[1] WANG Q, XU J, GENG R, et al. High performance one-for-all phototheranostics: NIR-II fluorescence imaging guided mitochondria-targeting phototherapy with a single-dose injection and 808 nm laser irradiation[J]. Biomaterials, 2020, 231: 119671.
[2] LI X, LIU L, LI S, et al. Biodegradable π-conjugated oligomer nanoparticles with high photothermal conversion efficiency for cancer theranostics[J]. ACS Nano, 2019, 13(11): 12901-12911.
[3] LI X, FANG F, SUN B, et al. Near-infrared small molecule coupled with rigidness and flexibility for high-performance multimodal imaging-guided photodynamic and photothermal synergistic therapy[J]. Nanoscale Horizons, 2021, 6(2): 177-185.
[4] LI L, SHAO C, LIU T, et al. An NIR-II emissive photosensitizer for hypoxia-tolerant photodynamic theranostics[J]. Advanced Materials, 2020, 32(45): 2003471.
[5] CAI Y, WEI Z, SONG C, et al. Novel acceptor–donor–acceptor structured small molecule-based nanoparticles for highly efficient photothermal therapy[J]. Chemical Communications, 2019, 55(61): 8967-8970.
[6] GAO X, CUI Y, LEVENSON R M, et al. In vivo cancer targeting and imaging with semiconductor quantum dots[J]. Nature Biotechnology, 2004, 22(8): 969-976.
[7] WANG S, ZHANG C, FANG F, et al. Beyond traditional light: NIR-II light activated photosensitizers for cancer therapy[J]. Journal of Materials Chemistry B, 2023, 11, 8315-8326.
[8] WANG L, LI N, WANG W, et al. Benzobisthiadiazole-based small molecular Near-Infrared-II fluorophores: from molecular engineering to nanophototheranostics[J]. ACS Nano, 2024, 18(6): 4683-4703.
[9] LIU M, YE J, LIU S, et al. Turning silica into enzymes by hydrogenation: simultaneously achieving oxygen vacancy engineering and tumor adaptive accumulation for NIR‐II‐potentiated therapy[J]. Advanced Functional Materials, 2023, 33(50): 2306392.
[10] LI J, KANG M, ZHANG Z, et al. Synchronously manipulating absorption and extinction coefficient of semiconducting polymers via precise dual‐acceptor engineering for NIR‐II excited photothermal theranostics[J]. Angewandte Chemie International Edition, 2023, 62(20): e202301617.
[11] ANTARIS A L, CHEN H, CHENG K, et al. A small-molecule dye for NIR-II imaging[J]. Nature Materials, 2016, 15(2): 235-242.
[12] WELSHER K, LIU Z, SHERLOCK S P, et al. A route to brightly fluorescent carbon nanotubes for near-infrared imaging in mice[J]. Nature Nanotechnology, 2009, 4(11): 773-780.
[13] HONG G, ROBINSON J T, ZHANG Y, et al. In vivo fluorescence imaging with Ag2S quantum dots in the second near-infrared region[J]. Angewandte Chemie International Edition, 2012, 51(39): 9818-9821.
[14] HE J, HUA S, ZHANG D, et al. SERS/NIR-II optical nanoprobes for multidimensional tumor Imaging from living subjects, pathology, and single cells and guided NIR-II photothermal therapy[J]. Advanced Functional Materials, 2022, 32(46): 2208028.
[15] DONG B, LI C, CHEN G, et al. Facile synthesis of highly photoluminescent Ag2Se quantum dots as a new fluorescent probe in the second near-infrared window for in vivo imaging[J]. Chemistry of Materials, 2013, 25(12): 2503-2509.
[16] CAI Y, WEI Z, SONG C, et al. Optical nano-agents in the second near-infrared window for biomedical applications[J]. Chemical Society Reviews, 2019, 48(1): 22-37.
[17] ZHANG Z, CHEN D, LIU Z, et al. Near-infrared polymer dots with aggregation-induced emission for tumor imaging[J]. ACS Applied Polymer Materials, 2020, 2(1): 74-79.
[18] YAHIA-AMMAR A, SIERRA D, MÉROLA F, et al. Self-assembled gold nanoclusters for bright fluorescence imaging and enhanced drug delivery[J]. ACS Nano, 2016, 10(2): 2591-2599.
