中文版 | English
题名

多核过渡金属团簇结构及其物理化学性质的理论研究

其他题名
THEORETICAL STUDIES ON THE STRUCTURES AND PHYSICOCHEMICAL PROPERTIES OF MULTI-NUCLEAR TRANSITION-METAL CLUSTERS
姓名
姓名拼音
JIANG Xuelian
学号
11930569
学位类型
博士
学位专业
0703 化学
学科门类/专业学位类别
07 理学
导师
李隽
导师单位
化学系
论文答辩日期
2024-05-16
论文提交日期
2024-06-21
学位授予单位
南方科技大学
学位授予地点
深圳
摘要

多核过渡金属团簇由于金属-金属相互作用会产生协同效应,通常呈现出单核团簇所不具备的性质;加上金属-配体相互作用带来的稳定化效果,多核过渡金属团簇大多具有结构更灵活、化学成键更复杂和物理化学性质更丰富的特点,这使其应用前景十分广阔。不仅如此,多核过渡金属团簇在生物酶体系中也广泛存在,众多生命活动过程所涉及的酶核心结构中都含有多核过渡金属团簇。近些年来,多核过渡金属团簇因其独特的电子结构和良好的性能在催化、荧光材料、磁性材料等领域均有着广泛应用。对于功能性团簇的发现、对团簇形成机制和稳定化来源的理解,以及对团簇构效关系的研究和探索目前都备受瞩目。
本论文采用密度泛函理论研究了四种多核过渡金属团簇体系,从功能性钯团簇,到仿生固氮多核铁硫簇,再到光系统II 的析氧络合物,我们从理论角度分析了这些团簇的结构特点和化学成键特征、稳定性来源以及构效关系。本文主要成果总结如下:
一、研究了类戊搭烯钯团簇Pd8(PPh)2(PPh3)2(S–Adm)6 内金属-金属、金属-配体相互作用的本质和团簇稳定机制,将该团簇与传统过渡金属半夹心化合物对比,揭示了其独特的几何结构和配位模式。理论计算表明两个毗邻Pd5五元环内各符合Hückel 芳香性规则,赋予了该团簇显著的稳定性。
二、构筑了仿生固氮模型化合物LFe(μ–η22-bdt)FeL,通过外围配体L的调控改变中心铁原子价态,研究金属价态对双氮化合物吸附的具体影响。揭示了还原性低价铁中心的存在对氮气吸附的必要性,为仿生固氮领域功能性团簇的设计和固氮酶机理的研究提供了理论依据。
三、提供了与铁钼辅因子结构极为类似的W2Fe6CS6(Tp∗)2(SPh)3簇合物,并对该团簇的电子结构和化学成键进行了深入研究,理论计算表明该团簇基态结构呈现反铁磁低自旋的特点,丰富了对仿生固氮簇合物结构的认识。
四、研究了自然界光氧合中心CaMn4O5团簇静息态结构的稳定性和异构化过程,该团簇内部具有金属芳香性,为新型仿生金属酶团簇的设计尤其是体系稳定性提供新的思路。

其他摘要

Due to the metal-metal interactions, multinuclear transition-metal clusters usually exhibit unique physicochemical properties distinguished from mononuclear transition-metal complexes. Coupled with the stabilization effect arising from the cooperation be-tween metals and ligands, multinuclear transition-metal clusters have the characteristics of flexible structures, complicated chemical bonding, and abundant properties, which of-fer the possibility of more practical applications. Moreover, multinuclear transition-metal clusters exist widely in various enzymes, in which the kernel structure of numerous bio-logical proteins consists of transition-metal elements. In the past decades, multinuclear transition-metal clusters have presented wide applications in catalysis, biological pro-cesses and photochemistry, due to their unique geometric and electronic structures and excellent physicochemical properties. The discovery and synthesis of clusters with char-acteristic structures and unique physicochemical properties, the in-depth understanding of their formation mechanisms and intrinsic stabilization, and the essential exploration of their structure-property relationships are currently attracting much attention.
Our works aim to provide theoretical insights to study the multinuclear transition-metal clusters. From palladium cluster with atomically precise structure, to biomimetic iron-sulfur clusters and oxygen-evolving complex of photosystem II, we investigate their geometric and electronic structures, physicochemical properties, and structure-property correlations. Four main achievements are summarized as the following:
(1) Theoretical investigation on the electronic structures, chemical bonding and optical properties of a pentalene-like Pd8(PPh)2(PPh3)2(S–Adm)6 nanocluster. The chemical bonding analysis reveals the essential origin of the stability and the coordination behavior in this cluster. Three Pd-P 6c-2e bonds can be found in each five-membered palladium ring, which follows Hückel 4n+2 rule and gives rise to intrinsic stability.
(2) Theoretical study on the effect of oxidation states of metal sites on the adsorption of dinitrogen species. By regulating the oxidation state of iron atoms via ligand exchange in LFe(μ–η22-bdt)FeL cluster, we emphasize the critical role of low-valent iron sites on nitrogen fix and activation. This study provides a unique perspective to demonstrate the importance of constructing low-valent metal centers in nitrogenase mimic. (3) Theoretical study on the electronic structures and chemical bonding of a W2Fe6CS6(Tp∗)2(SPh)3 cluster relevant to FeMoco. Quantum chemical calculations in-dicate that the ground state of this [Fe6C] cluster is similar to FeMoco, in which the entire iron-sulfur cluster exhibits antiferromagnetic and low-spin characteristics. Our work provides in-depth exploration of FeMoco analogs, and enriches the understanding of chemical bonding in heteroleptic iron–sulfur clusters.
(4) Theoretical investigation on the electronic structures of CaMn4O5 cluster as well as its isomerization process. We have proposed that the Mn3O3 unit in the cubane-like CaMn4O5 cluster are aromatic, supported by electronic structure analysis. It enriches the concept of aromaticity in transition-metal clusters and provides a unique perspective for the intrinsic stability of nature’s metalloenzymes.

