[1] FEYNMAN R. Quantum mechanical computers[J]. Optics News, 1985, 11(2):11-20.
[2] DEUTSCH D. Quantum theory, the church–turing principle and the universalquantum computer[J]. Proceedings of the Royal Society of London. A. Mathematicaland Physical Sciences, 1985, 400(1818): 97-117.
[3] FREEDMAN M H, LARSEN M, WANG Z. A modular functor which is universalfor quantum computation[J]. Communications in Mathematical Physics, 2002,227: 605-622.
[4] SHOR P W. Polynomial-time algorithms for prime factorization and discrete logarithmson a quantum computer[J]. SIAM review, 1999, 41(2): 303-332.
[5] QUANTUM G A, COLLABORATORS, ARUTE F, et al. Hartree-fock on a superconductingqubit quantum computer[J]. Science, 2020, 369(6507): 1084-1089.
[6] LOSS D, DIVINCENZO D P. Quantum computation with quantum dots[J]. PhysicalReview A, 1998, 57(1): 120.
[7] HÄFFNER H, ROOS C F, BLATT R. Quantum computing with trapped ions[J].Physics Reports, 2008, 469(4): 155-203.
[8] GOTTESMAN D, CHUANG I L. Demonstrating the viability of universal quantumcomputation using teleportation and single-qubit operations[J]. Nature, 1999,402(6760): 390-393.
[9] O’BRIEN J L. Optical quantum computing[J]. Science, 2007, 318(5856): 1567-1570.
[10] ITHIER G, COLLIN E, JOYEZ P, et al. Decoherence in a superconducting quantumbit circuit[J]. Physical Review B, 2005, 72(13): 134519.
[11] BLAIS A, VAN DEN BRINK A M, ZAGOSKIN A M. Tunable coupling of superconductingqubits[J]. Physical Review Letters, 2003, 90(12): 127901.
[12] YOU J, TSAI J, NORI F. Scalable quantum computing with josephson chargequbits[J]. Physical Review Letters, 2002, 89(19): 197902.- 108 -哈尔滨工业大学博士学位论文
[13] WINELAND D J, BARRETT M, BRITTON J, et al. Quantum information processingwith trapped ions[J]. Philosophical Transactions of the Royal Society ofLondon. Series A: Mathematical, Physical and Engineering Sciences, 2003, 361(1808): 1349-1361.
[14] DEBNATH S, LINKE N M, FIGGATT C, et al. Demonstration of a small programmablequantum computer with atomic qubits[J]. Nature, 2016, 536(7614):63-66.
[15] KITAEV A Y. Quantum computations: algorithms and error correction[J]. RussianMathematical Surveys, 1997, 52(6): 1191.
[16] WILCZEK F. Majorana returns[J]. Nature Physics, 2009, 5(9): 614-618.
[17] BEENAKKER C. Search for majorana fermions in superconductors[J]. Annu.Reviews of Condensed Matter Physics, 2013, 4(1): 113-136.
[18] LEIJNSE M, FLENSBERG K. Introduction to topological superconductivity andmajorana fermions[J]. Semiconductor Science and Technology, 2012, 27(12):124003.
[19] KITAEV A Y. Unpaired majorana fermions in quantum wires[J]. Physics-uspekhi,2001, 44(10S): 131.
[20] DEVICES S S N. Signatures of majorana fermions in hybrid[J]. Cell, 1995, 81:967.
[21] DAS A, RONEN Y, MOST Y, et al. Zero-bias peaks and splitting in an al–inasnanowire topological superconductor as a signature of majorana fermions[J]. NaturePhysics, 2012, 8(12): 887-895.
[22] DENG M, YU C, HUANG G, et al. Anomalous zero-bias conductance peak in aNb–InSb nanowire–Nb hybrid device[J]. Nano Letters, 2012, 12(12): 6414-6419.
[23] DENG M, VAITIEKĖNAS S, HANSEN E B, et al. Majorana bound state in acoupled quantum-dot hybrid-nanowire system[J]. Science, 2016, 354(6319): 1557-1562.
[24] GÜL Ö, ZHANG H, BOMMER J D, et al. Ballistic majorana nanowire devices[J].Nature Nanotechnology, 2018, 13(3): 192-197.
[25] ZHANG H, LIU D E, WIMMER M, et al. Next steps of quantum transport inmajorana nanowire devices[J]. Nature Communications, 2019, 10(1): 5128.- 109 -参考文献
[26] ANTIPOV A E, BARGERBOS A, WINKLER G W, et al. Effects of gate-inducedelectric fields on semiconductor majorana nanowires[J]. Physical Review X, 2018,8(3): 031041.
[27] MACKENZIE A P, MAENO Y. The superconductivity of Sr2RuO4 and the physicsof spin-triplet pairing[J]. Reviews of Modern Physics, 2003, 75(2): 657.
[28] LIU Q, CHEN C, ZHANG T, et al. Robust and clean majorana zero mode in thevortex core of high-temperature superconductor (Li0.84Fe0.16)OHFeSe[J]. PhysicalReview X, 2018, 8(4): 041056.
[29] YUAN H, GROSCHE F, DEPPE M, et al. Observation of two distinct superconductingphases in CeCu2Si2[J]. Science, 2003, 302(5653): 2104-2107.
[30] GURARIE V, RADZIHOVSKY L, ANDREEV A. Quantum phase transitionsacross a p-wave feshbach resonance[J]. Physical Review Letters, 2005, 94(23):230403.
[31] LUKE G M, FUDAMOTO Y, KOJIMA K, et al. Time-reversal symmetry-breakingsuperconductivity in Sr2RuO4[J]. Nature, 1998, 394(6693): 558-561.
