[1] NEGISHI Y, NAKAZAKI T, MALOLA S, et al. A critical size for emergence of nonbulk electronic and geometric structures in dodecanethiolate-protected Au clusters[J]. Journal of the American Chemical Society, 2015, 137(3): 1206-1212.
[2] FERNANDO A, WEERAWARDENE K L D M, KARIMOVA N V, et al. Quantum mechan-ical studies of large metal, metal oxide, and metal chalcogenide nanoparticles and clusters[J]. Chemical Reviews, 2015, 115(12): 6112-6216.
[3] LEWIS L N. Chemical catalysis by colloids and clusters[J]. Chemical Reviews, 1993, 93(8): 2693-2730.
[4] DU Y, SHENG H, ASTRUC D, et al. Atomically precise noble metal nanoclusters as efficient catalysts: a bridge between structure and properties[J]. Chemical Reviews, 2020, 120(2): 526-622.
[5] JIN R, ZENG C, ZHOU M, et al. Atomically precise colloidal metal nanoclusters and nanopar-ticles: fundamentals and opportunities[J]. Chemical Reviews, 2016, 116(18): 10346-10413.
[6] WANG J, BAI J, JELLINEK J, et al. Gold-coated transition-metal anion Mn13@Au20- with ultrahigh magnetic moment[J]. Journal of the American Chemical Society, 2007, 129(14): 4110-4111.
[7] SONG T, YAO Z, LI G, et al. Catalytic activity coupled with structural stability within a het-erodimeric Au29(SR)19 cluster[J]. ACS Catalysis, 2023, 13(16): 10878-10886.
[8] HUANG Y Z, SHI L X, WANG J Y, et al. Elaborate design of Ag8Au10 cluster[2]catenane phosphors for high-efficiency light-emitting devices[J]. ACS Applied Materials & Interfaces, 2020, 12(51): 57264-57270.
[9] KIRAKCI K, ZELENKA J, KŘÍŽOVÁ I, et al. Octahedral molybdenum cluster complexes with optimized properties for photodynamic applications[J]. Inorganic Chemistry, 2020, 59 (13): 9287-9293.
[10] MA X, YU K, YUAN J, et al. Multinuclear transition metal sandwich-type polytungstate derivatives for enhanced electrochemical energy storage and bifunctional electrocatalysis per-formances[J]. Inorganic Chemistry, 2020, 59(7): 5149-5160.
[11] ZHANG H, ZHANG M, JIA Y, et al. Vanadium cluster neutrals reacting with water: super-atomic features and hydrogen evolution in a fishing mode[J]. The Journal of Physical Chemistry Letters, 2021, 12(6): 1593-1600.
[12] HIRAI H, TAKANO S, NAKAMURA T, et al. Understanding doping effects on electronic structures of gold superatoms: A case study of diphosphine-protected M@Au12 (M = Au, Pt, Ir)[J]. Inorganic Chemistry, 2020, 59(24): 17889-17895.
[13] DU Q, WU X, WANG P, et al. Structure evolution of transition metal-doped gold clusters M@Au12 (M = 3d–5d): Across the periodic table[J]. The Journal of Physical Chemistry C, 2020, 124(13): 7449-7457.
[14] SEEFELDT L C, YANG Z Y, LUKOYANOV D A, et al. Reduction of substrates by nitrogenases [J]. Chemical Reviews, 2020, 120(12): 5082-5106.
[15] ZHANG B, SUN L. Why nature chose the Mn4CaO5 cluster as water-splitting catalyst in photo-system II: a new hypothesis for the mechanism of O–O bond formation[J]. Dalton Transactions, 2018, 47(41): 14381-14387.
[16] PETERS J W, SCHUT G J, BOYD E S, et al. [FeFe]- and [NiFe]-hydrogenase diversity, mech-anism, and maturation[J]. Biochimica et Biophysica Acta (BBA) - Molecular Cell Research, 2015, 1853(6): 1350-1369.
[17] ALIOUI O, GUEDDIDA S, BENGUERBA Y, et al. Potential of nickel nanoclusters supported on α-Al2O3(0001) surface for CO2 capture, energy production, and dry reforming of methane [J]. Applied Surface Science, 2023, 610: 155474.