关键词
其他关键词
语种
中文
培养类别
独立培养
入学年份
2019
学位授予年份
2024-06
参考文献列表

[1] NEGISHI Y, NAKAZAKI T, MALOLA S, et al. A critical size for emergence of nonbulk electronic and geometric structures in dodecanethiolate-protected Au clusters[J]. Journal of the American Chemical Society, 2015, 137(3): 1206-1212.
[2] FERNANDO A, WEERAWARDENE K L D M, KARIMOVA N V, et al. Quantum mechan-ical studies of large metal, metal oxide, and metal chalcogenide nanoparticles and clusters[J]. Chemical Reviews, 2015, 115(12): 6112-6216.
[3] LEWIS L N. Chemical catalysis by colloids and clusters[J]. Chemical Reviews, 1993, 93(8): 2693-2730.
[4] DU Y, SHENG H, ASTRUC D, et al. Atomically precise noble metal nanoclusters as efficient catalysts: a bridge between structure and properties[J]. Chemical Reviews, 2020, 120(2): 526-622.
[5] JIN R, ZENG C, ZHOU M, et al. Atomically precise colloidal metal nanoclusters and nanopar-ticles: fundamentals and opportunities[J]. Chemical Reviews, 2016, 116(18): 10346-10413.
[6] WANG J, BAI J, JELLINEK J, et al. Gold-coated transition-metal anion Mn13@Au20- with ultrahigh magnetic moment[J]. Journal of the American Chemical Society, 2007, 129(14): 4110-4111.
[7] SONG T, YAO Z, LI G, et al. Catalytic activity coupled with structural stability within a het-erodimeric Au29(SR)19 cluster[J]. ACS Catalysis, 2023, 13(16): 10878-10886.
[8] HUANG Y Z, SHI L X, WANG J Y, et al. Elaborate design of Ag8Au10 cluster[2]catenane phosphors for high-efficiency light-emitting devices[J]. ACS Applied Materials & Interfaces, 2020, 12(51): 57264-57270.
[9] KIRAKCI K, ZELENKA J, KŘÍŽOVÁ I, et al. Octahedral molybdenum cluster complexes with optimized properties for photodynamic applications[J]. Inorganic Chemistry, 2020, 59 (13): 9287-9293.
[10] MA X, YU K, YUAN J, et al. Multinuclear transition metal sandwich-type polytungstate derivatives for enhanced electrochemical energy storage and bifunctional electrocatalysis per-formances[J]. Inorganic Chemistry, 2020, 59(7): 5149-5160.

[11] ZHANG H, ZHANG M, JIA Y, et al. Vanadium cluster neutrals reacting with water: super-atomic features and hydrogen evolution in a fishing mode[J]. The Journal of Physical Chemistry Letters, 2021, 12(6): 1593-1600.

[12] HIRAI H, TAKANO S, NAKAMURA T, et al. Understanding doping effects on electronic structures of gold superatoms: A case study of diphosphine-protected M@Au12 (M = Au, Pt, Ir)[J]. Inorganic Chemistry, 2020, 59(24): 17889-17895.

[13] DU Q, WU X, WANG P, et al. Structure evolution of transition metal-doped gold clusters M@Au12 (M = 3d–5d): Across the periodic table[J]. The Journal of Physical Chemistry C, 2020, 124(13): 7449-7457.

[14] SEEFELDT L C, YANG Z Y, LUKOYANOV D A, et al. Reduction of substrates by nitrogenases [J]. Chemical Reviews, 2020, 120(12): 5082-5106.

[15] ZHANG B, SUN L. Why nature chose the Mn4CaO5 cluster as water-splitting catalyst in photo-system II: a new hypothesis for the mechanism of O–O bond formation[J]. Dalton Transactions, 2018, 47(41): 14381-14387.

[16] PETERS J W, SCHUT G J, BOYD E S, et al. [FeFe]- and [NiFe]-hydrogenase diversity, mech-anism, and maturation[J]. Biochimica et Biophysica Acta (BBA) - Molecular Cell Research, 2015, 1853(6): 1350-1369.

[17] ALIOUI O, GUEDDIDA S, BENGUERBA Y, et al. Potential of nickel nanoclusters supported on α-Al2O3(0001) surface for CO2 capture, energy production, and dry reforming of methane [J]. Applied Surface Science, 2023, 610: 155474.

[18] EDER M, COURTOIS C, KRATKY T, et al. Nickel clusters on TiO2(110): thermal chemistry and photocatalytic hydrogen evolution of methanol[J]. Catalysis Science & Technology, 2020, 10(22): 7630-7639.

[19] LIN Z, OLIVEIRA J C A, SCHEREMETJEW A, et al. Palladium-catalyzed electrooxidative double C–H arylation[J]. Journal of the American Chemical Society, 2024, 146(1): 228-239.

[20] CHEN J, ZHA Y, LIU B, et al. Rationally designed water enriched nano reactor for stable CO2 hydrogenation with near 100% ethanol selectivity over diatomic palladium active sites[J]. ACS Catalysis, 2023, 13(10): 7110-7121.

[21] ZHAO E, LI M, XU B, et al. Transfer hydrogenation with a carbon-nitride-supported palladium single-atom photocatalyst and water as a proton source[J]. Angewandte Chemie International Edition, 2022, 61(40): e202207410.

[22] WALENTA C A, KOLLMANNSBERGER S L, COURTOIS C, et al. Why co-catalyst-loaded rutile facilitates photocatalytic hydrogen evolution[J]. Physical Chemistry Chemical Physics, 2019, 21(3): 1491-1496.

[23] BELTRAN L M C, LONG J R. Directed assembly of metal−cyanide cluster magnets[J]. Ac-counts of Chemical Research, 2005, 38(4): 325-334.

[24] COOK A W, BOCARSLY J D, LEWIS R A, et al. An iron ketimide single-molecule magnet [Fe4(N=CPh2)6] with suppressed through-barrier relaxation[J]. Chemical Science, 2020, 11 (18): 4753-4757.

[25] TAKANO S, HIRAI H, NAKASHIMA T, et al. Photoluminescence of doped superatoms M@Au12 (M = Ru, Rh, Ir) homoleptically capped by (Ph2)PCH2P(Ph2): Efficient room-temperature phosphorescence from Ru@Au12[J]. Journal of the American Chemical Society, 2021, 143(28): 10560-10564.

[26] WANG Y G, YOON Y, GLEZAKOU V A, et al. The role of reducible oxide–metal cluster charge transfer in catalytic processes: New insights on the catalytic mechanism of CO oxidation on Au/TiO2 from ab initio molecular dynamics[J]. Journal of the American Chemical Society, 2013, 135(29): 10673-10683.

[27] HOFFMAN B M, LUKOYANOV D, YANG Z Y, et al. Mechanism of nitrogen fixation by nitrogenase: The next stage[J]. Chemical Reviews, 2014, 114(8): 4041-4062.

[28] CAO C S, ZHAO J, HU H S, et al. Polyvalent s-block elements: A missing link challenges the periodic law of chemistry for the heavy elements[J]. Proceedings of the National Academy of Sciences, 2023, 120(43): e2303989120.

[29] JØRGENSEN C K. Oxidation Numbers and Oxidation States[M]. Berlin: Springer-Verlag, 1969.

[30] JØRGENSEN C K. Energy Levels of Complexes and Gaseous Ions[M]. Køenhavn: Gjellerups Folog, 1957.

[31] SHCHUKAREV S A. One Hundred Years of the Periodic Law of the Chemical Elements, 10th Jubilee Mendeleev Congress (in Russian)[M]. Moscow: Nauka, 1971.

[32] PYYKKÖ P. Dirac-fock one-centre calculations part 8. the 1Σ states of ScH, YH, LaH, AcH, TmH, LuH and LrH[J]. Physica Scripta, 1979, 20: 647-651.

[33] KUTZELNIGG W. Chemical bonding in higher main group elements[J]. Angewandte Chemie International Edition in English, 1984, 23(4): 272-295.

[34] KUTZELNIGG W. Orthogonal and non-orthogonal hybrids[J]. Journal of Molecular Structure: THEOCHEM, 1988, 169: 403-419.