[19] WEI Z, XIN F, YANG S, et al. Genetically engineered cell membrane modified conjugated polymer nanoparticles for NIR-II photothermal therapy[J]. Advanced Materials Interfaces, 2022, 9(21): 2200348.
[20] ZHU X, LIU C, HU Z, et al. High brightness NIR-II nanofluorophores based on fused-ring acceptor molecules[J]. Nano Research, 2020, 13(9): 2570-2575.
[21] WANG Q, XU J, GENG R, et al. High performance one-for-all phototheranostics: NIR-II fluorescence imaging guided mitochondria-targeting phototherapy with a single-dose injection and 808 nm laser irradiation[J]. Biomaterials, 2020, 231: 119671.
[22] LIN Y, WANG J, ZHANG Z-G, et al. An electron acceptor challenging fullerenes for efficient polymer solar cells[J]. Advanced Materials, 2015, 27(7): 1170-1174.
[23] ANTARIS A L, CHEN H, DIAO S, et al. A high quantum yield molecule-protein complex fluorophore for near-infrared II imaging[J]. Nature Communications, 2017, 8(1): 15269.
[24] WU J, YOU L, LAN L, et al. Semiconducting polymer nanoparticles for centimeters-deep photoacoustic imaging in the second near-infrared window[J]. Advanced Materials, 2017, 29(41): 1703403.
[25] WANG Q, DAI Y, XU J, et al. All-in-one phototheranostics: single laser triggers NIR-II fluorescence/photoacoustic imaging guided photothermal/photodynamic/chemo combination therapy[J]. Advanced Functional Materials, 2019, 29(31): 1901480.
[26] WANG L V, HU S. Photoacoustic tomography: in vivo imaging from organelles to organs[J]. Science, 2012, 335(6075): 1458-1462.
[27] JIANG Y, UPPUTURI P K, XIE C, et al. Broadband absorbing semiconducting polymer nanoparticles for photoacoustic imaging in second near-infrared window[J]. Nano Letters, 2017, 17(8): 4964-4969.
[28] CHEN J, QI J, CHEN C, et al. Tocilizumab–conjugated polymer nanoparticles for NIR-II photoacoustic-imaging-guided therapy of rheumatoid arthritis[J]. Advanced Materials, 2020, 32(37): 2003399.
[29] BAI Y, HUA J, ZHAO J, et al. A silver-induced absorption red-shifted dual-targeted nanodiagnosis-treatment agent for NIR-II photoacoustic imaging-guided photothermal and ROS simultaneously enhanced immune checkpoint blockade antitumor therapy[J]. Advanced Science,2024, 11(11): 2306375.
[30] YIN X, WU C, ZHANG Z, et al. Highly reliable CuCu low temperature bonding using SAC305 solder with RGO interlayer[J]. Microelectronics Reliability, 2022, 129: 114483.
[31] XIE Z, FAN T, AN J, et al. Emerging combination strategies with phototherapy in cancer nanomedicine[J]. Chemical Society Reviews, 2020, 49(22): 8065-8087.
[32] LI X, LOVELL J F, YOON J, et al. Clinical development and potential of photothermal and photodynamic therapies for cancer[J]. Nature Reviews Clinical Oncology, 2020, 17(11): 657-674.
[33] JIANG Z, ZHANG C, WANG X, et al. A borondifluoride‐complex‐based photothermal agent with an 80 % photothermal conversion efficiency for photothermal therapy in the NIR‐II window[J]. Angewandte Chemie International Edition, 2021, 60(41): 22376-22384.
[34] BAGHDASARYAN A, LIU H, REN F, et al. Intratumor injected gold molecular clusters for NIR-II imaging and cancer therapy[J]. Proceedings of the National Academy of Sciences, 2024, 121(5): e2318265121.
[35] WANG F, WAN H, MA Z, et al. Light-sheet microscopy in the near-infrared II window[J]. Nature Methods, 2019, 16(6): 545-552.
[36] CHANG Y, CHEN H, XIE X, et al. Bright Tm3+-based downshifting luminescence nanoprobe operating around 1800 nm for NIR-IIb and c bioimaging[J]. Nature Communications, 2023, 14(1): 1-9.
[37] NAGAI Y, HAMANO R, NAKAMURA K, et al. Bright NIR-II fluorescence from biocompatible gel-coated carbon nanotubes for in vivo imaging[J]. Carbon, 2024, 218: 118728.