[32] FU L, KANE C. Superconducting proximity effect and majorana fermions atthe surface of a topological insulator[J]. Physical Review Letters, 2008, 100(9):096407.
[33] SUN H H, ZHANG K W, HU L H, et al. Majorana zero mode detected with spinselective andreev reflection in the vortex of a topological superconductor[J]. PhysicalReview Letters, 2016, 116(25): 257003.
[34] XU J P, WANG M X, LIU Z L, et al. Experimental detection of a majoranamode in the core of a magnetic vortex inside a topological insulator-superconductorBi2Te3/NbSe2 heterostructure[J]. Physical Review Letters, 2015, 114(1): 017001.
[35] SUN H H, JIA J F. Detection of majorana zero mode in the vortex[J]. NPJ QuantumMaterials, 2017, 2(1): 34.
[36] CHU C G, CHEN J J, WANG A Q, et al. Broad and colossal edge supercurrentin dirac semimetal Cd3As2 josephson junctions[J]. Nature Communications, 2023,14(1): 6162.
[37] KEZILEBIEKE S, HUDA M N, VAŇO V, et al. Topological superconductivity ina van der waals heterostructure[J]. Nature, 2020, 588(7838): 424-428.
[38] FROLOV S, MANFRA M, SAU J. Topological superconductivity in hybrid devices[J]. Nature Physics, 2020, 16(7): 718-724.- 110 -哈尔滨工业大学博士学位论文
[39] BURSET P, LU B, TKACHOV G, et al. Superconducting proximity effect in threedimensionaltopological insulators in the presence of a magnetic field[J]. PhysicalReview B, 2015, 92(20): 205424.
[40] 杨振宁, 杨振玉. 基本粒子发现简史[M]. 上海科学技术出版社, 1963.
[41] 阎守胜. 固体物理基础[M]. 北京大学出版社, 2000.
[42] ANDERSON P W. More is different: Broken symmetry and the nature of the hierarchicalstructure of science.[J]. Science, 1972, 177(4047): 393-396.
[43] ANDERSON P W. Concepts in solids: lectures on the theory of solids: Vol. 58[M]. World Scientific, 1997.
[44] ANDERSON P W. Basic notions of condensed matter physics[M]. CRC press,2018.
[45] GINZBURG V L, GINZBURG V L, LANDAU L. On the theory of superconductivity[M]. Springer, 2009.
[46] KLITZING K V, DORDA G, PEPPER M. New method for high-accuracy determinationof the fine-structure constant based on quantized hall resistance[J]. PhysicalReview Letters, 1980, 45(6): 494.
[47] KANE C L, MELE E J. A new spin on the insulating state[J]. Science, 2006, 314(5806): 1692-1693.
[48] THOULESS D J, KOHMOTO M, NIGHTINGALE M P, et al. Quantized hallconductance in a two-dimensional periodic potential[J]. Physical Review Letters,1982, 49(6): 405.
[49] KANE C L, MELE E J. Z2 topological order and the quantum spin hall effect[J].Physical Review Letters, 2005, 95(14): 146802.
[50] BERNEVIG B A, HUGHES T L, ZHANG S C. Quantum spin hall effect andtopological phase transition in HgTe quantum wells[J]. Science, 2006, 314(5806):1757-1761.
[51] PETER Y, CARDONA M. Fundamentals of semiconductors: physics and materialsproperties[M]. Springer Science & Business Media, 2010.
[52] KONIG M, WIEDMANN S, BRUNE C, et al. Quantum spin hall insulator state inhgte quantum wells[J]. Science, 2007, 318(5851): 766-770.
[53] FU L, KANE C L, MELE E J. Topological insulators in three dimensions[J]. PhysicalReview Letters, 2007, 98(10): 106803.- 111 -参考文献
[54] HASAN M Z, KANE C L. Colloquium: topological insulators[J]. Reviews ofModern Physics, 2010, 82(4): 3045.
[55] HASAN M Z, MOORE J E. Three-dimensional topological insulators[J]. AnnualReview of Condensed Matter Physics, 2011, 2(1): 55-78.
[56] SHEN S Q. Topological insulators: Vol. 174[M]. Springer, 2012.
[57] MOORE J E. The birth of topological insulators[J]. Nature, 2010, 464(7286):194-198.
[58] QI X L, ZHANG S C. Topological insulators and superconductors[J]. Reviews ofModern Physics, 2011, 83(4): 1057.
[59] TOKURA Y, YASUDA K, TSUKAZAKI A. Magnetic topological insulators[J].Nature Reviews Physics, 2019, 1(2): 126-143.
[60] ZHANG H, LIU C X, QI X L, et al. Topological insulators in bi2se3, bi2te3 andsb2te3 with a single dirac cone on the surface[J]. Nature Physics, 2009, 5(6): 438-442.
[61] XIA Y, QIAN D, HSIEH D, et al. Observation of a large-gap topological-insulatorclass with a single dirac cone on the surface[J]. Nature Physics, 2009, 5(6): 398-402.
[62] LU H Z, SHI J, SHEN S Q. Competition between weak localization and antilocalizationin topological surface states[J]. Physical Review Letters, 2011, 107(7):076801.
[63] HE H T, WANG G, ZHANG T, et al. Impurity effect on weak antilocalization in thetopological insulator Bi2Te3[J]. Physical Review Letters, 2011, 106(16): 166805.
[64] ZHANG H, LI H, WANG H, et al. Linear positive and negative magnetoresistancein topological insulator Bi2Te3 flakes[J]. Applied Physics Letters, 2018, 113(11).
[65] LIU H, LIU S, YI Y, et al. Shubnikov–de haas oscillations in n and p type Bi2Te3flakes[J]. 2D Materials, 2015, 2(4): 045002.
