10): 100501.- 114 -哈尔滨工业大学博士学位论文
[96] LUO X, CHEN F, ZHANG J, et al. T𝑑-MoTe2: A possible topological superconductor[J]. Applied Physics Letters, 2016, 109(10).
[97] NAIDYUK Y, KVITNITSKAYA O, BASHLAKOV D, et al. Surface superconductivityin the weyl semimetal MoTe2 detected by point contact spectroscopy[J].2D Materials, 2018, 5(4): 045014.
[98] GAN Y, CHO C W, LI A, et al. Giant enhancement of superconductivity in fewlayers MoTe2[J]. Chinese Physics B, 2019, 28(11): 117401.
[99] HEIKES C, LIU I L, METZ T, et al. Mechanical control of crystal symmetry andsuperconductivity in weyl semimetal MoTe2[J]. Physical Review Materials, 2018,2(7): 074202.
[100] PIVA M, KUTELAK L, BORTH R, et al. Superconducting pairing symmetry inMoTe2[J]. Physical Review Materials, 2023, 7(11): L111801.
[101] GUGUCHIA Z, VON ROHR F, SHERMADINI Z, et al. Signatures of the topologicals¸􀀀 superconducting order parameter in the type-II weyl semimetal T𝑑-MoTe2[J]. Nature Communications, 2017, 8(1): 1082.
[102] TAMAI A, WU Q, CUCCHI I, et al. Fermi arcs and their topological characterin the candidate type-II weyl semimetal MoTe2[J]. Physical Review X, 2016, 6(3):031021.
[103] KHASANOV R, GUGUCHIA Z, MAISURADZE A, et al. High pressure researchusing muons at the paul scherrer institute[J]. High Pressure Research, 2016, 36(2):140-166.
[104] MAISURADZE A, SHENGELAYA A, AMATO A, et al. Muon spin rotation investigationof the pressure effect on the magnetic penetration depth in YBa2Cu3O𝑥[J]. Physical Review B, 2011, 84(18): 184523.
[105] GUGUCHIA Z, AMATO A, KANG J, et al. Direct evidence for a pressure-inducednodal superconducting gap in the Ba0.65Rb0.35Fe2As2 superconductor[J]. NatureCommunications, 2015, 6(1): 8863.
[106] MAZIN I, SINGH D J, JOHANNES M, et al. Unconventional superconductivitywith a sign reversal in the order parameter of LaFeAsO1􀀀𝑥 F 𝑥[J]. Physical ReviewLetters, 2008, 101(5): 057003.
[107] HIRSCHFELD P, KORSHUNOV M, MAZIN I. Gap symmetry and structureof Fe-based superconductors[J]. Reports on Progress in Physics, 2011, 74(12):124508.- 115 -参考文献
[108] STEWART G. Superconductivity in iron compounds[J]. Reviews of ModernPhysics, 2011, 83(4): 1589.
[109] CHUBUKOV A. Pairing mechanism in Fe-based superconductors[J]. Annual Reviewof Condensed Matter Physics, 2012, 3(1): 57-92.
[110] WERTHAMER N, HELFAND E, HOHENBERG P. Temperature and purity dependenceof the superconducting critical field, H𝑐2. III. electron spin and spin-orbiteffects[J]. Physical Review, 1966, 147(1): 295.
[111] LI Y, GU Q, CHEN C, et al. Nontrivial superconductivity in topologicalMoTe2􀀀𝑥S𝑥 crystals[J]. Proceedings of the National Academy of Sciences, 2018,115(38): 9503-9508.
[112] GUREVICH A. Enhancement of the upper critical field by nonmagnetic impuritiesin dirty two-gap superconductors[J]. Physical Review B, 2003, 67(18): 184515.
[113] LUO J, LI Y, ZHANG J, et al. Possible unconventional two-band superconductivityin MoTe2[J]. Physical Review B, 2020, 102(6): 064502.
[114] ZHANG Y, FEI F, LIU R, et al. Enhanced superconductivity and upper criticalfield in Ta-Doped Weyl Semimetal T𝑑-MoTe2[J]. Advanced Materials, 2023, 35(19): 2207841.