[38] DIAO S, BLACKBURN J L, HONG G, et al. Fluorescence imaging in vivo at wavelengths beyond 1500 nm[J]. Angewandte Chemie International Edition, 2015, 54(49): 14758-14762.
[39] DANG X, GU L, QI J, et al. Layer-by-layer assembled fluorescent probes in the second near-infrared window for systemic delivery and detection of ovarian cancer[J]. Proceedings of the National Academy of Sciences, 2016, 113(19): 5179-5184.
[40] HONG G, ROBINSON J T, ZHANG Y, et al. In vivo fluorescence imaging with Ag2S quantum dots in the second near-infrared region[J]. Angewandte Chemie International Edition, 2012, 51(39): 9818-9821.
[41] Zhang H, Fan Y, Pei P, et al. Tm3+‐sensitized NIR‐II fluorescent nanocrystals for in vivo information storage and decoding[J]. Angewandte Chemie International Edition, 2019, 58(30): 10153-10157.
[42] TONG L, CAO J, WANG K, et al. Lanthanide-doped nanomaterials for tumor diagnosis and treatment by second near-infrared fluorescence imaging[J]. Advanced Optical Materials, [no date], 2024, 12(4): 2301767.
[43] WEI Z, DUAN G, HUANG B, et al. Rapidly liver-clearable rare-earth core-shell nanoprobe for dual-modal breast cancer imaging in the second near-infrared window[J]. Journal of Nanobiotechnology, 2021, 19(1): 369.
[44] MENG J, CUI Y, WANG Y. Rare earth-doped nanocrystals for bioimaging in the near-infrared region[J]. Journal of Materials Chemistry B, 2022, 10(42): 8596-8615.
[45] Lou H, Ji A, Qu C, et al. A small-molecule based organic nanoparticle for photothermal therapy and near-infrared-IIb imaging[J]. ACS Applied Materials & Interfaces, 2022, 14(31): 35454-35465.
[46] LIU S, XU W, LI X, et al. BOIMPY-based NIR-II fluorophore with high brightness and long absorption beyond 1000 nm for in vivo bioimaging: synergistic Steric regulation strategy[J]. ACS Nano, 2022, 16(10): 17424-17434.
[47] FENG Z, LI Y, CHEN S, et al. Engineered NIR-II fluorophores with ultralong-distance molecular packing for high-contrast deep lesion identification[J]. Nature Communications, 2023, 14(1): 5017.
[48] DANG Z, LIU X, DU Y, et al. Ultra-bright heptamethine dye clusters based on a self-adaptive co-assembly strategy for NIR-IIb biomedical imaging[J]. Advanced Materials, 2023, 35(46): 2306773.
[49] LI Q, ZEMAN IV C J, MA Z, et al. Bright NIR-II photoluminescence in rod-shaped icosahedral gold nanoclusters[J]. Small, 2021, 17(11): 2007992.
[50] DAN Q, YUAN Z, ZHENG S, et al. Gold nanoclusters-based NIR-II photosensitizers with catalase-like activity for boosted photodynamic therapy[J]. Pharmaceutics, 2022, 14(8): 1645.
[51] HAO W, LIU S, LIU H, et al. In vivo neuroelectrophysiological monitoring of atomically precise Au25 clusters at an ultrahigh injected Dose[J]. ACS Omega, 2020, 5(38): 24537-24545.
[52] ZHAO H, WANG H, LI H, et al. Magnetic and near-infrared-II fluorescence Au–Gd nanoclusters for imaging-guided sensitization of tumor radiotherapy[J]. Nanoscale Advances, 2022, 4(7): 1815-1826.
[53] LI J, LIU Y, XU Y, et al. Recent advances in the development of NIR-II organic emitters for biomedicine[J]. Coordination Chemistry Reviews, 2020, 415: 213318.
[54] MIAO Y, GU C, ZHU Y, et al. Recent progress in fluorescence imaging of the near-infrared II window[J]. ChemBioChem, 2018, 19(24): 2522-2541.
[55] P P, Y C, C S, et al. X-ray-activated persistent luminescence nanomaterials for NIR-II imaging[J]. Nature Nanotechnology, 2021, 16(9): 1011-1018.