[35] KAUPP M. The role of radial nodes of atomic orbitals for chemical bonding and the periodic table[J]. Journal of Computational Chemistry, 2007, 28(1): 320-325.

[36] TANG Y, ZHAO S, LONG B, et al. On the nature of support effects of metal dioxides MO2 (M = Ti, Zr, Hf, Ce, Th) in single-atom gold catalysts: Importance of quantum primogenic effect [J]. The Journal of Physical Chemistry C, 2016, 120(31): 17514-17526.

[37] ROEBBER J L, WIENER R N, RUSSELL C A. Vacuum ultraviolet spectra of osmium tetroxide and ruthenium tetroxide[J]. The Journal of Chemical Physics, 1974, 60(8): 3166-3173.

[38] HUANG W, XU W H, SCHWARZ W H E, et al. On the highest oxidation states of metal elements in MO4 molecules (M = Fe, Ru, Os, Hs, Sm, and Pu)[J]. Inorganic Chemistry, 2016, 55(9): 4616-4625.

[39] PYYKKÖ P. Theoretical chemistry of gold[J]. Angewandte Chemie International Edition, 2004, 43(34): 4412-4456.

[40] JIANG X L, XU C Q, LU J B, et al. Electronic structure and spectroscopic properties of group-7 tri-oxo-halides MO3X (M = Mn–Bh, X = F–Ts)[J]. Inorganic Chemistry, 2021, 60(13): 9504-9515.

[41] XU G, CUI Y S, JIANG X L, et al. Synthesis and characterization of iron clusters with an icosahedral [Fe@Fe12]16+ Core[J]. National Science Review, 2023, 11(4): nwad327.

[42] WANG Y L, HU H S, LI W L, et al. Relativistic effects break periodicity in group 6 diatomic molecules[J]. Journal of the American Chemical Society, 2016, 138(4): 1126-1129.

[43] CUI P, HU H S, ZHAO B, et al. A multicentre-bonded [ZnI]8 cluster with cubic aromaticity[J]. Nature Communications, 2015, 6(1): 6331.

[44] HU H C, HU H S, ZHAO B, et al. Metal–organic frameworks (MOFs) of a cubic metal cluster with multicentered Mn(I)-Mn(I) bonds[J]. Angewandte Chemie International Edition, 2015, 54 (40): 11681-11685.

[45] GENG L, WENG M, XU C Q, et al. Co13O8-metalloxocubes: a new class of perovskite-like neutral clusters with cubic aromaticity[J]. National Science Review, 2020, 8(1): nwaa201.

[46] WANG M, HAN Z, GOU X, et al. Alkyl chains modulated magnetization dynamics of mononu-clear trigonal prismatic CoII complexes[J]. Chemistry - A European Journal, 2023, 29(58): e202301693.

[47] YAO C, XU C Q, PARK I H, et al. Giant emission enhancement of solid-state gold nanoclusters by surface engineering[J]. Angewandte Chemie International Edition, 2020, 59(21): 8270-8276.

[48] DIEFENBACH A, BICKELHAUPT F M, FRENKING G. The nature of the transition metal−carbonyl bond and the question about the valence orbitals of transition metals. a bond-energy decomposition analysis of TM(CO)6q (TMq = Hf2-, Ta-, W, Re+, Os2+, Ir3+)[J]. Journal of the American Chemical Society, 2000, 122(27): 6449-6458.

[49] YUAN S F, XU C Q, LI J, et al. A ligand-protected golden fullerene: The dipyridylamido Au328+ nanocluster[J]. Angewandte Chemie International Edition, 2019, 58(18): 5906-5909.

[50] KEKULÉ A. Sur la constitution des substances aromatiques[J]. Bulletin de la Société Chimique de France, 1865, 3: 98-110.

[51] KEKULÉ A. Note sur quelques produits de substitution de la benzine[J]. Bull Mem Acad R Med Belg, 1865, 2: 551-563.

[52] PERKIN W H. Ueber die einwirkung des wasserstoffs im entstehungszustand auf azodinaphtyl-diamin[J]. Justus Liebigs Annalen der Chemie, 1866, 137(3): 359-369.

[53] PASCAL P. Magnetochemical studies.[J]. Annales de Chimie et de Physique, 1910, 19: 5-70.

[54] HÜCKEL E. Quantentheoretische beiträge zum benzolproblem[J]. Zeitschrift für Physik, 1931, 70(3): 204-286.

[55] CRAIG D P, PADDOCK N L. A novel type of aromaticity[J]. Nature, 1958, 181(4615): 1052-1053.

[56] BOLDYREV A I, WANG L S. All-metal aromaticity and antiaromaticity[J]. Chemical Reviews, 2005, 105(10): 3716-3757.

[57] CHEN D, SZCZEPANIK D W, ZHU J, et al. All-metal baird aromaticity[J]. Chemical Com-munications, 2020, 56(83): 12522-12525.

[58] POPLE J A. Proton Magnetic Resonance of Hydrocarbons[J]. The Journal of Chemical Physics, 1956, 24(5): 1111-1111.

[59] DEWAR M J S, GLEICHER G J. Ground states of conjugated molecules. II. allowance for molecular geometry1a,b[J]. Journal of the American Chemical Society, 1965, 87(4): 685-692.

[60] SCHLEYER P V R, MAERKER C, DRANSFELD A, et al. Nucleus-independent chemical shifts:  a simple and efficient aromaticity probe[J]. Journal of the American Chemical Society, 1996, 118(26): 6317-6318.

[61] WALLENBORN E U, HALDIMANN R F, KLäRNER F G, et al. Theoretical investigation of the origin of regioselectivity in the formation of methanofullerenes by addition of diazo com-pounds: A model study[J]. Chemistry - A European Journal, 1998, 4(11): 2258-2265.

[62] JENA P, SUN Q. Super atomic clusters: Design rules and potential for building blocks of materials[J]. Chemical Reviews, 2018, 118(11): 5755-5870.

[63] LIANG H, LIU B J, TANG B, et al. Atomically precise metal nanocluster-mediated photocatal-ysis[J]. ACS Catalysis, 2022, 12(7): 4216-4226.

[64] WANG S, DING T, LIU T, et al. Ligand assisted thermal atomization of palladium clusters: An inspiring approach for the rational design of atomically dispersed metal catalysts[J]. Ange-wandte Chemie International Edition, 2023, 62(16): e202218630.

[65] YU J, QIN X, YANG Y, et al. Highly stable Pt/CeO2 catalyst with embedding structure toward water–gas shift reaction[J]. Journal of the American Chemical Society, 2024, 146(1): 1071-1080.

[66] DONG C, LI Y, CHENG D, et al. Supported metal clusters: Fabrication and application in heterogeneous catalysis[J]. ACS Catalysis, 2020, 10(19): 11011-11045.

[67] HOWALT J G, VEGGE T. Electrochemical ammonia production on molybdenum nitride nan-oclusters[J]. Physical Chemistry Chemical Physics, 2013, 15(48): 20957-20965.

[68] DAS B K, BANERJEE A, DAS A, et al. Graphyne supported Co13, Fe13 and Ni13 nano-cluster as efficient electrocatalysts for nitrogen reduction reaction: A first principles study[J]. Catalysis Today, 2023, 423: 113906.