[18] EDER M, COURTOIS C, KRATKY T, et al. Nickel clusters on TiO2(110): thermal chemistry and photocatalytic hydrogen evolution of methanol[J]. Catalysis Science & Technology, 2020, 10(22): 7630-7639.
[19] LIN Z, OLIVEIRA J C A, SCHEREMETJEW A, et al. Palladium-catalyzed electrooxidative double C–H arylation[J]. Journal of the American Chemical Society, 2024, 146(1): 228-239.
[20] CHEN J, ZHA Y, LIU B, et al. Rationally designed water enriched nano reactor for stable CO2 hydrogenation with near 100% ethanol selectivity over diatomic palladium active sites[J]. ACS Catalysis, 2023, 13(10): 7110-7121.
[21] ZHAO E, LI M, XU B, et al. Transfer hydrogenation with a carbon-nitride-supported palladium single-atom photocatalyst and water as a proton source[J]. Angewandte Chemie International Edition, 2022, 61(40): e202207410.
[22] WALENTA C A, KOLLMANNSBERGER S L, COURTOIS C, et al. Why co-catalyst-loaded rutile facilitates photocatalytic hydrogen evolution[J]. Physical Chemistry Chemical Physics, 2019, 21(3): 1491-1496.
[23] BELTRAN L M C, LONG J R. Directed assembly of metal−cyanide cluster magnets[J]. Ac-counts of Chemical Research, 2005, 38(4): 325-334.
[24] COOK A W, BOCARSLY J D, LEWIS R A, et al. An iron ketimide single-molecule magnet [Fe4(N=CPh2)6] with suppressed through-barrier relaxation[J]. Chemical Science, 2020, 11 (18): 4753-4757.
[25] TAKANO S, HIRAI H, NAKASHIMA T, et al. Photoluminescence of doped superatoms M@Au12 (M = Ru, Rh, Ir) homoleptically capped by (Ph2)PCH2P(Ph2): Efficient room-temperature phosphorescence from Ru@Au12[J]. Journal of the American Chemical Society, 2021, 143(28): 10560-10564.
[26] WANG Y G, YOON Y, GLEZAKOU V A, et al. The role of reducible oxide–metal cluster charge transfer in catalytic processes: New insights on the catalytic mechanism of CO oxidation on Au/TiO2 from ab initio molecular dynamics[J]. Journal of the American Chemical Society, 2013, 135(29): 10673-10683.
[27] HOFFMAN B M, LUKOYANOV D, YANG Z Y, et al. Mechanism of nitrogen fixation by nitrogenase: The next stage[J]. Chemical Reviews, 2014, 114(8): 4041-4062.
[28] CAO C S, ZHAO J, HU H S, et al. Polyvalent s-block elements: A missing link challenges the periodic law of chemistry for the heavy elements[J]. Proceedings of the National Academy of Sciences, 2023, 120(43): e2303989120.
[29] JØRGENSEN C K. Oxidation Numbers and Oxidation States[M]. Berlin: Springer-Verlag, 1969.
[30] JØRGENSEN C K. Energy Levels of Complexes and Gaseous Ions[M]. Køenhavn: Gjellerups Folog, 1957.
[31] SHCHUKAREV S A. One Hundred Years of the Periodic Law of the Chemical Elements, 10th Jubilee Mendeleev Congress (in Russian)[M]. Moscow: Nauka, 1971.
[32] PYYKKÖ P. Dirac-fock one-centre calculations part 8. the 1Σ states of ScH, YH, LaH, AcH, TmH, LuH and LrH[J]. Physica Scripta, 1979, 20: 647-651.
[33] KUTZELNIGG W. Chemical bonding in higher main group elements[J]. Angewandte Chemie International Edition in English, 1984, 23(4): 272-295.
[34] KUTZELNIGG W. Orthogonal and non-orthogonal hybrids[J]. Journal of Molecular Structure: THEOCHEM, 1988, 169: 403-419.
[35] KAUPP M. The role of radial nodes of atomic orbitals for chemical bonding and the periodic table[J]. Journal of Computational Chemistry, 2007, 28(1): 320-325.