[115] CUI J, LI P, ZHOU J, et al. Transport evidence of asymmetric spin–orbit couplingin few-layer superconducting 1T𝑑-MoTe2[J]. Nature communications, 2019, 10(1):2044.
[116] TINKHAM M. Introduction to superconductivity[M]. Courier Corporation, 2004.
[117] BARDEEN J, COOPER L N, SCHRIEFFER J R. Theory of superconductivity[J].Physical Review, 1957, 108(5): 1175.
[118] KITTEL C, MCEUEN P. Introduction to solid state physics[M]. John Wiley &Sons, 2018.
[119] KHIM S, KIM J W, CHOI E S, et al. Evidence for dominant pauli paramagnetic effectin the upper critical field of single-crystalline FeTe0.6Se0.4[J]. Physical ReviewB, 2010, 81(18): 184511.
[120] SINGH A K, WU T C, SONG M Y, et al. Determination of spin-orbit scatteringlifetime at the interface of LaAlO3/SrTiO3 from the superconducting upper criticalfields[J]. Physical Review Research, 2020, 2(1): 013311.
[121] KLEMM R A, LUTHER A, BEASLEY M. Theory of the upper critical field inlayered superconductors[J]. Physical Review B, 1975, 12(3): 877.- 116 -哈尔滨工业大学博士学位论文
[122] GARIGLIO S, REYREN N, CAVIGLIA A, et al. Superconductivity at theLaAlO3/SrTiO3 interface[J]. Journal of Physics: Condensed Matter, 2009, 21(16):164213.
[123] ZHANG Z, JIANG W, SHAO T, et al. A spin–orbit scattering–enhanced high uppercritical field at the LaAlO3/KTaO3 (111) superconducting interface[J]. NewJournal of Physics, 2023, 25(2): 023023.
[124] FULDE P, FERRELL R A. Superconductivity in a strong spin-exchange field[J].Physical Review, 1964, 135(3A): A550.
[125] LARKIN A I, OVCHINNIKOV Y N. Quasiclassical method in the theory of superconductivity[J]. Sov Phys JETP, 1969, 28(6): 1200-1205.
[126] ESCHRIG M. Spin-polarized supercurrents for spintronics[J]. Physics Today,2011, 64(1): 43-49.
[127] MATSUDA Y, SHIMAHARA H. Fulde–Ferrell–Larkin–Ovchinnikov state inheavy fermion superconductors[J]. Journal of the Physical Society of Japan, 2007,76(5): 051005.
[128] CHO C W, LYU J, NG C Y, et al. Evidence for the Fulde–Ferrell–Larkin–Ovchinnikov state in bulk NbS2[J]. Nature Communications, 2021, 12(1): 3676.
[129] SUGIURA S, ISONO T, TERASHIMA T, et al. Fulde–Ferrell–Larkin–Ovchinnikov and vortex phases in a layered organic superconductor[J]. NPJ QuantumMaterials, 2019, 4(1): 7.
[130] KASAHARA S, SATO Y, LICCIARDELLO S, et al. Evidence for an Fulde-Ferrell-Larkin-Ovchinnikov state with segmented vortices in the BCS-BECcrossoversuperconductor FeSe[J]. Physical Review Letters, 2020, 124(10):107001.
[131] AOKI D, ISHIDA K, FLOUQUET J. Review of U-based ferromagnetic superconductors:comparison between UGe2, URhGe, and UCoGe[J]. Journal of thePhysical Society of Japan, 2019, 88(2): 022001.
[132] BERGERET F, VOLKOV A, EFETOV K. Long-range proximity effects insuperconductor-ferromagnet structures[J]. Physical Review Letters, 2001, 86(18):4096.
[133] LINDER J, ROBINSON J W. Superconducting spintronics[J]. Nature Physics,2015, 11(4): 307-315.- 117 -参考文献
[134] LU J, ZHELIUK O, LEERMAKERS I, et al. Evidence for two-dimensional Isingsuperconductivity in gated MoS2[J]. Science, 2015, 350(6266): 1353-1357.
[135] XI X, WANG Z, ZHAO W, et al. Ising pairing in superconducting NbSe2 atomiclayers[J]. Nature Physics, 2016, 12(2): 139-143.