[69] WU Y C, ANSARI A S, DUTTA D, et al. Catalyzed decomposition of methanol-d4 on vanadium nanoclusters supported on an ultrathin film of Al2O3/NiAl(100)[J]. The Journal of Physical Chemistry C, 2022, 126(8): 3903-3914.

[70] WANG D, AZOFRA L M, HARB M, et al. Energy-efficient nitrogen reduction to ammonia at low overpotential in aqueous electrolyte under ambient conditions[J]. ChemSusChem, 2018, 11(19): 3416-3422.

[71] BÖHME D K, SCHWARZ H. Gas-phase catalysis by atomic and cluster metal ions: The ulti-mate single-site catalysts[J]. Angewandte Chemie International Edition, 2005, 44(16): 2336-2354.

[72] CAO W, XIA G J, YAO Z, et al. Aldehyde hydrogenation by Pt/TiO2 catalyst in aqueous phase: Synergistic effect of oxygen vacancy and solvent water[J]. JACS Au, 2023, 3(1): 143-153.

[73] WANG P, SHI R, ZHAO Y, et al. Selective photocatalytic oxidative coupling of methane via regulating methyl intermediates over metal/ZnO nanoparticles[J]. Angewandte Chemie Inter-national Edition, 2023, 62(23): e202304301.

[74] GOSWAMI N, YAO Q, LUO Z, et al. Luminescent metal nanoclusters with aggregation-induced emission[J]. The Journal of Physical Chemistry Letters, 2016, 7(6): 962-975.

[75] DU B, JIANG X, DAS A, et al. Glomerular barrier behaves as an atomically precise bandpass filter in a sub-nanometre regime[J]. Nature Nanotechnology, 2017, 12(11): 1096-1102.

[76] ZHANG H, LIU H, TIAN Z, et al. Bacteria photosensitized by intracellular gold nanoclusters for solar fuel production[J]. Nature Nanotechnology, 2018, 13(10): 900-905.

[77] CARRETERO-PALACIOS S, JIMéNEZ-SOLANO A, MíGUEZ H. Plasmonic nanoparticles as light-harvesting enhancers in perovskite solar cells: A user’s guide[J]. ACS Energy Letters, 2016, 1(1): 323-331.

[78] CHEN L Y, WANG C W, YUAN Z, et al. Fluorescent gold nanoclusters: Recent advances in sensing and imaging[J]. Analytical Chemistry, 2015, 87(1): 216-229.

[79] ZHU C, XIN J, LI J, et al. Fluorescence or phosphorescence? the metallic composition of the nanocluster kernel does matter[J]. Angewandte Chemie International Edition, 2022, 61(31): e202205947.

[80] LI J J, LIU C Y, GUAN Z J, et al. Anion-directed regulation of structures and lumines-cence of heterometallic clusters[J]. Angewandte Chemie International Edition, 2022, 61(25): e202201549.

[81] GATTESCHI D, CANESCHI A, PARDI L, et al. Large clusters of metal ions: The transition from molecular to bulk magnets[J]. Science, 1994, 265(5175): 1054-1058.

[82] SESSOLI R, GATTESCHI D, CANESCHI A, et al. Magnetic bistability in a metal-ion cluster [J]. Nature, 1993, 365(6442): 141-143.

[83] MILIOS C J, VINSLAVA A, WERNSDORFER W, et al. A record anisotropy barrier for a single-molecule magnet[J]. Journal of the American Chemical Society, 2007, 129(10): 2754-2755.

[84] MURUGESU M, HABRYCH M, WERNSDORFER W, et al. Single-molecule magnets:  a Mn25 complex with a record S = 51/2 spin for a molecular species[J]. Journal of the American Chemical Society, 2004, 126(15): 4766-4767.

[85] TASIOPOULOS A J, VINSLAVA A, WERNSDORFER W, et al. Giant single-molecule mag-nets: A Mn84 torus and its supramolecular nanotubes[J]. Angewandte Chemie International Edition, 2004, 43(16): 2117-2121.

[86] FREEDMAN D E, HARMAN W H, HARRIS T D, et al. Slow magnetic relaxation in a high-spin iron(II) complex[J]. Journal of the American Chemical Society, 2010, 132(4): 1224-1225.

[87] ZADROZNY J M, XIAO D J, ATANASOV M, et al. Magnetic blocking in a linear iron(I) complex[J]. Nature Chemistry, 2013, 5(7): 577-581.

[88] MOSSIN S, TRAN B L, ADHIKARI D, et al. A mononuclear Fe(III) single molecule magnet with a 3/2↔5/2 spin crossover[J]. Journal of the American Chemical Society, 2012, 134(33): 13651-13661.

[89] MENG Y S, MO Z, WANG B W, et al. Observation of the single-ion magnet behavior of d8 ions on two-coordinate Co(I)–NHC complexes[J]. Chemical Science, 2015, 6(12): 7156-7162.

[90] ŚWITLICKA OLSZEWSKA A, PALION-GAZDA J, KLEMENS T, et al. Single-ion magnet behaviour in mononuclear and two-dimensional dicyanamide-containing cobalt(II) complexes [J]. Dalton Transactions, 2016, 45(25): 10181-10193.

[91] ROSADO PIQUER L, SAÑUDO E C. Heterometallic 3d–4f single-molecule magnets[J]. Dalton Transactions, 2015, 44(19): 8771-8780.

[92] ZABALA-LEKUONA A, SECO J M, COLACIO E. Single-molecule magnets: From Mn12-ac to dysprosium metallocenes, a travel in time[J]. Coordination Chemistry Reviews, 2021, 441: 213984.

[93] LÖWDIN P O. Quantum theory of many-particle systems. III. extension of the hartree-fock scheme to include degenerate systems and correlation effects[J]. Physical Review, 1955, 97(6): 1509-1520.

[94] WIGNER E. On the interaction of electrons in metals[J]. Physical Review, 1934, 46(11): 1002-1011.

[95] HOHENBERG P, KOHN W. Inhomogeneous electron gas[J]. Physical Review, 1964, 136(3B): B864-B871.

[96] KOHN W, SHAM L J. Self-consistent equations including exchange and correlation effects[J]. Physical Review, 1965, 140(4A): A1133-A1138.

[97] MALOLA S, HÄKKINEN H. Prospects and challenges for computer simulations of monolayer-protected metal clusters[J]. Nature Communications, 2021, 12(1): 2197.

[98] CAR R, PARRINELLO M. Unified approach for molecular dynamics and density-functional theory[J]. Physical Review Letters, 1985, 55(22): 2471-2474.

[99] MICHALAK A, MITORAJ M, ZIEGLER T. Bond orbitals from chemical valence theory[J]. The Journal of Physical Chemistry A, 2008, 112(9): 1933-1939.

[100] MITORAJ M P, MICHALAK A, ZIEGLER T. A combined charge and energy decomposition scheme for bond analysis[J]. Journal of Chemical Theory and Computation, 2009, 5(4): 962-975.