[36] TANG Y, ZHAO S, LONG B, et al. On the nature of support effects of metal dioxides MO2 (M = Ti, Zr, Hf, Ce, Th) in single-atom gold catalysts: Importance of quantum primogenic effect [J]. The Journal of Physical Chemistry C, 2016, 120(31): 17514-17526.
[37] ROEBBER J L, WIENER R N, RUSSELL C A. Vacuum ultraviolet spectra of osmium tetroxide and ruthenium tetroxide[J]. The Journal of Chemical Physics, 1974, 60(8): 3166-3173.
[38] HUANG W, XU W H, SCHWARZ W H E, et al. On the highest oxidation states of metal elements in MO4 molecules (M = Fe, Ru, Os, Hs, Sm, and Pu)[J]. Inorganic Chemistry, 2016, 55(9): 4616-4625.
[39] PYYKKÖ P. Theoretical chemistry of gold[J]. Angewandte Chemie International Edition, 2004, 43(34): 4412-4456.
[40] JIANG X L, XU C Q, LU J B, et al. Electronic structure and spectroscopic properties of group-7 tri-oxo-halides MO3X (M = Mn–Bh, X = F–Ts)[J]. Inorganic Chemistry, 2021, 60(13): 9504-9515.
[41] XU G, CUI Y S, JIANG X L, et al. Synthesis and characterization of iron clusters with an icosahedral [Fe@Fe12]16+ Core[J]. National Science Review, 2023, 11(4): nwad327.
[42] WANG Y L, HU H S, LI W L, et al. Relativistic effects break periodicity in group 6 diatomic molecules[J]. Journal of the American Chemical Society, 2016, 138(4): 1126-1129.
[43] CUI P, HU H S, ZHAO B, et al. A multicentre-bonded [ZnI]8 cluster with cubic aromaticity[J]. Nature Communications, 2015, 6(1): 6331.
[44] HU H C, HU H S, ZHAO B, et al. Metal–organic frameworks (MOFs) of a cubic metal cluster with multicentered Mn(I)-Mn(I) bonds[J]. Angewandte Chemie International Edition, 2015, 54 (40): 11681-11685.
[45] GENG L, WENG M, XU C Q, et al. Co13O8-metalloxocubes: a new class of perovskite-like neutral clusters with cubic aromaticity[J]. National Science Review, 2020, 8(1): nwaa201.
[46] WANG M, HAN Z, GOU X, et al. Alkyl chains modulated magnetization dynamics of mononu-clear trigonal prismatic CoII complexes[J]. Chemistry - A European Journal, 2023, 29(58): e202301693.
[47] YAO C, XU C Q, PARK I H, et al. Giant emission enhancement of solid-state gold nanoclusters by surface engineering[J]. Angewandte Chemie International Edition, 2020, 59(21): 8270-8276.
[48] DIEFENBACH A, BICKELHAUPT F M, FRENKING G. The nature of the transition metal−carbonyl bond and the question about the valence orbitals of transition metals. a bond-energy decomposition analysis of TM(CO)6q (TMq = Hf2-, Ta-, W, Re+, Os2+, Ir3+)[J]. Journal of the American Chemical Society, 2000, 122(27): 6449-6458.
[49] YUAN S F, XU C Q, LI J, et al. A ligand-protected golden fullerene: The dipyridylamido Au328+ nanocluster[J]. Angewandte Chemie International Edition, 2019, 58(18): 5906-5909.
[50] KEKULÉ A. Sur la constitution des substances aromatiques[J]. Bulletin de la Société Chimique de France, 1865, 3: 98-110.
[51] KEKULÉ A. Note sur quelques produits de substitution de la benzine[J]. Bull Mem Acad R Med Belg, 1865, 2: 551-563.
[52] PERKIN W H. Ueber die einwirkung des wasserstoffs im entstehungszustand auf azodinaphtyl-diamin[J]. Justus Liebigs Annalen der Chemie, 1866, 137(3): 359-369.
[53] PASCAL P. Magnetochemical studies.[J]. Annales de Chimie et de Physique, 1910, 19: 5-70.