[56] LIU H, HONG G, LUO Z, et al. Atomic-precision gold clusters for NIR-II imaging[J]. Advanced Materials, 2019, 31(46): 1901015.
[57] LI D, GAMAGE R S, OLIVER A G, et al. Doubly strapped zwitterionic NIR‐I and NIR‐II heptamethine cyanine dyes for bioconjugation and fluorescence imaging[J]. Angewandte Chemie International Edition, 2023, 62(28): e202305062.
[58] LI B, LU L, ZHAO M, et al. An efficient 1064 nm NIR-II excitation fluorescent molecular dye for deep-tissue high-resolution dynamic bioimaging[J]. Angewandte Chemie International Edition, 2018, 57(25): 7483-7487.
[59] HUANG Y, MA X, LI J, et al. NIR‐II cyanine nanoparticles for imaging‐guided tumor targeting photothermal therapy with vitamin C enhanced efficacy[J]. Advanced Therapeutics, 2023, 6(7): 2300017.
[60] GAO D, LUO Z, HE Y, et al. Low‐dose NIR‐II preclinical bioimaging using liposome‐encapsulated cyanine dyes[J]. Small, 2023, 19(17): 2206544.
[61] CHEN W, CHENG C-A, COSCO E D, et al. Shortwave infrared imaging with J-aggregates stabilized in hollow mesoporous silica nanoparticles[J]. Journal of the American Chemical Society, 2019, 141(32): 12475-12480.
[62] CHEN T, ZHENG Y, GAO Y, et al. Photostability investigation of a near-infrared-II heptamethine cyanine dye[J]. Bioorganic Chemistry, 2022, 126: 105903.
[63] BANDI V G, LUCIANO M P, SACCOMANO M, et al. Targeted multicolor in vivo imaging over 1,000 nm enabled by nonamethine cyanines[J]. Nature Methods, 2022, 19(3): 353-358.
[64] WANG L, LI N, WANG W, et al. Benzobisthiadiazole-based small molecular near-Infrared-II fluorophores: from molecular engineering to nanophototheranostics[J]. ACS Nano, 2024, 18(6): 4683-4703.
[65] LIANG X, CHEN L, WANG Y, et al. Acceptor engineering of semiconducting oligomers for improved NIR-II fluorescence imaging and therapy[J]. Dyes and Pigments, 2023, 220: 111756.
[66] JI A, LOU H, QU C, et al. Acceptor engineering for NIR-II dyes with high photochemical and biomedical performance[J]. Nature Communications, 2022, 13(1): 3815.
[67] GAO J, YUAN L, MIN Y, et al. D–A–D organic fluorescent probes for NIR-II fluorescence imaging and efficient photothermal therapy of breast cancer[J]. Biomaterials Science, 2024, 12(5): 1320-1331.
[68] FANG L, AI R, WANG W, et al. Hyperbranched polymer dots with strong absorption and high fluorescence quantum yield for In vivo NIR-II imaging[J]. Nano Letters, 2023, 23(18): 8734-8742.
[69] ZHANG X, LI C, GUAN X, et al. A selenium-based NIR-II photosensitizer for a highly effective and safe phototherapy plan[J]. Analyst, 2024, 149(3): 859-869.
[70] YIN B, QIN Q, LI Z, et al. Tongue cancer tailored photosensitizers for NIR-II fluorescence imaging guided precise treatment[J]. Nano Today, 2022, 45: 101550.
[71] YANG K, YU B, LIU W, et al. All-in-one phototheranostics based on BTP-4F-DMO nanoparticles for NIR-II fluorescence/photoacoustic dual-mode imaging and combinational therapy[J]. Chinese Chemical Letters, 2023, 34(6): 107889.
[72] XIAO H, WANG Y, CHEN J, et al. Nir‐Ii emissive superoxide radical photogenerator for photothermal/photodynamic therapy against hypoxic tumor[J]. Advanced Healthcare Materials, 2023: 2303183.
[73] LU B, ZHANG Z, HUANG Y, et al. A nanoplatform for mild-temperature photothermal and type I & II photodynamic therapy in the NIR-II biowindow[J]. Chemical Communications, 2022, 58(74): 10353-10356.
