中文版 | English
题名

Li-B-S 体系固态电解质的高温高压合成及其电化学性能研究

其他题名
HIGH-TEMPERATURE HIGH-PRESSURE SYNTHESIS AND ELECTROCHEMICAL CHARACTERIZATION OF Li-B-S SOLID ELECTROLYTES
姓名
姓名拼音
SHI Shaoxiong
学号
12132937
学位类型
硕士
学位专业
0702 物理学
学科门类/专业学位类别
07 理学
导师
王李平
导师单位
前沿与交叉科学研究院
论文答辩日期
2024-05-08
论文提交日期
2024-06-21
学位授予单位
南方科技大学
学位授予地点
深圳
摘要

随着世界人口的不断增长和现代科技的飞速发展,人类社会对能源的 需求持续增加。能源存储是能源供应链的重要一环,是现代社会持续稳定 发展不可或缺的一部分。锂离子电池作为一种高效储能器件已在社会经济 发展中得到广泛应用。传统的锂离子电池基于液态有机电解液,但其易燃 易爆性给人们带来较大安全隐患。全固态电池由于其高能量密度和高安全 性等优点,被认为是下一代储能最有前途的发展方向。固态电池的性能主 要取决于固态电解质的性能。近期,Li-B-S 体系固态电解质因其优异的理 论预测性能而得到广泛关注。但由于其复杂且严苛的合成工艺,产物中总 是伴随杂质出现,使得其实际性能与理论性能相差较大。为了解决这个问 题,本文引入高温高压技术,在较短时间内合成 Li-B-S 体系常压下无法合 成的新相,研究成果对开发兼具高性能和高电化学稳定性的 Li-B-S 材料具 有重要意义。 本文采用高温高压的方法合成了化学式为 LiBS2的四种新晶相,分别为 立方相、四方相、三方相和单斜相。随着反应温度的升高,合成产物的对 称性越高。对合成的这四种新相进行了一系列电化学测试,结果表明,立 方相具有最高的锂离子电导率,室温下可以达到 4.1×10−4 S cm−1。而四方相、 三方相和单斜相的锂离子电导率比立方相低 1-3 个数量级,无法满足固态电 解质的应用条件。之后对立方相进行电化学窗口、对称电池以及全固态电 池测试,展现出了较好的电化学性能。为了进一步提升立方相 LiBS2的锂离 子电导率,我们对其进行卤族元素阴离子掺杂和 P 元素阳离子掺杂。结果 表明,适量 Cl 掺杂对立方相 LiBS2 的锂离子电导率有提升作用,而 Br、I 和 P 的加入不仅不会提升立方相 LiBS2 的锂离子电导率,还会引起结构变 化,使得立方相向四方相转变。我们使用 Cl 掺杂的 Li0.96BS1.96Cl0.04 样品组 装全固态电池并对其进行测试,展现出较好的充放电循环性能。 

关键词
语种
中文
培养类别
独立培养
入学年份
2021
学位授予年份
2024-05
参考文献列表

[1] GOODENOUGH J B, KIM Y. Challenges for rechargeable Li batteries[J]. Chemistry of Materials, 2009, 22(3): 587-603.
[2] CHEN H, LING M, HENCZ L, et al. Exploring chemical, mechanical, and electrical functionalities of binders for advanced energy-storage devices[J]. Chem Rev, 2018, 118(18): 8936-8982.
[3] ARMAND M, TARASCON J M. Building better batteries[J]. Nature, 2008, 451(7179): 652-657.
[4] KIM K J, BALAISH M, WADAGUCHI M, et al. Solid-state Li–metal batteries: challenges and horizons of oxide and sulfide solid electrolytes and their interfaces[J]. Advanced Energy Materials. 2020, 11: 2002689.
[5] GOODENOUGH J B. Electrochemical energy storage in a sustainable modern society[J]. Energy Environmental Science, 2014, 7: 14-18.
[6] LI X N, WANG C H, LIANG J W, et al. Progress and perspectives of halide-based lithium conductors for all-solid-state batteries[J].Energy & Environmental Science,2020. 13: 1429-1461.
[7] TRAHEY L, BRUSHETT F R, BALSARA N P, et al. Energy storage emerging: a perspective from the joint center for energy storage research[J]. Proceedings of the National Academy of Sciences. 2020, 117(23): 12550-12557.
[8] GAO J, ZHAO Y S, SHI S Q, et al. Lithium−ion transport in inorganic solid state electrolyte[J]. Chinese Physics B, 2016, 025: 139-173.
[9] TARASCON J M, ARMAND M. Issues and challenges facing rechargeable lithium batteries[J]. Nature, 2001, 414: 359-367.
[10] YUAN M, LIU K. Rational design on separators and liquid electrolytes for safer lithium-ion batteries[J]. Journal of Energy Chemistry, 2020, 43: 58-70.
