中文版 | English
题名

RELATIVE GROMOV-WITTEN INVARIANTS OF ℂℙ2 AND ℙ1 × ℙ1

其他题名
ℂℙ2 和 ℙ1 × ℙ1 上的相对格罗莫夫-威腾不变 量
姓名
姓名拼音
OUYANG Hao
学号
12232849
学位类型
硕士
学位专业
070101 基础数学
学科门类/专业学位类别
07 理学
导师
邬龙挺
导师单位
数学系
论文答辩日期
2024-05-20
论文提交日期
2024-06-22
学位授予单位
南方科技大学
学位授予地点
深圳
摘要

In this thesis we present the explicit formula of relative Gromov-Witten of (P1×P1,diagonal), motivated by the work of Fan and Wu. Furthermore, due to the closed form of the generating functions of these Gromov-Witten invariants, we are able to deduce the asymptotic expansions of relative Gromov-Witten invariants of (P1*P1,diagonal) and $(CP2,conic)$ and reveal the underlying relation of these two sets of relative Gromov-Witten invariants.

关键词
语种
英语
培养类别
独立培养
入学年份
2022
学位授予年份
2024-07
参考文献列表

[GROMOV M. Pseudo holomorphic curves in symplectic manifolds[J]. Invent. Math., 1985, 82(2): 307-347.
[2] WITTEN E. Topological sigma models[J]. Comm. Math. Phys., 1988, 118(3): 411-449.
[3] RUAN Y, TIAN G. A mathematical theory of quantum cohomology[J]. J. Differential Geom.,1995, 42(2): 259-367.
[4] LI J, TIAN G. Virtual moduli cycles and Gromov-Witten invariants of algebraic varieties[J]. J.Amer. Math. Soc., 1998, 11(1): 119-174.
[5] LI J, TIAN G. Virtual moduli cycles and Gromov-Witten invariants of general symplectic man-ifolds[M]//First Int. Press Lect. Ser.: I Topics in symplectic 4-manifolds (Irvine, CA, 1996).Int. Press, Cambridge, MA, 1998: 47-83.
[6] BEHREND K. Gromov-Witten invariants in algebraic geometry[J]. Invent. Math., 1997, 127(3): 601-617.
[7] BEHREND K, FANTECHI B. The intrinsic normal cone[J]. Invent. Math., 1997, 128(1):45-88.
[8] LI A M, RUAN Y. Symplectic surgery and Gromov-Witten invariants of Calabi-Yau 3-folds[J].Invent. Math., 2001, 145(1): 151-218.
[9] IONEL E N, PARKER T H. Relative Gromov-Witten invariants[J]. Ann. of Math. (2), 2003,157(1): 45-96.
[10] LI J. Stable Morphisms to Singular Schemes and Relative Stable Morphisms[J]. Journal ofDifferential Geometry, 2001, 57(3): 509 - 578.
[11] TAKAHASHI N. Local and relative Gromov-Witten invariants of the projective plane[J].manuscripta mathematica, 2003, 111: 413-426.
[12] REINEKE M, WEIST T. Moduli spaces of point configurations and plane curve counts[J]. Int.Math. Res. Not. IMRN, 2021(13): 10339-10372.
[13] BOUSSEAU P. On an example of quiver Donaldson-Thomas/relative Gromov-Witten corre-spondence[J]. Int. Math. Res. Not. IMRN, 2021(15): 11845-11888.
[14] FAN H, WU L. Witten-Dijkgraaf-Verlinde-Verlinde equation and its application to relativeGromov-Witten theory[J]. Int. Math. Res. Not. IMRN, 2021(13): 9834-9852.
[15] DI FRANCESCO P, ITZYKSON C. Quantum intersection rings[M]//Progr. Math.: volume129 The moduli space of curves (Texel Island, 1994). Birkhäuser Boston, Boston, MA, 1995:81-148.
[16] ZINGER A. Some conjectures on the asymptotic behavior of Gromov-Witten invariants[M]//Adv. Lect. Math. (ALM): volume 47 Handbook for mirror symmetry of Calabi-Yau & Fanomanifolds. Int. Press, Somerville, MA,
[2020] ©2020: 523-550.
[17] COUSO-SANTAMARÍA R, SCHIAPPA R, VAZ R. On asymptotics and resurgent structuresof enumerative Gromov-Witten invariants[J]. Commun. Number Theory Phys., 2017, 11(4):707-790.
[18] TIAN G, WEI D. Asypmtotics of enumerative invariants in 𝐶𝑃2[A]. 2016. arXiv: 1609.06425.
[19] BOUSSEAU P, WU L. All-genus WDVV recursion, quivers, and BPS invariants[A]. 2023.
[20] KONTSEVICH M, MANIN Y. Gromov-Witten classes, quantum cohomology, and enumerativegeometry[J]. Communications in Mathematical Physics, 1994, 164: 525-562.
[21] LI J. Stable morphisms to singular schemes and relative stable morphisms[J]. J. DifferentialGeom., 2001, 57(3): 509-578.
[22] LI J. A degeneration formula of GW-invariants[J]. J. Differential Geom., 2002, 60(2): 199-293.
[23] FLAJOLET P, SEDGEWICK R. SYMBOLIC METHODS[M]. Cambridge University Press,2009: 13–14.
[24] FAN H, WU L. Witten–Dijkgraaf–Verlinde–Verlinde Equation and its Application to Rela-tive Gromov–Witte

所在学位评定分委会
数学
国内图书分类号
O151.24
来源库
人工提交
成果类型学位论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/765805
专题南方科技大学
理学院_数学系
推荐引用方式
GB/T 7714
Ou YH. RELATIVE GROMOV-WITTEN INVARIANTS OF ℂℙ2 AND ℙ1 × ℙ1[D]. 深圳. 南方科技大学,2024.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可 操作
12232849-欧阳灏-数学系.pdf(745KB)----限制开放--请求全文
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[欧阳灏]的文章
百度学术
百度学术中相似的文章
[欧阳灏]的文章
必应学术
必应学术中相似的文章
[欧阳灏]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。