[74] LI Y, YE J, LI Y, et al. Appropriate introduction of nitrile groups to balance NIR-II fluorescence imaging with photothermal therapy/photoacoustic imaging[J]. Polymer Chemistry, 2023, 14(25): 3008-3017.
[75] LI C, JIANG G, YU J, et al. Fluorination enhances NIR‐II emission and photothermal conversion efficiency of phototheranostic agents for imaging‐guided cancer therapy[J]. Advanced Materials, 2023, 35(3): 2208229.
[76] HU Z, FANG C, LI B, et al. First-in-human liver-tumour surgery guided by multispectral fluorescence imaging in the visible and near-infrared-I/II windows[J]. Nature Biomedical Engineering, 2020, 4(3): 259-271.
[77] QIAN K, QU C, MA X, et al. Tuning the near infrared II emitting wavelength of small molecule dyes by single atom alteration[J]. Chemical Communications, 2020, 56(4): 523-526.
[78] ANTARIS A L, CHEN H, CHENG K, et al. A small-molecule dye for NIR-II imaging[J]. Nature Materials, 2016, 15(2): 235-242.
[79] YANG Q, MA Z, WANG H, et al. Rational design of molecular fluorophores for biological imaging in the NIR-II Window[J]. Advanced Materials, 2017, 29(12): 1605497.
[80] LI C, JIANG G, YU J, et al. Fluorination enhances NIR-II emission and photothermal conversion efficiency of phototheranostic agents for imaging-guided cancer therapy[J]. Advanced Materials, 2023, 35(3): 2208229.
[81] GU Y, LAI H, CHEN Z-Y, et al. Chlorination-mediated π–π stacking enhances the photodynamic properties of a NIR-II emitting photosensitizer with extended conjugation[J]. Angewandte Chemie International Edition, 2023, 62(25): e202303476.
[82] YANG Q, MA Z, WANG H, et al. Rational design of molecular fluorophores for biological imaging in the NIR-II window[J]. Advanced Materials, 2017, 29(12): 1605497.
[83] ZHANG J, YANG C, ZHANG R, et al. Biocompatible D–A semiconducting polymer nanoparticle with light-harvesting unit for highly effective photoacoustic imaging guided photothermal therapy[J]. Advanced Functional Materials, 2017, 27(13): 1605094.
[84] LI S, DENG Q, ZHANG Y, et al. Rational design of conjugated small molecules for superior photothermal theranostics in the NIR-II biowindow[J]. Advanced Materials, 2020, 32(33): 2001146.
[85] Pan H, Li S, Kan J, et al. A cruciform phthalocyanine pentad-based NIR-II photothermal agent for highly efficient tumor ablation[J]. Chemical Science, 2019, 10(35): 8246-8252.
[86] ZHANG X, DING B, QU C, et al. A thiopyrylium salt for PET/NIR-II tumor imaging and image-guided surgery[J]. Molecular Oncology, 2020, 14(5): 1089-1100.
[87] ZHANG Q, ZHOU H, CHEN H, et al. Hierarchically nanostructured hybrid platform for tumor delineation and image-guided surgery via NIR-II fluorescence and PET bimodal imaging[J]. Small, 2019, 15(45): 1903382.
[88] LIU Y, ZHEN W, WANG Y, et al. One-dimensional Fe2P acts as a fenton agent in response to NIR II light and ultrasound for deep tumor synergetic theranostics[J]. Angewandte Chemie International Edition, 2019, 58(8): 2407-2412.
[89] CHEN Y, YU H, WANG Y, et al. Thiadiazoloquinoxaline derivative-based NIR-II organic molecules for NIR-II fluorescence imaging and photothermal therapy[J]. Biomaterials Science, 2022, 10(11): 2772-2788.
[90] ZHU Y, LAI H, GUO H, et al. Side-chain-tuned molecular packing allows concurrently boosted photoacoustic imaging and NIR-II fluorescence[J]. Angewandte Chemie International Edition, 2022, 61(15): e202117433.
[91] LI J, SU X, LIU N. Synchronously manipulating absorption and nonradiative transition of croconaine via donor engineering for efficient NIR-II photothermal theranostics[J]. Sensors and Actuators B: Chemical, 2024: 135535.
[92] HU Z, FENG L, YANG P. 2, 1, 3‐benzothiadiazole derivative small molecule fluorophores for NIR‐II bioimaging[J]. Advanced Functional Materials, 2024: 2310818.