[54] HÜCKEL E. Quantentheoretische beiträge zum benzolproblem[J]. Zeitschrift für Physik, 1931, 70(3): 204-286.
[55] CRAIG D P, PADDOCK N L. A novel type of aromaticity[J]. Nature, 1958, 181(4615): 1052-1053.
[56] BOLDYREV A I, WANG L S. All-metal aromaticity and antiaromaticity[J]. Chemical Reviews, 2005, 105(10): 3716-3757.
[57] CHEN D, SZCZEPANIK D W, ZHU J, et al. All-metal baird aromaticity[J]. Chemical Com-munications, 2020, 56(83): 12522-12525.
[58] POPLE J A. Proton Magnetic Resonance of Hydrocarbons[J]. The Journal of Chemical Physics, 1956, 24(5): 1111-1111.
[59] DEWAR M J S, GLEICHER G J. Ground states of conjugated molecules. II. allowance for molecular geometry1a,b[J]. Journal of the American Chemical Society, 1965, 87(4): 685-692.
[60] SCHLEYER P V R, MAERKER C, DRANSFELD A, et al. Nucleus-independent chemical shifts: a simple and efficient aromaticity probe[J]. Journal of the American Chemical Society, 1996, 118(26): 6317-6318.
[61] WALLENBORN E U, HALDIMANN R F, KLäRNER F G, et al. Theoretical investigation of the origin of regioselectivity in the formation of methanofullerenes by addition of diazo com-pounds: A model study[J]. Chemistry - A European Journal, 1998, 4(11): 2258-2265.
[62] JENA P, SUN Q. Super atomic clusters: Design rules and potential for building blocks of materials[J]. Chemical Reviews, 2018, 118(11): 5755-5870.
[63] LIANG H, LIU B J, TANG B, et al. Atomically precise metal nanocluster-mediated photocatal-ysis[J]. ACS Catalysis, 2022, 12(7): 4216-4226.
[64] WANG S, DING T, LIU T, et al. Ligand assisted thermal atomization of palladium clusters: An inspiring approach for the rational design of atomically dispersed metal catalysts[J]. Ange-wandte Chemie International Edition, 2023, 62(16): e202218630.
[65] YU J, QIN X, YANG Y, et al. Highly stable Pt/CeO2 catalyst with embedding structure toward water–gas shift reaction[J]. Journal of the American Chemical Society, 2024, 146(1): 1071-1080.
[66] DONG C, LI Y, CHENG D, et al. Supported metal clusters: Fabrication and application in heterogeneous catalysis[J]. ACS Catalysis, 2020, 10(19): 11011-11045.
[67] HOWALT J G, VEGGE T. Electrochemical ammonia production on molybdenum nitride nan-oclusters[J]. Physical Chemistry Chemical Physics, 2013, 15(48): 20957-20965.
[68] DAS B K, BANERJEE A, DAS A, et al. Graphyne supported Co13, Fe13 and Ni13 nano-cluster as efficient electrocatalysts for nitrogen reduction reaction: A first principles study[J]. Catalysis Today, 2023, 423: 113906.
[69] WU Y C, ANSARI A S, DUTTA D, et al. Catalyzed decomposition of methanol-d4 on vanadium nanoclusters supported on an ultrathin film of Al2O3/NiAl(100)[J]. The Journal of Physical Chemistry C, 2022, 126(8): 3903-3914.
[70] WANG D, AZOFRA L M, HARB M, et al. Energy-efficient nitrogen reduction to ammonia at low overpotential in aqueous electrolyte under ambient conditions[J]. ChemSusChem, 2018, 11(19): 3416-3422.
[71] BÖHME D K, SCHWARZ H. Gas-phase catalysis by atomic and cluster metal ions: The ulti-mate single-site catalysts[J]. Angewandte Chemie International Edition, 2005, 44(16): 2336-2354.
[72] CAO W, XIA G J, YAO Z, et al. Aldehyde hydrogenation by Pt/TiO2 catalyst in aqueous phase: Synergistic effect of oxygen vacancy and solvent water[J]. JACS Au, 2023, 3(1): 143-153.