[101] MITORAJ M, MICHALAK A. Natural orbitals for chemical valence as descriptors of chemical bonding in transition metal complexes[J]. Journal of Molecular Modeling, 2007, 13(2): 347-355.

[102] FOSTER J P, WEINHOLD F. Natural hybrid orbitals[J]. Journal of the American Chemical Society, 1980, 102(24): 7211-7218.

[103] REED A E, CURTISS L A, WEINHOLD F. Intermolecular interactions from a natural bond orbital, donor-acceptor viewpoint[J]. Chemical Reviews, 1988, 88(6): 899-926.

[104] GLENDENING E D, BADENHOOP J K, WEINHOLD F. Natural resonance theory: III. chem-ical applications[J]. Journal of Computational Chemistry, 1998, 19(6): 628-646.

[105] ZUBAREV D Y, BOLDYREV A I. Developing paradigms of chemical bonding: adaptive natural density partitioning[J]. Physical Chemistry Chemical Physics, 2008, 10(34): 5207-5217.

[106] NOODLEMAN L, CASE D A, AIZMAN A. Broken symmetry analysis of spin coupling in iron-sulfur clusters[J]. Journal of the American Chemical Society, 1988, 110(4): 1001-1005.

[107] FRISCH M, TRUCKS G, SCHLEGEL H, et al. Gaussian 16. in Revision A, Gaussian, Inc., Wallingford CT: 2016; Vol. 3.[Z].

[108] ADF2019.304, SCM, Theoretical Chemistry, Vrije Universiteit, Amsterdam, the Netherlands.[EB/OL]. 2019. http://www.scm.com.

[109] TE VELDE G, BICKELHAUPT F M, BAERENDS E J, et al. Chemistry with ADF[J]. Journal of Computational Chemistry, 2001, 22(9): 931-967.

[110] NEESE F. Software update: the ORCA program system, version 4.0[J]. WIREs Computational Molecular Science, 2018, 8(1): e1327.

[111] VANDEVONDELE J, KRACK M, MOHAMED F, et al. Quickstep: Fast and accurate density functional calculations using a mixed gaussian and plane waves approach[J]. Computer Physics Communications, 2005, 167(2): 103-128.

[112] LU T, CHEN F. Multiwfn: A multifunctional wavefunction analyzer[J]. Journal of Computa-tional Chemistry, 2012, 33(5): 580-592.

[113] VARGAFTIK M, ZAGORODNIKOV V, STOLAROV I, et al. Giant palladium clusters as catalysts of oxidative reactions of olefins and alcohols[J]. Journal of Molecular Catalysis, 1989, 53(3): 315-348.

[114] CRAMER R, LINDSEY R V J. The mechanism of isomerization of olefins with transition metal catalysts[J]. Journal of the American Chemical Society, 1966, 88(15): 3534-3544.

[115] BOND G, HELLIER M. Homogeneous catalysis by noble metal salts: I. the homogeneous isomerization of olefins by palladium compounds[J]. Journal of Catalysis, 1965, 4(1): 1-5.

[116] ZHANG J, HU W, QIAN B, et al. Tuning hydrogenation chemistry of Pd-based heterogeneous catalysts by introducing homogeneous-like ligands[J]. Nature Communications, 2023, 14(1): 3944.

[117] LU J, LIU Y, WANG J, et al. Phosphate-supported palladium single atom and nanoparticle boost ambient temperature tandem hydrogenolysis–hydrogenation of furan alcohols/aldehydes [J]. Applied Catalysis B: Environment and Energy, 2024, 344: 123622.

[118] KOU J, WANG W D, FANG J, et al. Precisely controlled Pd nanoclusters confined in porous or-ganic cages for size-dependent catalytic hydrogenation[J]. Applied Catalysis B: Environmental, 2022, 315: 121487.

[119] MURAHASHI T, FUJIMOTO M, AKI OKA M, et al. Discrete sandwich compounds of mono-layer palladium sheets[J]. Science, 2006, 313(5790): 1104-1107.

[120] WATANABE Y. Atomically precise cluster catalysis towards quantum controlled catalysts[J]. Science and Technology of Advanced Materials, 2014, 15(6): 063501.

[121] XU C Q, LEE M S, WANG Y G, et al. Structural rearrangement of Au–Pd nanoparticles under reaction conditions: An ab initio molecular dynamics study[J]. ACS Nano, 2017, 11(2): 1649-1658.

[122] KADEN W E, WU T, KUNKEL W A, et al. Electronic structure controls reactivity of size-selected Pd clusters adsorbed on TiO2 surfaces[J]. Science, 2009, 326(5954): 826-829.

[123] CLOKE F G N. Organometallic pentalene complexes[J]. Pure and Applied Chemistry, 2001, 73(2): 233-238.

[124] SUMMERSCALES O T, CLOKE F G N. The organometallic chemistry of pentalene[J]. Co-ordination Chemistry Reviews, 2006, 250(9): 1122-1140.

[125] CUI F H, HUA Y, LIN Y M, et al. Selective difunctionalization of unactivated aliphatic alkenes enabled by a metal–metallaaromatic catalytic system[J]. Journal of the American Chemical Society, 2022, 144(5): 2301-2310.

[126] CHEN S, LIU L, GAO X, et al. Addition of alkynes and osmium carbynes towards functional-ized d𝜋–p𝜋 conjugated systems[J]. Nature Communications, 2020, 11(1): 4651.

[127] WANG J, LI J, ZHOU Y, et al. Tuning an electrode work function using organometallic com-plexes in inverted perovskite solar cells[J]. Journal of the American Chemical Society, 2021, 143(20): 7759-7768.

[128] TANG C, JIANG X L, CHEN S, et al. Stereoelectronic modulation of a single-molecule junction through a tunable metal–carbon d𝜋–p𝜋 hyperconjugation[J]. Journal of the American Chemical Society, 2023, 145(18): 10404-10410.

[129] ZHU C, YANG Y, LUO M, et al. Stabilizing two classical antiaromatic frameworks: Demon-stration of photoacoustic imaging and the photothermal effect in metalla-aromatics[J]. Ange-wandte Chemie International Edition, 2015, 54(21): 6181-6185.

[130] LI H, WEI B, XU L, et al. Barium dibenzopentalenide as a main-group metal η8 complex: Facile synthesis from 1,4-dilithio-1,3-butadienes and Ba[N(SiMe3)2]2, structural characterization, and reaction chemistry[J]. Angewandte Chemie International Edition, 2013, 52(41): 10822-10825.

[131] ADAMO C, BARONE V. Toward reliable density functional methods without adjustable pa-rameters: The PBE0 model[J]. The Journal of Chemical Physics, 1999, 110(13): 6158-6170.

[132] WEIGEND F, AHLRICHS R. Balanced basis sets of split valence, triple zeta valence and quadruple zeta valence quality for h to Rn: Design and assessment of accuracy[J]. Physical Chemistry Chemical Physics, 2005, 7(18): 3297-3305.

[133] GRIMME S, EHRLICH S, GOERIGK L. Effect of the damping function in dispersion corrected density functional theory[J]. Journal of Computational Chemistry, 2011, 32(7): 1456-1465.

