[GROMOV M. Pseudo holomorphic curves in symplectic manifolds[J]. Invent. Math., 1985, 82(2): 307-347.
[2] WITTEN E. Topological sigma models[J]. Comm. Math. Phys., 1988, 118(3): 411-449.
[3] RUAN Y, TIAN G. A mathematical theory of quantum cohomology[J]. J. Differential Geom.,1995, 42(2): 259-367.
[4] LI J, TIAN G. Virtual moduli cycles and Gromov-Witten invariants of algebraic varieties[J]. J.Amer. Math. Soc., 1998, 11(1): 119-174.
[5] LI J, TIAN G. Virtual moduli cycles and Gromov-Witten invariants of general symplectic man-ifolds[M]//First Int. Press Lect. Ser.: I Topics in symplectic 4-manifolds (Irvine, CA, 1996).Int. Press, Cambridge, MA, 1998: 47-83.
[6] BEHREND K. Gromov-Witten invariants in algebraic geometry[J]. Invent. Math., 1997, 127(3): 601-617.
[7] BEHREND K, FANTECHI B. The intrinsic normal cone[J]. Invent. Math., 1997, 128(1):45-88.
[8] LI A M, RUAN Y. Symplectic surgery and Gromov-Witten invariants of Calabi-Yau 3-folds[J].Invent. Math., 2001, 145(1): 151-218.
[9] IONEL E N, PARKER T H. Relative Gromov-Witten invariants[J]. Ann. of Math. (2), 2003,157(1): 45-96.
[10] LI J. Stable Morphisms to Singular Schemes and Relative Stable Morphisms[J]. Journal ofDifferential Geometry, 2001, 57(3): 509 - 578.
[11] TAKAHASHI N. Local and relative Gromov-Witten invariants of the projective plane[J].manuscripta mathematica, 2003, 111: 413-426.
[12] REINEKE M, WEIST T. Moduli spaces of point configurations and plane curve counts[J]. Int.Math. Res. Not. IMRN, 2021(13): 10339-10372.
[13] BOUSSEAU P. On an example of quiver Donaldson-Thomas/relative Gromov-Witten corre-spondence[J]. Int. Math. Res. Not. IMRN, 2021(15): 11845-11888.
[14] FAN H, WU L. Witten-Dijkgraaf-Verlinde-Verlinde equation and its application to relativeGromov-Witten theory[J]. Int. Math. Res. Not. IMRN, 2021(13): 9834-9852.
[15] DI FRANCESCO P, ITZYKSON C. Quantum intersection rings[M]//Progr. Math.: volume129 The moduli space of curves (Texel Island, 1994). Birkhäuser Boston, Boston, MA, 1995:81-148.
[16] ZINGER A. Some conjectures on the asymptotic behavior of Gromov-Witten invariants[M]//Adv. Lect. Math. (ALM): volume 47 Handbook for mirror symmetry of Calabi-Yau & Fanomanifolds. Int. Press, Somerville, MA,
[2020] ©2020: 523-550.
[17] COUSO-SANTAMARÍA R, SCHIAPPA R, VAZ R. On asymptotics and resurgent structuresof enumerative Gromov-Witten invariants[J]. Commun. Number Theory Phys., 2017, 11(4):707-790.
[18] TIAN G, WEI D. Asypmtotics of enumerative invariants in 𝐶𝑃2[A]. 2016. arXiv: 1609.06425.
[19] BOUSSEAU P, WU L. All-genus WDVV recursion, quivers, and BPS invariants[A]. 2023.
[20] KONTSEVICH M, MANIN Y. Gromov-Witten classes, quantum cohomology, and enumerativegeometry[J]. Communications in Mathematical Physics, 1994, 164: 525-562.
[21] LI J. Stable morphisms to singular schemes and relative stable morphisms[J]. J. DifferentialGeom., 2001, 57(3): 509-578.
[22] LI J. A degeneration formula of GW-invariants[J]. J. Differential Geom., 2002, 60(2): 199-293.
[23] FLAJOLET P, SEDGEWICK R. SYMBOLIC METHODS[M]. Cambridge University Press,2009: 13–14.
[24] FAN H, WU L. Witten–Dijkgraaf–Verlinde–Verlinde Equation and its Application to Rela-tive Gromov–Witte
修改评论