[11] TAKADA K. Progress and prospective of solid-state lithium batteries[J]. Acta Materialia, 2013, 61(3): 759-770.
[12] 黄彦瑜. 锂电池发展简史[J]. 物理, 2007(08): 643-651.
[13] FRANCIS C F J, KYRATZIS I L, BEST A S. Lithium-ion battery separators for ionic liquid electrolytes: a review[J]. Advanced. Materials. 2020, 32: 1904205.
[14] XU K. Nonaqueous liquid electrolytes for lithium-based rechargeable batteries[J]. Chemical Reviews, 2004, 104(10): 4303-4418.
[15] ROY P, SRIVASTAVA S K. Nanostructured anode materials for lithium ion batteries [J]. Journal of Materials Chemistry A, 2015, 3: 2454-2484.
[16] MEGAHED S, SCROSATI B. Lithium−ion rechargeable batteries[J]. Journal of PowerSources, 1994, 51: 79-104.
[17] QIAN H, LI X. Progress in functional solid electrolyte interphases for boosting Li metal anode[J]. Acta Phys Chim Sin. 2021, 37: 2008092.
[18] LI J, MA C, CHI M, et al. Solid electrolyte: the key for high-voltage lithium batteries[J]. Advanced Energy Materials, 2015, 5: 1401408.
[19] LI C, WANG Z Y, HE Z J, et al. An advance review of solid-state battery: Challenges, progress and prospects[J]. Sustainable Materials and Technologies, 2021, 29: e00297.
[20] MANTHIRAM A, YU X, WANG S. Lithium battery chemistries enabled by solid-state electrolytes[J]. Nature Reviews Materials, 2017, 2(4): 16103.
[21] KNODLER R. Thermal properties of sodium–sulphur cells[J]. Journal of appliedelectrochemistry, 1984, 14: 39-46.
[22] KNAUTH P. Inorganic solid Li ion conductors: an overview[J]. Solid State Ionics, 2009, 180(14): 911-916.
[23] MANTHIRAM A, YU X W, WANG S F. Lithium battery chemistries enabled by solid state electrolytes[J]. Nature Reviews Materials, 2017, 2: 16103.
[24] BACHMAN J C, MUY S, GRIMAUD A, et al. Inorganic solid−state electrolytes for lithium batteries: mechanisms and properties governing ion conduction[J]. Chemical Reviews, 2016, 116(1): 140-162.
[25] TOMITA Y, FUJI-I A, OHKI H, et al. New lithium ion conductor Li3InBr6 studied by 7Li NMR[J]. Chemistry Letters, 1998, 27: 223-4.
[26] ASANO T, SAKAI A, OUCHI S, et al. Solid halide electrolytes with high lithium-ion conductivity for application in 4 V class bulktype all-solid-state batteries[J]. Advanced Materials 2018, 30: 1803075.
[27] PARK K-H, KAUP K, ASSOUD A, et al. High-voltage superionic halide solid electrolytes for all-solid-state Li-ion batteries[J]. ACS Energy Letters, 2020, 5: 533-9.
[28] LIANG J, MAAS E, LUO J, et al. A series of ternary metal chloride superionic conductors for high-performance all-solid-state lithium batteries[J].. AdvancedEnergy Materials, 2022, 12: 2103921.
[29] LI X, LIANG J, LUO J, et al. Air-stable Li3InCl6 electrolyte with high voltage compatibility for all-solid-state batteries[J]. Energy & Environmental Science, 2019, 12: 2665-71.
[30] KWAK H, WANG S, PARK J, et al. Emerging halide superionic conductors for all solid-state batteries: design, synthesis, and practical applications[J]. ACS Energy Letters, 2022, 7: 1776-805.
[31] WU D X, CHEN L Q, LI H, et al. Solid-state lithium batteries-from fundamental research to industrial progress[J], Progress in Materials Science, 2023, 139: 101182,
[32] LU P, WU D, CHEN L, et al. Air stability of solid-state sulfide batteries and electrolytes[J]. Electrochemistry Energy Reviews, 2022, 5: 3.
[33] MERCIER R, MALUGANI J-P, FAHYS B, et al. Superionic conduction in Li2S-P2S5-LiI-glasses[J]. Solid State Ionics, 1981, 5: 663-6.
[34] LAU J, DEBLOCK R H, BUTTS D M, et al. Sulfide solid electrolytes for lithium battery applications[J]. Advanced Energy Materials, 2018, 8: 1800933.
[35] MIZUNO F, HAYASHI A, TADANAGA K, et al. Highly ion-conductive crystals precipitated from Li2S-P2S5 glasses[J]. Advanced Materials, 2005, 17: 918-21.
[36] KANNO R, MURAYAMA M. Lithium ionic conductor thio-LISICON: the Li2S-GeS2-P2S5 system[J]. Journal of the Electrochemical Society, 2001, 148: A742.