[134] VAN LENTHE E, BAERENDS E J. Optimized slater-type basis sets for the elements 1–118 [J]. Journal of Computational Chemistry, 2003, 24(9): 1142-1156.

[135] VAN LENTHE E, VAN LEEUWEN R, BAERENDS E J, et al. Relativistic regular two-component hamiltonians[J]. International Journal of Quantum Chemistry, 1996, 57(3): 281-293.

[136] GLENDENING E D, LANDIS C R, WEINHOLD F. NBO 7.0: New vistas in localized and delocalized chemical bonding theory[J]. Journal of Computational Chemistry, 2019, 40(25): 2234-2241.

[137] ZHANG J X, SHEONG F K, LIN Z. Unravelling chemical interactions with principal interact-ing orbital analysis[J]. Chemistry - A European Journal, 2018, 24(38): 9639-9650.

[138] PERDEW J P, BURKE K, ERNZERHOF M. Generalized gradient approximation made simple [J]. Physical Review Letters, 1996, 77(18): 3865-3868.

[139] BECKE A D. Density-functional exchange-energy approximation with correct asymptotic be-havior[J]. Physical Review A, 1988, 38(6): 3098-3100.

[140] CLOKE F G N, GREEN J C, KILPATRICK A F, et al. Bonding in pentalene complexes and their recent applications[J]. Coordination Chemistry Reviews, 2017, 344: 238-262.

[141] ESTERUELAS M A, GARCIA M P, LOPEZ A M, et al. Indirect cooperative effects leading to synergism in bimetallic homogeneous catalysts containing azolates as bridging ligands[J]. Organometallics, 1991, 10(1): 127-133.

[142] CLOKE F G N, HITCHCOCK P B, KUCHTA M C, et al. Mononuclear tantalum (V) pentalene complexes: synthesis of Ta(η8-C8H4(1,4-SiiPr3)2X3) (X = CH3, Cl, I) and the X-ray crystal structures of Ta(η8-C8H4(1,4-SiiPr3)2(CH3)3), Ta(η8-C8H4(1,4-SiiPr3)2(CH3)2Cl), Ta(η8-C8H4(1,4-SiiPr3)2(CH3)Cl2) and Ta(η8-C8H4(1,4-SiiPr3)2I3)[J]. Polyhedron, 2004, 23 (17): 2625-2630.

[143] JONES S C, O’HARE D. [V(η5-C5H5)]2C8H6: a bimetallic pentalene-bridged complex with multiple bonding between the metal atoms[J]. Chemical Communications, 2003, 17: 2208-2209.

[144] ZHUANG S, CHEN D, YOU Q, et al. Thiolated, reduced palladium nanoclusters with resolved structures for the electrocatalytic reduction of oxygen[J]. Angewandte Chemie International Edition, 2022, 61(46): e202208751.

[145] PYYKKö P, ATSUMI M. Molecular single-bond covalent radii for elements 1–118[J]. Chem-istry–A European Journal, 2009, 15(1): 186-197.

[146] PÉREZ-GONZÁLEZ A, YANG Z Y, LUKOYANOV D A, et al. Exploring the role of the central carbide of the nitrogenase active-site FeMo-cofactor through targeted 13C labeling and ENDOR spectroscopy[J]. Journal of the American Chemical Society, 2021, 143(24): 9183-9190.

[147] LI Y, SONG Y, ZHANG X, et al. Atomically precise Au42 nanorods with longitudinal excitons for an intense photothermal effect[J]. Journal of the American Chemical Society, 2022, 144 (27): 12381-12389.

[148] WANG L, LIU Y, WANG H, et al. Oxygen-bridged vanadium single-atom dimer catalysts promoting high faradaic efficiency of ammonia electrosynthesis[J]. ACS Nano, 2023, 17(8): 7406-7416.

[149] GENG J, ZHANG S, XU H, et al. An oxygen-coordinated molybdenum single atom catalyst for efficient electrosynthesis of ammonia[J]. Chemical Communications, 2021, 57(44): 5410-5413.

[150] YANG X, SUN S, MENG L, et al. Molecular single iron site catalysts for electrochemical nitrogen fixation under ambient conditions[J]. Applied Catalysis B: Environmental, 2021, 285: 119794.

[151] YU B, LI H, WHITE J, et al. Tuning the catalytic preference of ruthenium catalysts for nitrogen reduction by atomic dispersion[J]. Advanced Functional Materials, 2020, 30(6): 1905665.

[152] LING C, ZHANG Y, LI Q, et al. New mechanism for N2 reduction: The essential role of surface hydrogenation[J]. Journal of the American Chemical Society, 2019, 141(45): 18264-18270.

[153] ERISMAN J W, SUTTON M A, GALLOWAY J, et al. How a century of ammonia synthesis changed the world[J]. Nature Geoscience, 2008, 1(10): 636-639.

[154] CREUTZ S E, PETERS J C. Diiron bridged-thiolate complexes that bind N2 at the FeIIFeII, FeIIFeI, and FeIFeI redox states[J]. Journal of the American Chemical Society, 2015, 137(23): 7310-7313.

[155] DEROSHA D E, CHILKURI V G, VAN STAPPEN C, et al. Planar three-coordinate iron sulfide in a synthetic

[4Fe-3S] cluster with biomimetic reactivity[J]. Nature Chemistry, 2019, 11(11): 1019-1025.

[156] SPEELMAN A L, ČORIĆ I, VAN STAPPEN C, et al. Nitrogenase-relevant reactivity of a synthetic iron–sulfur–carbon site[J]. Journal of the American Chemical Society, 2019, 141(33): 13148-13157.

[157] LI Y, LI Y, WANG B, et al. Ammonia formation by a thiolate-bridged diiron amide complex as a nitrogenase mimic[J]. Nature Chemistry, 2013, 5(4): 320-326.

[158] THORHALLSSON A T, BENEDIKTSSON B, BJORNSSON R. A model for dinitrogen bind-ing in the E4 state of nitrogenase[J]. Chemical Science, 2019, 10: 11110-11124.

[159] BENEDIKTSSON B, BJORNSSON R. Analysis of the geometric and electronic structure of spin-coupled iron–sulfur dimers with broken-symmetry DFT: Implications for FeMoco[J]. Jour-nal of Chemical Theory and Computation, 2022, 18(3): 1437-1457.

[160] RUTLEDGE H L, TEZCAN F A. Electron transfer in nitrogenase[J]. Chemical Reviews, 2020, 120(12): 5158-5193.

[161] REIHER M, SALOMON O, SELLMANN D, et al. Dinuclear diazene iron and ruthenium complexes as models for studying nitrogenase activity[J]. Chemistry - A European Journal, 2001, 7(23): 5195-5202.

[162] ANDERSON J S, RITTLE J, PETERS J C. Catalytic conversion of nitrogen to ammonia by an iron model complex[J]. Nature, 2013, 501(7465): 84-87.

[163] HASANAYN F, HOLLAND P L, GOLDMAN A S, et al. Lewis structures and the bonding clas-sification of end-on bridging dinitrogen transition metal complexes[J]. Journal of the American Chemical Society, 2023, 145(8): 4326-4342.