[136] LI W, HUANG J, LI X, et al. Recent progresses in two-dimensional Ising superconductivity[J]. Materials Today Physics, 2021, 21: 100504.
[137] ZHOU B T, YUAN N F, JIANG H L, et al. Ising superconductivity and Majoranafermions in transition-metal dichalcogenides[J]. Physical Review B, 2016, 93(18):180501.
[138] WICKRAMARATNE D, KHMELEVSKYI S, AGTERBERG D F, et al. Isingsuperconductivity and magnetism in NbSe2[J]. Physical Review X, 2020, 10(4):041003.
[139] WANG C, LIAN B, GUO X, et al. Type-II Ising superconductivity in twodimensionalmaterials with spin-orbit coupling[J]. Physical Review Letters, 2019,123(12): 126402.
[140] SWARTZ P, HART JR H. Asymmetries of the critical surface current in type-IIsuperconductors[J]. Physical Review, 1967, 156(2): 412.
[141] ANDO F, MIYASAKA Y, LI T, et al. Observation of superconducting diode effect[J]. Nature, 2020, 584(7821): 373-376.
[142] NADEEM M, FUHRER M S, WANG X. The superconducting diode effect[J].Nature Reviews Physics, 2023, 5(10): 558-577.
[143] LYU Y Y, JIANG J, WANG Y L, et al. Superconducting diode effect via conformalmappednanoholes[J]. Nature Communications, 2021, 12(1): 2703.
[144] WU H, WANG Y, XU Y, et al. The field-free Josephson diode in a van der Waalsheterostructure[J]. Nature, 2022, 604(7907): 653-656.
[145] BAUMGARTNER C, FUCHS L, COSTA A, et al. Supercurrent rectification andmagnetochiral effects in symmetric Josephson junctions[J]. Nature Nanotechnology,2022, 17(1): 39-44.
[146] JEON K R, KIM J K, YOON J, et al. Zero-field polarity-reversible Josephsonsupercurrent diodes enabled by a proximity-magnetized Pt barrier[J]. Nature Materials,2022, 21(9): 1008-1013.- 118 -哈尔滨工业大学博士学位论文
[147] PAL B, CHAKRABORTY A, SIVAKUMAR P K, et al. Josephson diode effectfrom cooper pair momentum in a topological semimetal[J]. Nature Physics, 2022,18(10): 1228-1233.
[148] TURINI B, SALIMIAN S, CARREGA M, et al. Josephson diode effect in highmobilityInSb nanoflags[J]. Nano Letters, 2022, 22(21): 8502-8508.
[149] LIN J X, SIRIVIBOON P, SCAMMELL H D, et al. Zero-field superconductingdiode effect in small-twist-angle trilayer graphene[J]. Nature Physics, 2022, 18(10): 1221-1227.
[150] HU J, WU C, DAI X. Proposed design of a Josephson diode[J]. Physical ReviewLetters, 2007, 99(6): 067004.
[151] GUTFREUND A, MATSUKI H, PLASTOVETS V, et al. Direct observation of asuperconducting vortex diode[J]. Nature Communications, 2023, 14(1): 1630.
[152] KOPASOV A, KUTLIN A, MEL’NIKOV A. Geometry controlled superconductingdiode and anomalous josephson effect triggered by the topological phase transitionin curved proximitized nanowires[J]. Physical Review B, 2021, 103(14): 144520.
[153] MISAKI K, NAGAOSA N. Theory of the nonreciprocal Josephson effect[J]. PhysicalReview B, 2021, 103(24): 245302.
[154] ZHANG Y, GU Y, LI P, et al. General theory of Josephson diodes[J]. PhysicalReview X, 2022, 12(4): 041013.
[155] DAVYDOVA M, PREMBABU S, FU L. Universal Josephson diode effect[J]. ScienceAdvances, 2022, 8(23): eabo0309.
[156] DAIDO A, IKEDA Y, YANASE Y. Intrinsic superconducting diode effect[J].Physical Review Letters, 2022, 128(3): 037001.
[157] SCAMMELL H D, LI J, SCHEURER M S. Theory of zero-field superconductingdiode effect in twisted trilayer graphene[J]. 2D Materials, 2022, 9(2): 025027.