[73] WANG P, SHI R, ZHAO Y, et al. Selective photocatalytic oxidative coupling of methane via regulating methyl intermediates over metal/ZnO nanoparticles[J]. Angewandte Chemie Inter-national Edition, 2023, 62(23): e202304301.
[74] GOSWAMI N, YAO Q, LUO Z, et al. Luminescent metal nanoclusters with aggregation-induced emission[J]. The Journal of Physical Chemistry Letters, 2016, 7(6): 962-975.
[75] DU B, JIANG X, DAS A, et al. Glomerular barrier behaves as an atomically precise bandpass filter in a sub-nanometre regime[J]. Nature Nanotechnology, 2017, 12(11): 1096-1102.
[76] ZHANG H, LIU H, TIAN Z, et al. Bacteria photosensitized by intracellular gold nanoclusters for solar fuel production[J]. Nature Nanotechnology, 2018, 13(10): 900-905.
[77] CARRETERO-PALACIOS S, JIMéNEZ-SOLANO A, MíGUEZ H. Plasmonic nanoparticles as light-harvesting enhancers in perovskite solar cells: A user’s guide[J]. ACS Energy Letters, 2016, 1(1): 323-331.
[78] CHEN L Y, WANG C W, YUAN Z, et al. Fluorescent gold nanoclusters: Recent advances in sensing and imaging[J]. Analytical Chemistry, 2015, 87(1): 216-229.
[79] ZHU C, XIN J, LI J, et al. Fluorescence or phosphorescence? the metallic composition of the nanocluster kernel does matter[J]. Angewandte Chemie International Edition, 2022, 61(31): e202205947.
[80] LI J J, LIU C Y, GUAN Z J, et al. Anion-directed regulation of structures and lumines-cence of heterometallic clusters[J]. Angewandte Chemie International Edition, 2022, 61(25): e202201549.
[81] GATTESCHI D, CANESCHI A, PARDI L, et al. Large clusters of metal ions: The transition from molecular to bulk magnets[J]. Science, 1994, 265(5175): 1054-1058.
[82] SESSOLI R, GATTESCHI D, CANESCHI A, et al. Magnetic bistability in a metal-ion cluster [J]. Nature, 1993, 365(6442): 141-143.
[83] MILIOS C J, VINSLAVA A, WERNSDORFER W, et al. A record anisotropy barrier for a single-molecule magnet[J]. Journal of the American Chemical Society, 2007, 129(10): 2754-2755.
[84] MURUGESU M, HABRYCH M, WERNSDORFER W, et al. Single-molecule magnets: a Mn25 complex with a record S = 51/2 spin for a molecular species[J]. Journal of the American Chemical Society, 2004, 126(15): 4766-4767.
[85] TASIOPOULOS A J, VINSLAVA A, WERNSDORFER W, et al. Giant single-molecule mag-nets: A Mn84 torus and its supramolecular nanotubes[J]. Angewandte Chemie International Edition, 2004, 43(16): 2117-2121.
[86] FREEDMAN D E, HARMAN W H, HARRIS T D, et al. Slow magnetic relaxation in a high-spin iron(II) complex[J]. Journal of the American Chemical Society, 2010, 132(4): 1224-1225.
[87] ZADROZNY J M, XIAO D J, ATANASOV M, et al. Magnetic blocking in a linear iron(I) complex[J]. Nature Chemistry, 2013, 5(7): 577-581.
[88] MOSSIN S, TRAN B L, ADHIKARI D, et al. A mononuclear Fe(III) single molecule magnet with a 3/2↔5/2 spin crossover[J]. Journal of the American Chemical Society, 2012, 134(33): 13651-13661.
[89] MENG Y S, MO Z, WANG B W, et al. Observation of the single-ion magnet behavior of d8 ions on two-coordinate Co(I)–NHC complexes[J]. Chemical Science, 2015, 6(12): 7156-7162.
[90] ŚWITLICKA OLSZEWSKA A, PALION-GAZDA J, KLEMENS T, et al. Single-ion magnet behaviour in mononuclear and two-dimensional dicyanamide-containing cobalt(II) complexes [J]. Dalton Transactions, 2016, 45(25): 10181-10193.