[66] WANG Z, SUN Y, CHEN X Q, et al. Dirac semimetal and topological phase transitionsin A3Bi (A= Na, K, Rb)[J]. Physical Review B, 2012, 85(19): 195320.
[67] LV B, WENG H, FU B, et al. Experimental discovery of weyl semimetal TaAs[J].Physical Review X, 2015, 5(3): 031013.
[68] XU S Y, BELOPOLSKI I, ALIDOUST N, et al. Discovery of a weyl fermionsemimetal and topological fermi arcs[J]. Science, 2015, 349(6248): 613-617.- 112 -哈尔滨工业大学博士学位论文
[69] WEYL H, et al. Electron and gravitation[J]. Zeitschrift für Physik, 1929, 56: 330-352.
[70] BURKOV A, HOOK M, BALENTS L. Topological nodal semimetals[J]. PhysicalReview B, 2011, 84(23): 235126.
[71] YAN B, FELSER C. Topological materials: Weyl semimetals[J]. Annual Reviewof Condensed Matter Physics, 2017, 8: 337-354.
[72] JIA S, XU S Y, HASAN M Z. Weyl semimetals, fermi arcs and chiral anomalies[J]. Nature Materials, 2016, 15(11): 1140-1144.
[73] XU S Y, ALIDOUST N, BELOPOLSKI I, et al. Discovery of a weyl fermion statewith fermi arcs in niobium arsenide[J]. Nature Physics, 2015, 11(9): 748-754.
[74] XU N, WENG H, LV B, et al. Observation of weyl nodes and fermi arcs in tantalumphosphide[J]. Nature Communications, 2016, 7(1): 11006.
[75] HUANG X, ZHAO L, LONG Y, et al. Observation of the chiral-anomaly-inducednegative magnetoresistance in 3d weyl semimetal TaAs[J]. Physical Review X,2015, 5(3): 031023.
[76] YANG L, LIU Z, SUN Y, et al. Weyl semimetal phase in the non-centrosymmetriccompound taas[J]. Nature Physics, 2015, 11(9): 728-732.
[77] DENG K, WAN G, DENG P, et al. Experimental observation of topological fermiarcs in type-II weyl semimetal MoTe2[J]. Nature Physics, 2016, 12(12): 1105-1110.
[78] SOLUYANOV A A, GRESCH D, WANG Z, et al. Type-II weyl semimetals[J].Nature, 2015, 527(7579): 495-498.
[79] LI P, WEN Y, HE X, et al. Evidence for topological type-II weyl semimetal WTe2[J]. Nature Communications, 2017, 8(1): 2150.
[80] WANG Y, LIU E, LIU H, et al. Gate-tunable negative longitudinal magnetoresistancein the predicted type-II weyl semimetal WTe2[J]. Nature Communications,2016, 7(1): 13142.
[81] FRENZEL A J, HOMES C C, GIBSON Q D, et al. Anisotropic electrodynamicsof type-II weyl semimetal candidate WTe2[J]. Physical Review B, 2017, 95(24):245140.
[82] LI P, ZHANG C, WEN Y, et al. Anisotropic planar hall effect in the type-II topologicalweyl semimetal WTe2[J]. Physical Review B, 2019, 100(20): 205128.
[83] ALI M N, XIONG J, FLYNN S, et al. Large, non-saturating magnetoresistance inWTe2[J]. Nature, 2014, 514(7521): 205-208.- 113 -参考文献
[84] BELOPOLSKI I, XU S Y, SANCHEZ D S, et al. Criteria for directly detectingtopological fermi arcs in weyl semimetals[J]. Physical Review Letters, 2016, 116(6): 066802.
[85] BERASTEGUI P, HULL S, ERIKSSON S. A low-temperature structural phasetransition in CsPbF3[J]. Journal of Physics: Condensed Matter, 2001, 13(22): 5077.
[86] MANOLIKAS C, VAN LANDUYT J, AMELINCKX S. Electron microscopy andelectron diffraction study of the domain structures, the dislocation fine structure,and the phase transformations in 𝛽-MoTe2[J]. Physica Status Solidi (a), 1979, 53(1): 327-338.
[87] ZHOU Q, RHODES D, ZHANG Q, et al. Hall effect within the colossal magnetoresistivesemimetallic state of MoTe2[J]. Physical Review B, 2016, 94(12):121101.
[88] QI Y, NAUMOV P G, ALI M N, et al. Superconductivity in weyl semimetal candidateMoTe2[J]. Nature Communications, 2016, 7(1): 11038.
[89] PAN X C, CHEN X, LIU H, et al. Pressure-driven dome-shaped superconductivityand electronic structural evolution in tungsten ditelluride[J]. Nature Communications,2015, 6(1): 7805.
[90] SUDEROW H, TISSEN V, BRISON J, et al. Pressure induced effects on the fermisurface of superconducting 2H- NbSe2[J]. Physical Review Letters, 2005, 95(11):117006.
[91] FUCHS G, DRECHSLER S L, KOZLOVA N, et al. High-field pauli-limiting behaviorand strongly enhanced upper critical magnetic fields near the transition temperatureof an arsenic-deficient LaO0.9F0.1FeAs1𝛿 superconductor[J]. PhysicalReview Letters, 2008, 101(23): 237003.
[92] RHODES D A, JINDAL A, YUAN N F, et al. Enhanced superconductivity inmonolayer T𝑑-MoTe2[J]. Nano Letters, 2021, 21(6): 2505-2511.
[93] CHEN F, LUO X, XIAO R, et al. Superconductivity enhancement in the S-dopedweyl semimetal candidate MoTe2[J]. Applied Physics Letters, 2016, 108(16).
[94] JINDAL A, SAHA A, LI Z, et al. Coupled ferroelectricity and superconductivityin bilayer T𝑑-MoTe2[J]. Nature, 2023, 613(7942): 48-52.