[158] ILIĆ S, BERGERET F S. Theory of the supercurrent diode effect in rashba superconductorswith arbitrary disorder[J]. Physical Review Letters, 2022, 128(17):177001.
[159] YUAN N F, FU L. Supercurrent diode effect and finite-momentum superconductors[J]. Proceedings of the National Academy of Sciences, 2022, 119(15):e2119548119.- 119 -参考文献
[160] ZINKL B, HAMAMOTO K, SIGRIST M. Symmetry conditions for the superconductingdiode effect in chiral superconductors[J]. Physical Review Research, 2022,4(3): 033167.
[161] MORIMOTO T, NAGAOSA N. Chiral anomaly and giant magnetochiralanisotropy in noncentrosymmetric weyl semimetals[J]. Physical Review Letters,2016, 117(14): 146603.
[162] RIKKEN G, RAUPACH E. Observation of magneto-chiral dichroism[J]. Nature,1997, 390(6659): 493-494.
[163] SELLIER H, BARADUC C, LEFLOCH F, et al. Temperature-induced crossoverbetween 0 and 𝜋 states in S/F/S junctions[J]. Physical Review B, 2003, 68(5):054531.
[164] BUZDIN A. Direct coupling between magnetism and superconducting current inthe josephson 𝜑 0 junction[J]. Physical Review Letters, 2008, 101(10): 107005.
[165] BASELMANS J, MORPURGO A, VAN WEES B, et al. Reversing the direction ofthe supercurrent in a controllable Josephson junction[J]. Nature, 1999, 397(6714):43-45.
[166] VAN HARLINGEN D J. Phase-sensitive tests of the symmetry of the pairing statein the high-temperature superconductors—evidence for d𝑥2􀀀𝑦2 symmetry[J]. Reviewsof Modern Physics, 1995, 67(2): 515.
[167] SZOMBATI D, NADJ-PERGE S, CAR D, et al. Josephson 0-junction in nanowirequantum dots[J]. Nature Physics, 2016, 12(6): 568-572.
[168] BUZDIN A, KOSHELEV A. Periodic alternating 0-and 𝜋-junction structures asrealization of 𝜑-josephson junctions[J]. Physical Review B, 2003, 67(22): 220504.
[169] BERGERET F, TOKATLY I. Theory of diffusive 𝜑0 Josephson junctions in thepresence of spin-orbit coupling[J]. Europhysics Letters, 2015, 110(5): 57005.
[170] MURANI A, KASUMOV A, SENGUPTA S, et al. Ballistic edge states in Bismuthnanowires revealed by SQUID interferometry[J]. Nature Communications, 2017,8(1): 15941.
[171] ALIDOUST M, LINDER J. 𝜑-state and inverted Fraunhofer pattern in nonalignedJosephson junctions[J]. Physical Review B, 2013, 87(6): 060503.
[172] ASSOULINE A, FEUILLET-PALMA C, BERGEAL N, et al. Spin-Orbit inducedphase-shift in Bi2Se3 Josephson junctions[J]. Nature Communications, 2019, 10(1): 126.- 120 -哈尔滨工业大学博士学位论文
[173] YUAN N F. Edelstein effect and supercurrent diode effect[A]. 2023.
[174] MANCHON A, KOO H C, NITTA J, et al. New perspectives for Rashba spin–orbitcoupling[J]. Nature Materials, 2015, 14(9): 871-882.
[175] BEENAKKER C. Universal limit of critical-current fluctuations in mesoscopicJosephson junctions[J]. Physical Review Letters, 1991, 67(27): 3836.
[176] FURUSAKI A, TSUKADA M. Dc Josephson effect and Andreev reflection[J].Solid State Communications, 1991, 78(4): 299-302.
[177] WIEDENMANN J, BOCQUILLON E, DEACON R S, et al. 4 𝜋-periodic Josephsonsupercurrent in HgTe-based topological Josephson junctions[J]. Nature communications,2016, 7(1): 10303.
[178] PICÓ-CORTÉS J, DOMÍNGUEZ F, PLATERO G. Signatures of a 4 𝜋-periodicsupercurrent in the voltage response of capacitively shunted topological josephsonjunctions[J]. Physical Review B, 2017, 96(12): 125438.