[91] ROSADO PIQUER L, SAÑUDO E C. Heterometallic 3d–4f single-molecule magnets[J]. Dalton Transactions, 2015, 44(19): 8771-8780.
[92] ZABALA-LEKUONA A, SECO J M, COLACIO E. Single-molecule magnets: From Mn12-ac to dysprosium metallocenes, a travel in time[J]. Coordination Chemistry Reviews, 2021, 441: 213984.
[93] LÖWDIN P O. Quantum theory of many-particle systems. III. extension of the hartree-fock scheme to include degenerate systems and correlation effects[J]. Physical Review, 1955, 97(6): 1509-1520.
[94] WIGNER E. On the interaction of electrons in metals[J]. Physical Review, 1934, 46(11): 1002-1011.
[95] HOHENBERG P, KOHN W. Inhomogeneous electron gas[J]. Physical Review, 1964, 136(3B): B864-B871.
[96] KOHN W, SHAM L J. Self-consistent equations including exchange and correlation effects[J]. Physical Review, 1965, 140(4A): A1133-A1138.
[97] MALOLA S, HÄKKINEN H. Prospects and challenges for computer simulations of monolayer-protected metal clusters[J]. Nature Communications, 2021, 12(1): 2197.
[98] CAR R, PARRINELLO M. Unified approach for molecular dynamics and density-functional theory[J]. Physical Review Letters, 1985, 55(22): 2471-2474.
[99] MICHALAK A, MITORAJ M, ZIEGLER T. Bond orbitals from chemical valence theory[J]. The Journal of Physical Chemistry A, 2008, 112(9): 1933-1939.
[100] MITORAJ M P, MICHALAK A, ZIEGLER T. A combined charge and energy decomposition scheme for bond analysis[J]. Journal of Chemical Theory and Computation, 2009, 5(4): 962-975.
[101] MITORAJ M, MICHALAK A. Natural orbitals for chemical valence as descriptors of chemical bonding in transition metal complexes[J]. Journal of Molecular Modeling, 2007, 13(2): 347-355.
[102] FOSTER J P, WEINHOLD F. Natural hybrid orbitals[J]. Journal of the American Chemical Society, 1980, 102(24): 7211-7218.
[103] REED A E, CURTISS L A, WEINHOLD F. Intermolecular interactions from a natural bond orbital, donor-acceptor viewpoint[J]. Chemical Reviews, 1988, 88(6): 899-926.
[104] GLENDENING E D, BADENHOOP J K, WEINHOLD F. Natural resonance theory: III. chem-ical applications[J]. Journal of Computational Chemistry, 1998, 19(6): 628-646.
[105] ZUBAREV D Y, BOLDYREV A I. Developing paradigms of chemical bonding: adaptive natural density partitioning[J]. Physical Chemistry Chemical Physics, 2008, 10(34): 5207-5217.
[106] NOODLEMAN L, CASE D A, AIZMAN A. Broken symmetry analysis of spin coupling in iron-sulfur clusters[J]. Journal of the American Chemical Society, 1988, 110(4): 1001-1005.
[107] FRISCH M, TRUCKS G, SCHLEGEL H, et al. Gaussian 16. in Revision A, Gaussian, Inc., Wallingford CT: 2016; Vol. 3.[Z].
[108] ADF2019.304, SCM, Theoretical Chemistry, Vrije Universiteit, Amsterdam, the Netherlands.[EB/OL]. 2019. http://www.scm.com.
[109] TE VELDE G, BICKELHAUPT F M, BAERENDS E J, et al. Chemistry with ADF[J]. Journal of Computational Chemistry, 2001, 22(9): 931-967.
[110] NEESE F. Software update: the ORCA program system, version 4.0[J]. WIREs Computational Molecular Science, 2018, 8(1): e1327.
[111] VANDEVONDELE J, KRACK M, MOHAMED F, et al. Quickstep: Fast and accurate density functional calculations using a mixed gaussian and plane waves approach[J]. Computer Physics Communications, 2005, 167(2): 103-128.
[112] LU T, CHEN F. Multiwfn: A multifunctional wavefunction analyzer[J]. Journal of Computa-tional Chemistry, 2012, 33(5): 580-592.