[164] CHATT J, FAY R C, RICHARDS R L. Preparation and characterisation of the dinu-clear dinitrogen complex, trichloro-µ-dinitrogen-bis(tetrahydrofuran)chlorotetrakis[dimethyl-(phenyl)phosphine]rhenium(I)chromium(III)[(PMe2Ph)4ClReN2CrCl3(thf)2][J]. Journal of the Chemical Society, 1971: 702-704.

[165] LI D, ZAN L, CHEN S, et al. Direct conversion of N2 and O2: status, challenge and perspective [J]. National Science Review, 2022, 9(12): nwac042.

[166] ZHONG M, CUI X, WU B, et al. Dinitrogen functionalization affording structurally well-defined cobalt diazenido complexes[J]. CCS Chemistry, 2022, 4(2): 532-539.

[167] XIE S J, WU R K, HUANG Y F, et al. Direct incorporation of dinitrogen into an aliphatic C–H bond[J]. Journal of the American Chemical Society, 2023, 145(12): 6773-6780.

[168] GAO Y, LI G, DENG L. Bis(dinitrogen)cobalt(-1) complexes with NHC ligation: Synthe-sis, characterization, and their dinitrogen functionalization reactions affording side-on bound diazene complexes[J]. Journal of the American Chemical Society, 2018, 140(6): 2239-2250.

[169] ZHANG Y, HOLM R H. Synthesis of a molecular Mo2Fe6S9 cluster with the topology of the pn cluster of nitrogenase by rearrangement of an edge-bridged Mo2Fe6S8 double cubane[J]. Journal of the American Chemical Society, 2003, 125(13): 3910-3920.

[170] HASHIMOTO T, OHKI Y, TATSUMI K. Synthesis of coordinatively unsaturated mesityliron thiolate complexes and their reactions with elemental sulfur[J]. Inorganic Chemistry, 2010, 49 (13): 6102-6109.

[171] OHKI Y, IKAGAWA Y, TATSUMI K. Synthesis of new

[8Fe-7S] clusters:  a topological link between the core structures of P-cluster, FeMo-co, and FeFe-co of nitrogenases[J]. Journal of the American Chemical Society, 2007, 129(34): 10457-10465.

[172] LI W L, LI Y, LI J, et al. How thermal fluctuations influence the function of the FeMo cofactor in nitrogenase enzymes[J]. Chem Catalysis, 2023, 3(7): 100662.

[173] RAUGEI S, SEEFELDT L C, HOFFMAN B M. Critical computational analysis illuminates the reductive-elimination mechanism that activates nitrogenase for N2 reduction[J]. Proceedings of the National Academy of Sciences, 2018, 115(45): E10521-E10530.

[174] SIEGBAHN P E M. Model calculations suggest that the central carbon in the femo-cofactor of nitrogenase becomes protonated in the process of nitrogen fixation[J]. Journal of the American Chemical Society, 2016, 138(33): 10485-10495.

[175] TANIFUJI K, OHKI Y. Metal–sulfur compounds in N2 reduction and nitrogenase-related chemistry[J]. Chemical Reviews, 2020, 120(12): 5194-5251.

[176] MCEVOY J P, BRUDVIG G W. Water-splitting chemistry of photosystem II[J]. Chemical Reviews, 2006, 106(11): 4455-4483.

[177] SHAFAAT H S, RÜDIGER O, OGATA H, et al. [NiFe] hydrogenases: A common active site for hydrogen metabolism under diverse conditions[J]. Biochimica et Biophysica Acta (BBA) -Bioenergetics, 2013, 1827(8): 986-1002.

[178] WITTKAMP F, SENGER M, STRIPP S T, et al. [FeFe]-hydrogenases: recent developments and future perspectives[J]. Chemical Communications, 2018, 54(47): 5934-5942.

[179] AMARA P, MOUESCA J M, VOLBEDA A, et al. Carbon monoxide dehydrogenase reaction mechanism: A likely case of abnormal CO2 insertion to a Ni−H- bond[J]. Inorganic Chemistry, 2011, 50(5): 1868-1878.

[180] FENG J, SHAIK S, WANG B. Spin-regulated electron transfer and exchange-enhanced reac-tivity in Fe4S4-mediated redox reaction of the Dph2 enzyme during the biosynthesis of diph-thamide[J]. Angewandte Chemie International Edition, 2021, 60(37): 20430-20436.

[181] WANG D, LI Y, ZHENG Y, et al. Recent advances in screening methods for the functional investigation of lytic polysaccharide monooxygenases[J]. Frontiers in Chemistry, 2021, 9: 653754.

[182] IMPANO S, YANG H, JODTS R J, et al. Active-site controlled, jahn–teller enabled regiose-lectivity in reductive S–C bond cleavage of s-adenosylmethionine in radical sam enzymes[J]. Journal of the American Chemical Society, 2021, 143(1): 335-348.

[183] BOVI D, NARZI D, GUIDONI L. The S2 state of the oxygen-evolving complex of photosys-tem II explored by QM/MM dynamics: Spin surfaces and metastable states suggest a reaction path towards the S3 state[J]. Angewandte Chemie International Edition, 2013, 52(45): 11744-11749.

[184] CHEN Z, LU J, LIU C. Electronic structure of the Fe3S4 cluster and its quasi-aromaticity[J]. Journal of Cluster Science, 1993, 4(2): 133-150.

[185] LI J, LIU C, LU J. Ab initio studies of electronic structures and quasi-aromaticity in M3S4−nOn4+ (M = Mo, W; n = 0-4) clusters[J]. Journal of the Chemical Society, Faraday Transactions, 1994, 90(1): 39-45.

[186] COX N, RETEGAN M, NEESE F, et al. Electronic structure of the oxygen-evolving complex in photosystem II prior to O-O bond formation[J]. Science, 2014, 345(6198): 804-808.

[187] KOK B, FORBUSH B, MCGLOIN M. Cooperation of charges in photosynthetic O2 evolution–I. a linear four step mechanism[J]. Photochemistry and Photobiology, 1970, 11(6): 457-475.

[188] DISMUKES G C, SIDERER Y. Intermediates of a polynuclear manganese center involved in photosynthetic oxidation of water[J]. Proceedings of the National Academy of Sciences, 1981, 78(1): 274-278.

[189] GOODIN D B, YACHANDRA V K, BRITT R D, et al. The state of manganese in the photosyn-thetic apparatus. 3. light-induced changes in X-ray absorption (K-edge) energies of manganese in photosynthetic membranes[J]. Biochimica et Biophysica Acta (BBA) - Bioenergetics, 1984, 767(2): 209-216.

[190] DE PAULA J C, BECK W F, MILLER A F, et al. Studies of the manganese site of photosys-tem II by electron spin resonance spectroscopy[J]. Journal of the Chemical Society Faraday Transactions 1, 1987, 83(12): 3635-3651.

[191] DE PAULA J C, BRUDVIG G W. Magnetic properties of manganese in the photosynthetic oxygen-evolving complex[J]. Journal of the American Chemical Society, 1985, 107(9): 2643-2648.