[179] LAROCHE D, BOUMAN D, VAN WOERKOM D J, et al. Observation of the4𝜋-periodic josephson effect in indium arsenide nanowires[J]. Nature Communications,2019, 10(1): 245.
[180] CHENG M. Superconducting proximity effect on the edge of fractional topologicalinsulators[J]. Physical Review B, 2012, 86(19): 195126.
[181] WANG A Q, LI C Z, LI C, et al. 4 𝜋-periodic supercurrent from surface statesin Cd3As2 nanowire-based josephson junctions[J]. Physical Review Letters, 2018,121(23): 237701.
[182] WILLIAMS J, BESTWICK A, GALLAGHER P, et al. Unconventional Josephsoneffect in hybrid superconductor-topological insulator devices[J]. Physical ReviewLetters, 2012, 109(5): 056803.
[183] SOCHNIKOV I, MAIER L, WATSON C A, et al. Nonsinusoidal current-phase relationshipin Josephson junctions from the 3D topological insulator HgTe[J]. PhysicalReview Letters, 2015, 114(6): 066801.
[184] HART S, REN H, WAGNER T, et al. Induced superconductivity in the quantumspin hall edge[J]. Nature Physics, 2014, 10(9): 638-643.
[185] QIAN X, LIU J, FU L, et al. Quantum spin Hall effect in two-dimensional transitionmetal dichalcogenides[J]. Science, 2014, 346(6215): 1344-1347.- 121 -参考文献
[186] NOWACK K C, SPANTON E M, BAENNINGER M, et al. Imaging currents inHgTe quantum wells in the quantum spin hall regime[J]. Nature Materials, 2013,12(9): 787-791.
[187] LI C Z, WANG A Q, LI C, et al. Reducing electronic transport dimension to topologicalhinge states by increasing geometry size of Dirac semimetal Josephson junctions[J]. Physical Review Letters, 2020, 124(15): 156601.
[188] POTTER A C, KIMCHI I, VISHWANATH A. Quantum oscillations from surfaceFermi arcs in Weyl and Dirac semimetals[J]. Nature Communications, 2014, 5(1):5161.
[189] MOLL P J, NAIR N L, HELM T, et al. Transport evidence for Fermi-arc-mediatedchirality transfer in the Dirac semimetal Cd3As2[J]. Nature, 2016, 535(7611): 266-270.
[190] CHEN C Z, HE J J, ALI M N, et al. Asymmetric josephson effect in inversion symmetrybreaking topological materials[J]. Physical Review B, 2018, 98(7): 075430.
[191] BENALCAZAR W A, BERNEVIG B A, HUGHES T L. Quantized electric multipoleinsulators[J]. Science, 2017, 357(6346): 61-66.
[192] BENALCAZAR W A, BERNEVIG B A, HUGHES T L. Electric multipole moments,topological multipole moment pumping, and chiral hinge states in crystallineinsulators[J]. Physical Review B, 2017, 96(24): 245115.
[193] SONG Z, FANG Z, FANG C. (d-2)-dimensional edge states of rotation symmetryprotected topological states[J]. Physical Review Letters, 2017, 119(24): 246402.
[194] IMHOF S, BERGER C, BAYER F, et al. Topolectrical-circuit realization of topologicalcorner modes[J]. Nature Physics, 2018, 14(9): 925-929.
[195] KHALAF E. Higher-order topological insulators and superconductors protectedby inversion symmetry[J]. Physical Review B, 2018, 97(20): 205136.
[196] SCHINDLER F, COOK A M, VERGNIORY M G, et al. Higher-order topologicalinsulators[J]. Science Advances, 2018, 4(6): eaat0346.
[197] SCHINDLER F, WANG Z, VERGNIORY M G, et al. Higher-order topology inbismuth[J]. Nature Physics, 2018, 14(9): 918-924.
[198] EZAWA M. Higher-order topological insulators and semimetals on the breathingkagome and pyrochlore lattices[J]. Physical Review Letters, 2018, 120(2): 026801.- 122 -哈尔滨工业大学博士学位论文
[199] WIEDER B J, WANG Z, CANO J, et al. Strong and fragile topological Diracsemimetals with higher-order fermi arcs[J]. Nature Communications, 2020, 11(1):627.