[95] TAKAHASHI H, AKIBA T, IMURA K, et al. Anticorrelation between polar latticeinstability and superconductivity in the weyl semimetal candidate MoTe2[J].Physical Review B, 2017, 95(10): 100501.- 114 -哈尔滨工业大学博士学位论文
[96] LUO X, CHEN F, ZHANG J, et al. T𝑑-MoTe2: A possible topological superconductor[J]. Applied Physics Letters, 2016, 109(10).
[97] NAIDYUK Y, KVITNITSKAYA O, BASHLAKOV D, et al. Surface superconductivityin the weyl semimetal MoTe2 detected by point contact spectroscopy[J].2D Materials, 2018, 5(4): 045014.
[98] GAN Y, CHO C W, LI A, et al. Giant enhancement of superconductivity in fewlayers MoTe2[J]. Chinese Physics B, 2019, 28(11): 117401.
[99] HEIKES C, LIU I L, METZ T, et al. Mechanical control of crystal symmetry andsuperconductivity in weyl semimetal MoTe2[J]. Physical Review Materials, 2018,2(7): 074202.
[100] PIVA M, KUTELAK L, BORTH R, et al. Superconducting pairing symmetry inMoTe2[J]. Physical Review Materials, 2023, 7(11): L111801.
[101] GUGUCHIA Z, VON ROHR F, SHERMADINI Z, et al. Signatures of the topologicals¸ superconducting order parameter in the type-II weyl semimetal T𝑑-MoTe2[J]. Nature Communications, 2017, 8(1): 1082.
[102] TAMAI A, WU Q, CUCCHI I, et al. Fermi arcs and their topological characterin the candidate type-II weyl semimetal MoTe2[J]. Physical Review X, 2016, 6(3):031021.
[103] KHASANOV R, GUGUCHIA Z, MAISURADZE A, et al. High pressure researchusing muons at the paul scherrer institute[J]. High Pressure Research, 2016, 36(2):140-166.
[104] MAISURADZE A, SHENGELAYA A, AMATO A, et al. Muon spin rotation investigationof the pressure effect on the magnetic penetration depth in YBa2Cu3O𝑥[J]. Physical Review B, 2011, 84(18): 184523.
[105] GUGUCHIA Z, AMATO A, KANG J, et al. Direct evidence for a pressure-inducednodal superconducting gap in the Ba0.65Rb0.35Fe2As2 superconductor[J]. NatureCommunications, 2015, 6(1): 8863.
[106] MAZIN I, SINGH D J, JOHANNES M, et al. Unconventional superconductivitywith a sign reversal in the order parameter of LaFeAsO1𝑥 F 𝑥[J]. Physical ReviewLetters, 2008, 101(5): 057003.
[107] HIRSCHFELD P, KORSHUNOV M, MAZIN I. Gap symmetry and structureof Fe-based superconductors[J]. Reports on Progress in Physics, 2011, 74(12):124508.- 115 -参考文献
[108] STEWART G. Superconductivity in iron compounds[J]. Reviews of ModernPhysics, 2011, 83(4): 1589.
[109] CHUBUKOV A. Pairing mechanism in Fe-based superconductors[J]. Annual Reviewof Condensed Matter Physics, 2012, 3(1): 57-92.
[110] WERTHAMER N, HELFAND E, HOHENBERG P. Temperature and purity dependenceof the superconducting critical field, H𝑐2. III. electron spin and spin-orbiteffects[J]. Physical Review, 1966, 147(1): 295.
[111] LI Y, GU Q, CHEN C, et al. Nontrivial superconductivity in topologicalMoTe2𝑥S𝑥 crystals[J]. Proceedings of the National Academy of Sciences, 2018,115(38): 9503-9508.
[112] GUREVICH A. Enhancement of the upper critical field by nonmagnetic impuritiesin dirty two-gap superconductors[J]. Physical Review B, 2003, 67(18): 184515.
[113] LUO J, LI Y, ZHANG J, et al. Possible unconventional two-band superconductivityin MoTe2[J]. Physical Review B, 2020, 102(6): 064502.
[114] ZHANG Y, FEI F, LIU R, et al. Enhanced superconductivity and upper criticalfield in Ta-Doped Weyl Semimetal T𝑑-MoTe2[J]. Advanced Materials, 2023, 35(19): 2207841.
[115] CUI J, LI P, ZHOU J, et al. Transport evidence of asymmetric spin–orbit couplingin few-layer superconducting 1T𝑑-MoTe2[J]. Nature communications, 2019, 10(1):2044.
[116] TINKHAM M. Introduction to superconductivity[M]. Courier Corporation, 2004.
[117] BARDEEN J, COOPER L N, SCHRIEFFER J R. Theory of superconductivity[J].Physical Review, 1957, 108(5): 1175.
[118] KITTEL C, MCEUEN P. Introduction to solid state physics[M]. John Wiley &Sons, 2018.
[119] KHIM S, KIM J W, CHOI E S, et al. Evidence for dominant pauli paramagnetic effectin the upper critical field of single-crystalline FeTe0.6Se0.4[J]. Physical ReviewB, 2010, 81(18): 184511.
[120] SINGH A K, WU T C, SONG M Y, et al. Determination of spin-orbit scatteringlifetime at the interface of LaAlO3/SrTiO3 from the superconducting upper criticalfields[J]. Physical Review Research, 2020, 2(1): 013311.
[121] KLEMM R A, LUTHER A, BEASLEY M. Theory of the upper critical field inlayered superconductors[J]. Physical Review B, 1975, 12(3): 877.- 116 -哈尔滨工业大学博士学位论文
[122] GARIGLIO S, REYREN N, CAVIGLIA A, et al. Superconductivity at theLaAlO3/SrTiO3 interface[J]. Journal of Physics: Condensed Matter, 2009, 21(16):164213.