[37] KAMAYA N, HOMMA K, Yamakawa Y, et al. A lithium superionic conductor[J]. Nature Materials, 2011, 10(9): 682-686.
[38] HONG H Y P. Crystal structure and ionic conductivity of Li 14Zn(GeO4)4 and other new Li+ superionic conductors[J]. Materials Research Bulletin, 1978, 13(2): 117 -124.
[39] THANGADURAI V, NARAYANAN S, PINZARU D. Garnet-type solid-state fast Li ion conductors for Li batteries: critical review[J]. Chemical Society Reviews, 2014, 43: 4714-4727.
[40] HONG H Y P. Crystal structures and crystal chemistry in the system Na1+xZr2SixP3−xO12[J]. Materials Research Bulletin, 1976, 11(2): 173-182.
[41] GOODENOUGH J, HONG H Y-P, KAFALAS J A. Fast Na+-ion transport in skeleton structures[J]. Materials Research Bulletin, 1976, 11: 203-220.
[42] SUBRAMANIAN M A, SUBRAMANIAN R, CLEARFIELD A. Lithium ion conductors in the system AB(IV)2(PO4)3 (B = Ti, Zr and Hf) [J], Solid State Ionics, 1986,18–19, 562-569,
[43] ADACHI G, IMANAKA N, AONO H. Fast Li+ conducting ceramic electrolytes[J]. Advanced Materials, 1996, 8(2): 127-135.
[44] SEBASTIAN L, GOPALAKRISHNAN J. Lithium ion mobility in metal oxides: amaterials chemistry perspective[J]. Journal of Materials Chemistry, 2003, 13(3): 433 -441..
[45] THANGADURAI V, KAACK H, WEPPNER W J F. Novel fast lithium ion conduction in garnet−type Li5La3M2O12 (M=Nb, Ta)[J]. Journal of the American Ceramic Society, 2003, 86(3): 437-440.
[46] MURUGAN R, THANGADURAI V, WEPPNER W. Fast lithium ion conduction in garnet‐type Li7La3Zr2O12[J]. Angewandte Chemie International Edition, 2007, 46(41): 7778-7781.
[47] AWAKA J, KIJIMA N, HAYAKAWA H, et al. Synthesis and structure analysis of tetragonal Li7La3Zr2O12 with the garnet-related type structure[J], Journal of Solid State Chemistry, 2009, 182: 2046-2052.
[48] QIN S, ZHU X, JIANG Y, et al. Growth of self-textured Ga3+-substituted Li7La3Zr2O12 ceramics by solid state reaction and their significant enhancement in ionic conductivity[J]. Applied Physics Letters, 2018, 112: 113901.
[49] WANG C, FU K, KAMMAMPATA S P, et al. Garnet-type solid-state electrolytes: materials, interfaces, and batteries[J]. Chem Rev, 2020, 120(10): 4257-4300.
[50] AWAKA J, TAKASHIMA A, KATAOKA K, et al. Crystal structure of fast lithium ion-conducting cubic Li7La3Zr2O12[J]. Chemistry Letters, 2011, 40: 60-62.
[51] INAGUMA Y, LIQUAN C, ITOH M, et al. High ionic conductivity in lithium lanthanum titanate[J]. Solid State Communications, 1993, 86(10): 689 -693.
[52] KAWAI H, KUWANO J. Lithium Ion Conductivity of a-site deficient perovskite solid solution La0.67−xLi3xTiO3[J]. Journal of The Electrochemical Society, 1994, 141(7): L78-L79.
[53] ZHAO Y, BAI Y, LI W, et al. Design strategies for polymer electrolytes with ether and carbonate groups for solid-state lithium metal batteries[J]. Chemistry of Materials, 2020,32(16):6811-6830.
[54] FENTON D E. Complexes of alkali metal ions with poly (etylene oxide)[J]. Polymer, 1973, 14: 589.
[55] LIN D, LIU W, LIU Y, et al. High ionic conductivity of composite solid polymer electrolyte via in situ synthesis of monodispersed SiO2 nanospheres in poly (ethylene oxide)[J]. Nano Letters, 2016, 16(1): 459-465.
[56] BIANCHINI F, FJELLVAG H, VAJEESTON P. A first-principle investigation of the Li diffusion mechanism in the super-ionic conductor lithium orthothioborate Li 3BS3structure[J]. Mater. Lett. 2018, 219, 186-189.
[57] PARK H, YU S, SIEGEL D J. Predicting charge transfer stability between sulfide solid electrolytes and Li metal anodes[J]. ACS Energy Lett. 2021, 6(1), 150-157.