[200] TRIFUNOVIC L, BROUWER P W. Higher-order bulk-boundary correspondencefor topological crystalline phases[J]. Physical Review X, 2019, 9(1): 011012.
[201] CHOI Y B, XIE Y, CHEN C Z, et al. Evidence of higher-order topology in multilayerWTe2 from Josephson coupling through anisotropic hinge states[J]. NatureMaterials, 2020, 19(9): 974-979.
[202] WANG Z, WIEDER B J, LI J, et al. Higher-order topology, monopole nodal lines,and the origin of large fermi arcs in transition metal dichalcogenides XTe2 (X= Mo,W)[J]. Physical review letters, 2019, 123(18): 186401.
[203] WANG H X, LIN Z K, JIANG B, et al. Higher-order Weyl semimetals[J]. PhysicalReview Letters, 2020, 125(14): 146401.
[204] YE F, LEE J, HU J, et al. Environmental instability and degradation of single-andfew-layer WTe2 nanosheets in ambient conditions[A]. 2016.
[205] LONGO R C, ADDOU R, SANTOSH K, et al. Intrinsic air stability mechanismsof two-dimensional transition metal dichalcogenide surfaces: basal versus edge oxidation[J]. 2D Materials, 2017, 4(2): 025050.
[206] NAYLOR C H, PARKIN W M, PING J, et al. Monolayer single-crystal 1T􀀀-MoTe2grown by chemical vapor deposition exhibits weak antilocalization effect[J]. Nanoletters, 2016, 16(7): 4297-4304.
[207] GROSSE V, PANSOW C, STEPPKE A, et al. Pulsed laser deposition of niobiumthin films for in-situ device fabrication and their superconducting properties[C]//Journal of Physics: Conference Series: Vol. 234. IOP Publishing, 2010: 012015.
[208] AZIZ M J. Film growth mechanisms in pulsed laser deposition[J]. Applied PhysicsA, 2008, 93: 579-587.
[209] BUZDIN A I. Proximity effects in superconductor-ferromagnet heterostructures[J]. Reviews of Modern Physics, 2005, 77(3): 935.
[210] BARONE A, PATERNO G, et al. Physics and applications of the Josephson effect[M]. 1982.
[211] JOSEPHSON B D. Possible new effects in superconductive tunnelling[J]. PhysicsLetters, 1962, 1(7): 251-253.- 123 -参考文献
[212] ANDERSON P W, ROWELL J M. Probable observation of the Josephson superconductingtunneling effect[J]. Physical Review Letters, 1963, 10(6): 230.
[213] AGREATERMEASUREOFCONF I. Model 6220 DC Current Source Model 6221AC and DC current source[Z].
[214] HE L, JIA Y, ZHANG S, et al. Pressure-induced superconductivity in the threedimensionaltopological dirac semimetal Cd3As2[J]. NPJ Quantum Materials,2016, 1(1): 1-5.
[215] WANG L, GUTIÉRREZ-LEZAMA I, BARRETEAU C, et al. Tuning magnetotransportin a compensated semimetal at the atomic scale[J]. Nature communications,2015, 6(1): 8892.
[216] KEUM D H, CHO S, KIM J H, et al. Bandgap opening in few-layered monoclinicMoTe2[J]. Nature Physics, 2015, 11(6): 482-486.
[217] ANDREEV A. The thermal conductivity of the intermediate state in superconductors[J]. Journal of Experimental and Theoretical Physics, 1964, 46(5): 1823-1828.
[218] BLONDER G, TINKHAM M M, KLAPWIJK T. Transition from metallic to tunnelingregimes in superconducting microconstrictions: Excess current, charge imbalance,and supercurrent conversion[J]. Physical Review B, 1982, 25(7): 4515.
[219] HUANG C, ZHOU B T, ZHANG H, et al. Proximity-induced surface superconductivityin Dirac semimetal Cd3As2[J]. Nature Communications, 2019, 10(1):2217.
[220] HUANG C, NARAYAN A, ZHANG E, et al. Inducing strong superconductivityin WTe2 by a proximity effect[J]. ACS Nano, 2018, 12(7): 7185-7196.