[123] ZHANG Z, JIANG W, SHAO T, et al. A spin–orbit scattering–enhanced high uppercritical field at the LaAlO3/KTaO3 (111) superconducting interface[J]. NewJournal of Physics, 2023, 25(2): 023023.
[124] FULDE P, FERRELL R A. Superconductivity in a strong spin-exchange field[J].Physical Review, 1964, 135(3A): A550.
[125] LARKIN A I, OVCHINNIKOV Y N. Quasiclassical method in the theory of superconductivity[J]. Sov Phys JETP, 1969, 28(6): 1200-1205.
[126] ESCHRIG M. Spin-polarized supercurrents for spintronics[J]. Physics Today,2011, 64(1): 43-49.
[127] MATSUDA Y, SHIMAHARA H. Fulde–Ferrell–Larkin–Ovchinnikov state inheavy fermion superconductors[J]. Journal of the Physical Society of Japan, 2007,76(5): 051005.
[128] CHO C W, LYU J, NG C Y, et al. Evidence for the Fulde–Ferrell–Larkin–Ovchinnikov state in bulk NbS2[J]. Nature Communications, 2021, 12(1): 3676.
[129] SUGIURA S, ISONO T, TERASHIMA T, et al. Fulde–Ferrell–Larkin–Ovchinnikov and vortex phases in a layered organic superconductor[J]. NPJ QuantumMaterials, 2019, 4(1): 7.
[130] KASAHARA S, SATO Y, LICCIARDELLO S, et al. Evidence for an Fulde-Ferrell-Larkin-Ovchinnikov state with segmented vortices in the BCS-BECcrossoversuperconductor FeSe[J]. Physical Review Letters, 2020, 124(10):107001.
[131] AOKI D, ISHIDA K, FLOUQUET J. Review of U-based ferromagnetic superconductors:comparison between UGe2, URhGe, and UCoGe[J]. Journal of thePhysical Society of Japan, 2019, 88(2): 022001.
[132] BERGERET F, VOLKOV A, EFETOV K. Long-range proximity effects insuperconductor-ferromagnet structures[J]. Physical Review Letters, 2001, 86(18):4096.
[133] LINDER J, ROBINSON J W. Superconducting spintronics[J]. Nature Physics,2015, 11(4): 307-315.- 117 -参考文献
[134] LU J, ZHELIUK O, LEERMAKERS I, et al. Evidence for two-dimensional Isingsuperconductivity in gated MoS2[J]. Science, 2015, 350(6266): 1353-1357.
[135] XI X, WANG Z, ZHAO W, et al. Ising pairing in superconducting NbSe2 atomiclayers[J]. Nature Physics, 2016, 12(2): 139-143.
[136] LI W, HUANG J, LI X, et al. Recent progresses in two-dimensional Ising superconductivity[J]. Materials Today Physics, 2021, 21: 100504.
[137] ZHOU B T, YUAN N F, JIANG H L, et al. Ising superconductivity and Majoranafermions in transition-metal dichalcogenides[J]. Physical Review B, 2016, 93(18):180501.
[138] WICKRAMARATNE D, KHMELEVSKYI S, AGTERBERG D F, et al. Isingsuperconductivity and magnetism in NbSe2[J]. Physical Review X, 2020, 10(4):041003.
[139] WANG C, LIAN B, GUO X, et al. Type-II Ising superconductivity in twodimensionalmaterials with spin-orbit coupling[J]. Physical Review Letters, 2019,123(12): 126402.
[140] SWARTZ P, HART JR H. Asymmetries of the critical surface current in type-IIsuperconductors[J]. Physical Review, 1967, 156(2): 412.
[141] ANDO F, MIYASAKA Y, LI T, et al. Observation of superconducting diode effect[J]. Nature, 2020, 584(7821): 373-376.
[142] NADEEM M, FUHRER M S, WANG X. The superconducting diode effect[J].Nature Reviews Physics, 2023, 5(10): 558-577.
[143] LYU Y Y, JIANG J, WANG Y L, et al. Superconducting diode effect via conformalmappednanoholes[J]. Nature Communications, 2021, 12(1): 2703.
[144] WU H, WANG Y, XU Y, et al. The field-free Josephson diode in a van der Waalsheterostructure[J]. Nature, 2022, 604(7907): 653-656.
[145] BAUMGARTNER C, FUCHS L, COSTA A, et al. Supercurrent rectification andmagnetochiral effects in symmetric Josephson junctions[J]. Nature Nanotechnology,2022, 17(1): 39-44.
[146] JEON K R, KIM J K, YOON J, et al. Zero-field polarity-reversible Josephsonsupercurrent diodes enabled by a proximity-magnetized Pt barrier[J]. Nature Materials,2022, 21(9): 1008-1013.- 118 -哈尔滨工业大学博士学位论文
[147] PAL B, CHAKRABORTY A, SIVAKUMAR P K, et al. Josephson diode effectfrom cooper pair momentum in a topological semimetal[J]. Nature Physics, 2022,18(10): 1228-1233.
[148] TURINI B, SALIMIAN S, CARREGA M, et al. Josephson diode effect in highmobilityInSb nanoflags[J]. Nano Letters, 2022, 22(21): 8502-8508.
[149] LIN J X, SIRIVIBOON P, SCAMMELL H D, et al. Zero-field superconductingdiode effect in small-twist-angle trilayer graphene[J]. Nature Physics, 2022, 18(10): 1221-1227.
[150] HU J, WU C, DAI X. Proposed design of a Josephson diode[J]. Physical ReviewLetters, 2007, 99(6): 067004.