[93] HE Z, XU Z, YAN Z, et al. NIR-II excitable water-dispersible two-dimensional conjugated polymer nanoplates for In vivo two-photon luminescence bioimaging[J]. ACS Applied Materials & Interfaces, 2024, 16(1): 142-152.
[94] DAI Y, LENG D, GUO Z, et al. NIR-II excitation self-assembly nanomedicine for targeted NIR-IIa fluorescence imaging-guided cuproptosis-promoted synergistic therapy against triple-negative breast cancer[J]. Chemical Engineering Journal, 2024, 479: 147704.
[95] BI S, DENG Z, HUANG J, et al. NIR‐II Responsive upconversion nanoprobe with simultaneously enhanced single‐band red luminescence and phase/size control for bioimaging and photodynamic therapy[J]. Advanced Materials, 2023, 35(7): 2207038.
[96] AN L, ZHENG L, ZHAO Z, et al. Revisiting molecularly conformation-planarized organic dyes for NIR-II fluorescence imaging[J]. Journal of Materials Chemistry B, 2023, 11(35): 8456-8463.
[97] ZHAO F, ZHANG X, BAI F, et al. Maximum emission peak over 1500 nm of organic assembly for blood–brain barrier‐crossing NIR‐IIb phototheranostics of orthotopic glioblastoma[J]. Advanced Materials, 2023, 35(22): 2208097.
[98] ZHANG P, WANG Y, LIU X, et al. Carboxyl-modified quantum dots for NIR-IIb bone marrow imaging[J]. ACS Applied Materials & Interfaces, 2024, 16(7): 8509-8517.
[99] XING Z, HU Q, WANG W, et al. NIR-IIb emissive transmembrane voltage nano-indicator for optical monitoring of electrophysiological activities in vivo[J]. Materials Horizons, 2024.
[100] WANG X, LI M, ZHENG X, et al. Dye-triplet-sensitized downshifting nanoprobes with ratiometric dual-NIR-IIb emission for accurate in Vivo detection[J]. Analytical Chemistry, 2023, 95(41): 15264-15275.
[101] JIANG Z, YANG Z, LI W. Self‐luminous probe with one‐step energy conversion from bioluminescence to NIR‐IIb[J]. Advanced Healthcare Materials, 2023, 12(32): 2302089.
[102] JIA T, DU J, YANG J, et al. Metalloporphyrin MOFs‐based nanoagent enabling tumor microenvironment responsive sonodynamic therapy of intracranial glioma signaled by NIR‐IIb luminescence imaging[J]. Advanced Functional Materials, 2024, 34(3): 2307816.
[103] FANG Z, WANG C, YANG J, et al. Oxyhaemoglobin saturation NIR-IIb imaging for assessing cancer metabolism and predicting the response to immunotherapy[J]. Nature Nanotechnology, 2024, 19(1): 124-130.
[104] DANG Z, LIU X, DU Y, et al. Ultra‐bright heptamethine dye clusters based on a self‐adaptive co‐assembly strategy for NIR‐IIb biomedical imaging[J]. Advanced Materials, 2023, 35(46): 2306773.
[105] YANG M, YIN B, HU G, et al. Sensitive short-wavelength infrared photodetection with a quinoidal ultralow band-gap n-type organic semiconductor[J]. Chem, 2024: 2451-9294.
[106] LIU H, HONG G, LUO Z, et al. Atomic-precision gold clusters for NIR-II imaging[J]. Advanced Materials, 2019, 31(46): 1901015.
[107] BAGHDASARYAN A, WANG F, REN F, et al. Phosphorylcholine-conjugated gold-molecular clusters improve signal for Lymph Node NIR-II fluorescence imaging in preclinical cancer models[J]. Nature Communications, 2022, 13(1): 5613.
[108] SUO Y, WU F, XU P, et al. NIR-II fluorescence endoscopy for targeted imaging of colorectal cancer[J]. Advanced Healthcare Materials, 2019, 8(23): 1900974.
[109] FAN X, XIA Q, ZHANG Y, et al. Aggregation-induced emission (AIE) nanoparticles-assisted NIR-II fluorescence imaging-guided diagnosis and surgery for inflammatory bowel disease (IBD)[J]. Advanced Healthcare Materials, 2021, 10(24): 2101043.
修改评论