[58] SENDEK A D, ANTONIUK E R, CUBUK E D, et al. Combining superionic conduction and favorable decomposition products in the crystalline lithium-boron sulfur system: a new mechanism for stabilizing solid Li-ion electrolytes[J]. ACS Appl. Mater. Interfaces, 2020, 12(34), 37957-37966.
[59] LEVASSEUR A, OLAZCUAGA R, KBALA M, et al. Synthesis and electrical properties of new sulfide galss with high ionic conductivity[J]. Comptes Rendus De L Academie Des Sciences Serie Ii, 1981, 293(8): 563-565.
[60] WADA H, MENETRIER M, LEVASSEUR A, et al. Preparation and ionic conductivity of new B2S3-Li2S-LiI glasses[J]. Mater. Res. Bull., 1983, 18(2): 189-193.
[61] HILTMANN F, ZUMHEBEL P, HAMMERSCHMIDT A, et al. Li5B7S13 and Li9B19S33: two lithium thioborates with novel highly polymeric anion networks[J]. Z. Anorg. Allg. Chem., 1993, 619(2): 293-302.
[62] KUPER J, JANSEN C, KREBS B. Na2B2S5 and Li2B2S5: two novel perthioborates with planar 1,2,4-trithia-3,5-diborolane rings[J]. Abstr. Pap. Am. Chem. Soc., 1995, 210, 507.
[63] HILTMANN F, JANSEN C, KREBS B. Li3BS3 and LiSrBS3: new orthothioborates with trigonal planar boron coordination[J]. Z. Anorg. Allg. Chem. , 1996, 622(9):1508-1514.
[64] ZUMHEBEL B, KREBS B, GRUNE M. Preparation, crystal-structure and 7Li NMR of Li6+2x [B10S18]Sx (x≈2) [J]. Solid State Ion., 1990, 43: 133-142.
[65] KAUP K, BAZAK J D, VAJARGAH S H, et al. A lithium oxythioborosilicate solid electrolyte glass with superionic conductivity[J]. Adv. Energy Mater., 2020, 10(8): 9
[66] KAUP K, BISHOP K, ASSOUD A, et al. Fast ionconducting thioboracite with a perovskite topology and argyrodite-like lithium substructure[J]. J. Am. Chem. Soc., 2021, 143(18): 6952-6961..
[67] KAUP K, ASSOUD A, LIU J, et al. Fast Li-ion conductivity in superadamantanoid lithium thioborate halides[J]. Angew. Chem.-Int. Ed., 2021, 60(13): 6975-6980
[68] MA Y X, WAN J Y, XU X, et al. Experimental discovery of a fast and stable lithium thioborate solid electrolyte, Li6+2x[B10S18]Sx (x ≈ 1)[J]. ACS Energy Letters, 2023,8(6): 2762-2771.
[69] ZHU X, LU P S, WU D X, et al. Experimental corroboration of lithium orthothioborate superionic conductor by systematic elemental manipulation[J]. Nano Letters, 2023,23(22): 10290-10296.
[70] ZHU X, ZHANG Z, CHEN L et al. Progress in lithium thioborate superionic conductors[J]. Journal of Materials Research, 2022, 37: 3269-3282.
[71] ZEIDLER A, CRICHTON W A. Materials under pressure[J]. MRS Bulletin, 2017, 42(10): 710-713.
[72] MAO H K, CHEN B, CHEN J H, et al. Recent advances in high-pressure science and technology[J]. Matter Radiat. Extremes, 2016, 1 (1): 59-75.
[73] LV Q Q, JIN X L, ZHUANG Q, et al. Phase transition in crystal hydrogen under high pressure[J]. Solid State Communications, 2015, 217: 6-12.
[74] ZHANG L, WANG Y, LV J, et al. Materials discovery at high pressures[J]. NatureReviews Materials, 2017, 2: 17005.
[75] PHILLIPS J C. Resonant pinning, supercell structure, and superconductivity (Tc > 140 K) in Hg Ba Ca Cu O systems[J]. Materials Letters, 1993, 18: 106-107.
[76] MAO H K, CHEN X J, DING Y, et al. Solids, liquids, and gases under high pressure[J]. Reviews of Modern Physics, 2018, 90(1).
[77] 王海阔,任瑛,贺端威,等.六面顶压机立方压腔内压强的定量测量及受力分析[J]. 物理学报, 2017, 66(3): 030701

所在学位评定分委会
物理学
国内图书分类号
O52
来源库
人工提交
成果类型学位论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/765804
专题南方科技大学
理学院_物理系
推荐引用方式
GB/T 7714
石少雄. Li-B-S 体系固态电解质的高温高压合成及其电化学性能研究[D]. 深圳. 南方科技大学,2024.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可 操作
12132937-石少雄-物理系.pdf(4323KB)----限制开放--请求全文
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[石少雄]的文章
百度学术
百度学术中相似的文章
[石少雄]的文章
必应学术
必应学术中相似的文章
[石少雄]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。