[151] GUTFREUND A, MATSUKI H, PLASTOVETS V, et al. Direct observation of asuperconducting vortex diode[J]. Nature Communications, 2023, 14(1): 1630.
[152] KOPASOV A, KUTLIN A, MEL’NIKOV A. Geometry controlled superconductingdiode and anomalous josephson effect triggered by the topological phase transitionin curved proximitized nanowires[J]. Physical Review B, 2021, 103(14): 144520.
[153] MISAKI K, NAGAOSA N. Theory of the nonreciprocal Josephson effect[J]. PhysicalReview B, 2021, 103(24): 245302.
[154] ZHANG Y, GU Y, LI P, et al. General theory of Josephson diodes[J]. PhysicalReview X, 2022, 12(4): 041013.
[155] DAVYDOVA M, PREMBABU S, FU L. Universal Josephson diode effect[J]. ScienceAdvances, 2022, 8(23): eabo0309.
[156] DAIDO A, IKEDA Y, YANASE Y. Intrinsic superconducting diode effect[J].Physical Review Letters, 2022, 128(3): 037001.
[157] SCAMMELL H D, LI J, SCHEURER M S. Theory of zero-field superconductingdiode effect in twisted trilayer graphene[J]. 2D Materials, 2022, 9(2): 025027.
[158] ILIĆ S, BERGERET F S. Theory of the supercurrent diode effect in rashba superconductorswith arbitrary disorder[J]. Physical Review Letters, 2022, 128(17):177001.
[159] YUAN N F, FU L. Supercurrent diode effect and finite-momentum superconductors[J]. Proceedings of the National Academy of Sciences, 2022, 119(15):e2119548119.- 119 -参考文献
[160] ZINKL B, HAMAMOTO K, SIGRIST M. Symmetry conditions for the superconductingdiode effect in chiral superconductors[J]. Physical Review Research, 2022,4(3): 033167.
[161] MORIMOTO T, NAGAOSA N. Chiral anomaly and giant magnetochiralanisotropy in noncentrosymmetric weyl semimetals[J]. Physical Review Letters,2016, 117(14): 146603.
[162] RIKKEN G, RAUPACH E. Observation of magneto-chiral dichroism[J]. Nature,1997, 390(6659): 493-494.
[163] SELLIER H, BARADUC C, LEFLOCH F, et al. Temperature-induced crossoverbetween 0 and 𝜋 states in S/F/S junctions[J]. Physical Review B, 2003, 68(5):054531.
[164] BUZDIN A. Direct coupling between magnetism and superconducting current inthe josephson 𝜑 0 junction[J]. Physical Review Letters, 2008, 101(10): 107005.
[165] BASELMANS J, MORPURGO A, VAN WEES B, et al. Reversing the direction ofthe supercurrent in a controllable Josephson junction[J]. Nature, 1999, 397(6714):43-45.
[166] VAN HARLINGEN D J. Phase-sensitive tests of the symmetry of the pairing statein the high-temperature superconductors—evidence for d𝑥2𝑦2 symmetry[J]. Reviewsof Modern Physics, 1995, 67(2): 515.
[167] SZOMBATI D, NADJ-PERGE S, CAR D, et al. Josephson 0-junction in nanowirequantum dots[J]. Nature Physics, 2016, 12(6): 568-572.
[168] BUZDIN A, KOSHELEV A. Periodic alternating 0-and 𝜋-junction structures asrealization of 𝜑-josephson junctions[J]. Physical Review B, 2003, 67(22): 220504.
[169] BERGERET F, TOKATLY I. Theory of diffusive 𝜑0 Josephson junctions in thepresence of spin-orbit coupling[J]. Europhysics Letters, 2015, 110(5): 57005.
[170] MURANI A, KASUMOV A, SENGUPTA S, et al. Ballistic edge states in Bismuthnanowires revealed by SQUID interferometry[J]. Nature Communications, 2017,8(1): 15941.
[171] ALIDOUST M, LINDER J. 𝜑-state and inverted Fraunhofer pattern in nonalignedJosephson junctions[J]. Physical Review B, 2013, 87(6): 060503.
[172] ASSOULINE A, FEUILLET-PALMA C, BERGEAL N, et al. Spin-Orbit inducedphase-shift in Bi2Se3 Josephson junctions[J]. Nature Communications, 2019, 10(1): 126.- 120 -哈尔滨工业大学博士学位论文
[173] YUAN N F. Edelstein effect and supercurrent diode effect[A]. 2023.
[174] MANCHON A, KOO H C, NITTA J, et al. New perspectives for Rashba spin–orbitcoupling[J]. Nature Materials, 2015, 14(9): 871-882.
[175] BEENAKKER C. Universal limit of critical-current fluctuations in mesoscopicJosephson junctions[J]. Physical Review Letters, 1991, 67(27): 3836.
[176] FURUSAKI A, TSUKADA M. Dc Josephson effect and Andreev reflection[J].Solid State Communications, 1991, 78(4): 299-302.
[177] WIEDENMANN J, BOCQUILLON E, DEACON R S, et al. 4 𝜋-periodic Josephsonsupercurrent in HgTe-based topological Josephson junctions[J]. Nature communications,2016, 7(1): 10303.
[178] PICÓ-CORTÉS J, DOMÍNGUEZ F, PLATERO G. Signatures of a 4 𝜋-periodicsupercurrent in the voltage response of capacitively shunted topological josephsonjunctions[J]. Physical Review B, 2017, 96(12): 125438.
[179] LAROCHE D, BOUMAN D, VAN WOERKOM D J, et al. Observation of the4𝜋-periodic josephson effect in indium arsenide nanowires[J]. Nature Communications,2019, 10(1): 245.
[180] CHENG M. Superconducting proximity effect on the edge of fractional topologicalinsulators[J]. Physical Review B, 2012, 86(19): 195126.