[221] YUAN N F, CHEN X J. Critical field measure for topological superconductivity[A]. 2022.
[222] BRAITHWAITE D, LAPERTOT G, KNAFO W, et al. Evidence for AnisotropicVortex Dynamics and Pauli Limitation in the Upper Critical Field of FeSe1􀀀𝑥Te𝑥[J]. Journal of the Physical Society of Japan, 2010, 79(5): 053703.
[223] AUDOUARD A, DRIGO L, DUC F, et al. Tunnel diode oscillator measurements ofthe upper critical magnetic field of FeTe0.5Se0.5[J]. Journal of Physics: CondensedMatter, 2014, 26(18): 185701.
[224] HE W Y, LAW K T. Magnetoelectric effects in gyrotropic superconductors[J].Physical Review Research, 2020, 2(1): 012073.- 124 -哈尔滨工业大学博士学位论文
[225] DUBOS P, COURTOIS H, PANNETIER B, et al. Josephson critical current in along mesoscopic SNS junction[J]. Physical Review B, 2001, 63(6): 064502.
[226] ZAIKIN A, ZHARKOV G. On the theory of wide dirty SNS junction[J]. FizikaNizkikh Temperatur, 1981, 7(3): 375-378.
[227] BOBKOVA I, BOBKOV A, SILAEV M. Magnetoelectric effects in Josephsonjunctions[J]. Journal of Physics: Condensed Matter, 2022, 34(35): 353001.
[228] HOU Y, NICHELE F, CHI H, et al. Ubiquitous superconducting diode effect insuperconductor thin films[J]. Physical Review Letters, 2023, 131(2): 027001.
[229] MOLL P J, GESHKENBEIN V B. Evolution of superconducting diodes[J]. NaturePhysics, 2023, 19(10): 1379-1380.
[230] SIVAKUMAR P K, AHARI M T, KIM J K, et al. Long-range Phase Coherenceand Tunable Second Order 𝜑0-Josephson Effect in a Dirac semimetal 1T-PtTe2[A].2024.
[231] HART J L, BHATT L, ZHU Y, et al. Emergent layer stacking arrangements inc-axis confined MoTe2[J]. Nature Communications, 2023, 14(1): 4803.
[232] WANG W, KIM S, LIU M, et al. Evidence for an edge supercurrent in the Weylsuperconductor MoTe2[J]. Science, 2020, 368(6490): 534-537.
[233] KIM S, LEI S, SCHOOP L M, et al. Edge supercurrent reveals competition betweencondensates in a weyl superconductor[J]. Nature Physics, 2024: 1-8.
[234] BARDEEN J, JOHNSON J L. Josephson current flow in pure superconductingnormal-superconducting junctions[J]. Physical Review B, 1972, 5(1): 72.
[235] SVIDZINSKY A, ANTSYGINA T, BRATUS’ E. Concerning the theory of theJosephson effect in pure SNS junctions[J]. Journal of Low Temperature Physics,1973, 10: 131-136.
[236] PARK J, LEE J H, LEE G H, et al. Short ballistic Josephson coupling in planargraphene junctions with inhomogeneous carrier doping[J]. Physical Review Letters,2018, 120(7): 077701.
[237] LEE G H, KIM S, JHI S H, et al. Ultimately short ballistic vertical graphene Josephsonjunctions[J]. Nature Communications, 2015, 6(1): 6181.
[238] DYNES R, FULTON T. Supercurrent density distribution in Josephson junctions[J]. Physical Review B, 1971, 3(9): 3015.

所在学位评定分委会
物理学
国内图书分类号
O469
来源库
人工提交
成果类型学位论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/765802
专题南方科技大学
理学院_物理系
推荐引用方式
GB/T 7714
陈平博. MoTe2超导异质结及约瑟夫森结的低温输运性质研究[D]. 深圳. 哈尔滨工业大学,2024.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可 操作
11849465-陈平博-物理系.pdf(12690KB)----限制开放--请求全文
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[陈平博]的文章
百度学术
百度学术中相似的文章
[陈平博]的文章
必应学术
必应学术中相似的文章
[陈平博]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。