[192] DE PAULA J C, BECK W F, BRUDVIG G W. Magnetic properties of manganese in the photosynthetic O2-evolving complex. 2. evidence for a manganese tetramer[J]. Journal of the American Chemical Society, 1986, 108(14): 4002-4009.

[193] BRUDVIG G W, BECK W F, PAULA J C. Mechanism of photosynthetic water oxidation[J]. Annual Review of Biophysics and Biophysical Chemistry, 1989, 18(1): 25-46.

[194] MARTYNA G J, KLEIN M L, TUCKERMAN M. Nosé–Hoover chains: The canonical en-semble via continuous dynamics[J]. The Journal of Chemical Physics, 1992, 97(4): 2635-2643.

[195] HOOVER W G. Canonical dynamics: Equilibrium phase-space distributions[J]. Physical Re-view A, 1985, 31(3): 1695-1697.

[196] VANDEVONDELE J, HUTTER J. Gaussian basis sets for accurate calculations on molecular systems in gas and condensed phases[J]. The Journal of Chemical Physics, 2007, 127(11): 114105.

[197] SPRIK M, CICCOTTI G. Free energy from constrained molecular dynamics[J]. The Journal of Chemical Physics, 1998, 109(18): 7737-7744.

[198] RYCKAERT J P, CICCOTTI G, BERENDSEN H J. Numerical integration of the cartesian equations of motion of a system with constraints: molecular dynamics of n-alkanes[J]. Journal of Computational Physics, 1977, 23(3): 327-341.

[199] SIEGBAHN P E M, BLOMBERG M R A. Energy diagrams for water oxidation in photosystem II using different density functionals[J]. Journal of Chemical Theory and Computation, 2014, 10(1): 268-272.

[200] GUO Y, MESSINGER J, KLOO L, et al. Reversible structural isomerization of nature’s water oxidation catalyst prior to O–O bond formation[J]. Journal of the American Chemical Society, 2022, 144(26): 11736-11747.

[201] KLAMT A, SCHÜÜRMANN G. COSMO: a new approach to dielectric screening in solvents with explicit expressions for the screening energy and its gradient[J]. Journal of the Chemical Society Perkin Transactions 2, 1993, 5: 799-805.

[202] JUSéLIUS J, SUNDHOLM D, GAUSS J. Calculation of current densities using gauge-including atomic orbitals[J]. The Journal of Chemical Physics, 2004, 121(9): 3952-3963.

[203] AVERKIEV B B, BOLDYREV A I. Hf3 cluster is triply (σ-, π-, and δ-) aromatic in the lowest D3ℎ, 1A1’ state[J]. The Journal of Physical Chemistry A, 2007, 111(50): 12864-12866.

[204] WANNERE C S, CORMINBOEUF C, WANG Z X, et al. Evidence for d orbital aromaticity in square planar coinage metal clusters[J]. Journal of the American Chemical Society, 2005, 127 (15): 5701-5705.

[205] LIU N, YOU X R, ZHAI H J. Chemical bonding in transition metal nitride Os3N3+ cluster: 6π inorganic benzene and δ2δ*1δ*1 aromaticity[J]. ACS Omega, 2018, 3(12): 17083-17091.

[206] ZHAI H J, AVERKIEV B, ZUBAREV D, et al. δ aromaticity in [Ta3O3]-[J]. Angewandte Chemie International Edition, 2007, 46(23): 4277-4280.

[207] TSIPIS A C, TSIPIS C A. Hydrometal analogues of aromatic hydrocarbons:  a new class of cyclic hydrocoppers(I)[J]. Journal of the American Chemical Society, 2003, 125(5): 1136-1137.

[208] ALVARADO-SOTO L, RAMÍREZ-TAGLE R, ARRATIA-PÉREZ R. Spin–orbit effects on the aromaticity of the Re3Cl9 and Re3Br9 clusters[J]. Chemical Physics Letters, 2008, 467(1):94- 96.

[209] ALVARADO-SOTO L, RAMíREZ-TAGLE R, ARRATIA-PÉREZ R. Spin−orbit effects on the aromaticity of the Re3X92- (X = Cl, Br) cluster ions[J]. The Journal of Physical Chemistry A, 2009, 113(9): 1671-1673.

[210] XU Q, JIANG L, TSUMORI N. cyclo-Ti3[η2(μ2-C,O)]3: A side-on-bonded polycarbonyl ti-tanium cluster with potentially antiaromatic character[J]. Angewandte Chemie International Edition, 2005, 44(28): 4338-4342.

[211] TAM N M, PHAM H T, NGUYEN M T. Ring currents in silicon tetramer (Si4, Si42+) and planar tetracoordinate carbon doped cluster Si4C2+: σ versus π aromaticity[J]. Chemical Physics Letters, 2014, 608: 255-263.

[212] PAUL B K. On the aromaticity of puckered ions C4H42+ and B4H42-: Deciphering the origin of nonplanarity[J]. ChemistrySelect, 2023, 8(39): 1-6.

[213] KREWALD V, RETEGAN M, COX N, et al. Metal oxidation states in biological water splitting [J]. Chemical Science, 2015, 6(3): 1676-1695.

[214] EULENSTEIN A R, FRANZKE Y J, LICHTENBERGER N, et al. Substantial 𝜋-aromaticity in the anionic heavy-metal cluster [Th@Bi12]4-[J]. Nature Chemistry, 2021, 13(2): 149-155.

[215] PEERLESS B, SCHMIDT A, FRANZKE Y J, et al. 𝜙-aromaticity in prismatic Bi6-based clusters[J]. Nature Chemistry, 2023, 15(3): 347-356.

[216] GEUENICH D, HESS K, KÖHLER F, et al. Anisotropy of the induced current density (ACID), a general method to quantify and visualize electronic delocalization[J]. Chemical Reviews, 2005, 105(10): 3758-3772.

[217] LIN X, WU W, MO Y. Planar four-membered diboron actinide compound with double möbius aromaticity[J]. Journal of the American Chemical Society, 2023, 145(14): 8107-8113.

[218] SHEN T, CHEN D, LIN L, et al. Dual aromaticity in both the t0 and s1 states: Osmapyridinium with phosphonium substituents[J]. Journal of the American Chemical Society, 2019, 141(14): 5720-5727.

[219] IRON M A, LUCASSEN A C B, COHEN H, et al. A computational foray into the formation and reactivity of metallabenzenes[J]. Journal of the American Chemical Society, 2004, 126(37): 11699-11710.

所在学位评定分委会
化学
国内图书分类号
O611.2
来源库
人工提交
成果类型学位论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/765807
专题南方科技大学
理学院_化学系
推荐引用方式
GB/T 7714
姜雪莲. 多核过渡金属团簇结构及其物理化学性质的理论研究[D]. 深圳. 南方科技大学,2024.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可 操作
11930569-姜雪莲-化学系.pdf(18926KB)----限制开放--请求全文
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[姜雪莲]的文章
百度学术
百度学术中相似的文章
[姜雪莲]的文章
必应学术
必应学术中相似的文章
[姜雪莲]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。