[181] WANG A Q, LI C Z, LI C, et al. 4 𝜋-periodic supercurrent from surface statesin Cd3As2 nanowire-based josephson junctions[J]. Physical Review Letters, 2018,121(23): 237701.
[182] WILLIAMS J, BESTWICK A, GALLAGHER P, et al. Unconventional Josephsoneffect in hybrid superconductor-topological insulator devices[J]. Physical ReviewLetters, 2012, 109(5): 056803.
[183] SOCHNIKOV I, MAIER L, WATSON C A, et al. Nonsinusoidal current-phase relationshipin Josephson junctions from the 3D topological insulator HgTe[J]. PhysicalReview Letters, 2015, 114(6): 066801.
[184] HART S, REN H, WAGNER T, et al. Induced superconductivity in the quantumspin hall edge[J]. Nature Physics, 2014, 10(9): 638-643.
[185] QIAN X, LIU J, FU L, et al. Quantum spin Hall effect in two-dimensional transitionmetal dichalcogenides[J]. Science, 2014, 346(6215): 1344-1347.- 121 -参考文献
[186] NOWACK K C, SPANTON E M, BAENNINGER M, et al. Imaging currents inHgTe quantum wells in the quantum spin hall regime[J]. Nature Materials, 2013,12(9): 787-791.
[187] LI C Z, WANG A Q, LI C, et al. Reducing electronic transport dimension to topologicalhinge states by increasing geometry size of Dirac semimetal Josephson junctions[J]. Physical Review Letters, 2020, 124(15): 156601.
[188] POTTER A C, KIMCHI I, VISHWANATH A. Quantum oscillations from surfaceFermi arcs in Weyl and Dirac semimetals[J]. Nature Communications, 2014, 5(1):5161.
[189] MOLL P J, NAIR N L, HELM T, et al. Transport evidence for Fermi-arc-mediatedchirality transfer in the Dirac semimetal Cd3As2[J]. Nature, 2016, 535(7611): 266-270.
[190] CHEN C Z, HE J J, ALI M N, et al. Asymmetric josephson effect in inversion symmetrybreaking topological materials[J]. Physical Review B, 2018, 98(7): 075430.
[191] BENALCAZAR W A, BERNEVIG B A, HUGHES T L. Quantized electric multipoleinsulators[J]. Science, 2017, 357(6346): 61-66.
[192] BENALCAZAR W A, BERNEVIG B A, HUGHES T L. Electric multipole moments,topological multipole moment pumping, and chiral hinge states in crystallineinsulators[J]. Physical Review B, 2017, 96(24): 245115.
[193] SONG Z, FANG Z, FANG C. (d-2)-dimensional edge states of rotation symmetryprotected topological states[J]. Physical Review Letters, 2017, 119(24): 246402.
[194] IMHOF S, BERGER C, BAYER F, et al. Topolectrical-circuit realization of topologicalcorner modes[J]. Nature Physics, 2018, 14(9): 925-929.
[195] KHALAF E. Higher-order topological insulators and superconductors protectedby inversion symmetry[J]. Physical Review B, 2018, 97(20): 205136.
[196] SCHINDLER F, COOK A M, VERGNIORY M G, et al. Higher-order topologicalinsulators[J]. Science Advances, 2018, 4(6): eaat0346.
[197] SCHINDLER F, WANG Z, VERGNIORY M G, et al. Higher-order topology inbismuth[J]. Nature Physics, 2018, 14(9): 918-924.
[198] EZAWA M. Higher-order topological insulators and semimetals on the breathingkagome and pyrochlore lattices[J]. Physical Review Letters, 2018, 120(2): 026801.- 122 -哈尔滨工业大学博士学位论文
[199] WIEDER B J, WANG Z, CANO J, et al. Strong and fragile topological Diracsemimetals with higher-order fermi arcs[J]. Nature Communications, 2020, 11(1):627.
[200] TRIFUNOVIC L, BROUWER P W. Higher-order bulk-boundary correspondencefor topological crystalline phases[J]. Physical Review X, 2019, 9(1): 011012.
[201] CHOI Y B, XIE Y, CHEN C Z, et al. Evidence of higher-order topology in multilayerWTe2 from Josephson coupling through anisotropic hinge states[J]. NatureMaterials, 2020, 19(9): 974-979.
[202] WANG Z, WIEDER B J, LI J, et al. Higher-order topology, monopole nodal lines,and the origin of large fermi arcs in transition metal dichalcogenides XTe2 (X= Mo,W)[J]. Physical review letters, 2019, 123(18): 186401.
[203] WANG H X, LIN Z K, JIANG B, et al. Higher-order Weyl semimetals[J]. PhysicalReview Letters, 2020, 125(14): 146401.
[204] YE F, LEE J, HU J, et al. Environmental instability and degradation of single-andfew-layer WTe2 nanosheets in ambient conditions[A]. 2016.
[205] LONGO R C, ADDOU R, SANTOSH K, et al. Intrinsic air stability mechanismsof two-dimensional transition metal dichalcogenide surfaces: basal versus edge oxidation[J]. 2D Materials, 2017, 4(2): 025050.
[206] NAYLOR C H, PARKIN W M, PING J, et al. Monolayer single-crystal 1T-MoTe2grown by chemical vapor deposition exhibits weak antilocalization effect[J]. Nanoletters, 2016, 16(7): 4297-4304.
[207] GROSSE V, PANSOW C, STEPPKE A, et al. Pulsed laser deposition of niobiumthin films for in-situ device fabrication and their superconducting properties[C]//Journal of Physics: Conference Series: Vol. 234. IOP Publishing, 2010: 012015.
[208] AZIZ M J. Film growth mechanisms in pulsed laser deposition[J]. Applied PhysicsA, 2008, 93: 579-587.
[209] BUZDIN A I. Proximity effects in superconductor-ferromagnet heterostructures[J]. Reviews of Modern Physics, 2005, 77(3): 935.
[210] BARONE A, PATERNO G, et al. Physics and applications of the Josephson effect[M]. 1982.
[211] JOSEPHSON B D. Possible new effects in superconductive tunnelling[J]. PhysicsLetters, 1962, 1(7): 251-253.- 123 -参考文献
[212] ANDERSON P W, ROWELL J M. Probable observation of the Josephson superconductingtunneling effect[J]. Physical Review Letters, 1963, 10(6): 230.
[213] AGREATERMEASUREOFCONF I. Model 6220 DC Current Source Model 6221AC and DC current source[Z].
[214] HE L, JIA Y, ZHANG S, et al. Pressure-induced superconductivity in the threedimensionaltopological dirac semimetal Cd3As2[J]. NPJ Quantum Materials,2016, 1(1): 1-5.
[215] WANG L, GUTIÉRREZ-LEZAMA I, BARRETEAU C, et al. Tuning magnetotransportin a compensated semimetal at the atomic scale[J]. Nature communications,2015, 6(1): 8892.
[216] KEUM D H, CHO S, KIM J H, et al. Bandgap opening in few-layered monoclinicMoTe2[J]. Nature Physics, 2015, 11(6): 482-486.
[217] ANDREEV A. The thermal conductivity of the intermediate state in superconductors[J]. Journal of Experimental and Theoretical Physics, 1964, 46(5): 1823-1828.
[218] BLONDER G, TINKHAM M M, KLAPWIJK T. Transition from metallic to tunnelingregimes in superconducting microconstrictions: Excess current, charge imbalance,and supercurrent conversion[J]. Physical Review B, 1982, 25(7): 4515.
[219] HUANG C, ZHOU B T, ZHANG H, et al. Proximity-induced surface superconductivityin Dirac semimetal Cd3As2[J]. Nature Communications, 2019, 10(1):2217.
[220] HUANG C, NARAYAN A, ZHANG E, et al. Inducing strong superconductivityin WTe2 by a proximity effect[J]. ACS Nano, 2018, 12(7): 7185-7196.
[221] YUAN N F, CHEN X J. Critical field measure for topological superconductivity[A]. 2022.
[222] BRAITHWAITE D, LAPERTOT G, KNAFO W, et al. Evidence for AnisotropicVortex Dynamics and Pauli Limitation in the Upper Critical Field of FeSe1𝑥Te𝑥[J]. Journal of the Physical Society of Japan, 2010, 79(5): 053703.
[223] AUDOUARD A, DRIGO L, DUC F, et al. Tunnel diode oscillator measurements ofthe upper critical magnetic field of FeTe0.5Se0.5[J]. Journal of Physics: CondensedMatter, 2014, 26(18): 185701.
[224] HE W Y, LAW K T. Magnetoelectric effects in gyrotropic superconductors[J].Physical Review Research, 2020, 2(1): 012073.- 124 -哈尔滨工业大学博士学位论文
[225] DUBOS P, COURTOIS H, PANNETIER B, et al. Josephson critical current in along mesoscopic SNS junction[J]. Physical Review B, 2001, 63(6): 064502.
[226] ZAIKIN A, ZHARKOV G. On the theory of wide dirty SNS junction[J]. FizikaNizkikh Temperatur, 1981, 7(3): 375-378.
[227] BOBKOVA I, BOBKOV A, SILAEV M. Magnetoelectric effects in Josephsonjunctions[J]. Journal of Physics: Condensed Matter, 2022, 34(35): 353001.
[228] HOU Y, NICHELE F, CHI H, et al. Ubiquitous superconducting diode effect insuperconductor thin films[J]. Physical Review Letters, 2023, 131(2): 027001.
[229] MOLL P J, GESHKENBEIN V B. Evolution of superconducting diodes[J]. NaturePhysics, 2023, 19(10): 1379-1380.
[230] SIVAKUMAR P K, AHARI M T, KIM J K, et al. Long-range Phase Coherenceand Tunable Second Order 𝜑0-Josephson Effect in a Dirac semimetal 1T-PtTe2[A].2024.
[231] HART J L, BHATT L, ZHU Y, et al. Emergent layer stacking arrangements inc-axis confined MoTe2[J]. Nature Communications, 2023, 14(1): 4803.
[232] WANG W, KIM S, LIU M, et al. Evidence for an edge supercurrent in the Weylsuperconductor MoTe2[J]. Science, 2020, 368(6490): 534-537.
[233] KIM S, LEI S, SCHOOP L M, et al. Edge supercurrent reveals competition betweencondensates in a weyl superconductor[J]. Nature Physics, 2024: 1-8.
[234] BARDEEN J, JOHNSON J L. Josephson current flow in pure superconductingnormal-superconducting junctions[J]. Physical Review B, 1972, 5(1): 72.
[235] SVIDZINSKY A, ANTSYGINA T, BRATUS’ E. Concerning the theory of theJosephson effect in pure SNS junctions[J]. Journal of Low Temperature Physics,1973, 10: 131-136.
[236] PARK J, LEE J H, LEE G H, et al. Short ballistic Josephson coupling in planargraphene junctions with inhomogeneous carrier doping[J]. Physical Review Letters,2018, 120(7): 077701.
[237] LEE G H, KIM S, JHI S H, et al. Ultimately short ballistic vertical graphene Josephsonjunctions[J]. Nature Communications, 2015, 6(1): 6181.
[238] DYNES R, FULTON T. Supercurrent density distribution in Josephson junctions[J]. Physical Review B, 1971, 3(9): 3015.
修改评论