[113] VARGAFTIK M, ZAGORODNIKOV V, STOLAROV I, et al. Giant palladium clusters as catalysts of oxidative reactions of olefins and alcohols[J]. Journal of Molecular Catalysis, 1989, 53(3): 315-348.
[114] CRAMER R, LINDSEY R V J. The mechanism of isomerization of olefins with transition metal catalysts[J]. Journal of the American Chemical Society, 1966, 88(15): 3534-3544.
[115] BOND G, HELLIER M. Homogeneous catalysis by noble metal salts: I. the homogeneous isomerization of olefins by palladium compounds[J]. Journal of Catalysis, 1965, 4(1): 1-5.
[116] ZHANG J, HU W, QIAN B, et al. Tuning hydrogenation chemistry of Pd-based heterogeneous catalysts by introducing homogeneous-like ligands[J]. Nature Communications, 2023, 14(1): 3944.
[117] LU J, LIU Y, WANG J, et al. Phosphate-supported palladium single atom and nanoparticle boost ambient temperature tandem hydrogenolysis–hydrogenation of furan alcohols/aldehydes [J]. Applied Catalysis B: Environment and Energy, 2024, 344: 123622.
[118] KOU J, WANG W D, FANG J, et al. Precisely controlled Pd nanoclusters confined in porous or-ganic cages for size-dependent catalytic hydrogenation[J]. Applied Catalysis B: Environmental, 2022, 315: 121487.
[119] MURAHASHI T, FUJIMOTO M, AKI OKA M, et al. Discrete sandwich compounds of mono-layer palladium sheets[J]. Science, 2006, 313(5790): 1104-1107.
[120] WATANABE Y. Atomically precise cluster catalysis towards quantum controlled catalysts[J]. Science and Technology of Advanced Materials, 2014, 15(6): 063501.
[121] XU C Q, LEE M S, WANG Y G, et al. Structural rearrangement of Au–Pd nanoparticles under reaction conditions: An ab initio molecular dynamics study[J]. ACS Nano, 2017, 11(2): 1649-1658.
[122] KADEN W E, WU T, KUNKEL W A, et al. Electronic structure controls reactivity of size-selected Pd clusters adsorbed on TiO2 surfaces[J]. Science, 2009, 326(5954): 826-829.
[123] CLOKE F G N. Organometallic pentalene complexes[J]. Pure and Applied Chemistry, 2001, 73(2): 233-238.
[124] SUMMERSCALES O T, CLOKE F G N. The organometallic chemistry of pentalene[J]. Co-ordination Chemistry Reviews, 2006, 250(9): 1122-1140.
[125] CUI F H, HUA Y, LIN Y M, et al. Selective difunctionalization of unactivated aliphatic alkenes enabled by a metal–metallaaromatic catalytic system[J]. Journal of the American Chemical Society, 2022, 144(5): 2301-2310.
[126] CHEN S, LIU L, GAO X, et al. Addition of alkynes and osmium carbynes towards functional-ized d𝜋–p𝜋 conjugated systems[J]. Nature Communications, 2020, 11(1): 4651.
[127] WANG J, LI J, ZHOU Y, et al. Tuning an electrode work function using organometallic com-plexes in inverted perovskite solar cells[J]. Journal of the American Chemical Society, 2021, 143(20): 7759-7768.
[128] TANG C, JIANG X L, CHEN S, et al. Stereoelectronic modulation of a single-molecule junction through a tunable metal–carbon d𝜋–p𝜋 hyperconjugation[J]. Journal of the American Chemical Society, 2023, 145(18): 10404-10410.
[129] ZHU C, YANG Y, LUO M, et al. Stabilizing two classical antiaromatic frameworks: Demon-stration of photoacoustic imaging and the photothermal effect in metalla-aromatics[J]. Ange-wandte Chemie International Edition, 2015, 54(21): 6181-6185.
[130] LI H, WEI B, XU L, et al. Barium dibenzopentalenide as a main-group metal η8 complex: Facile synthesis from 1,4-dilithio-1,3-butadienes and Ba[N(SiMe3)2]2, structural characterization, and reaction chemistry[J]. Angewandte Chemie International Edition, 2013, 52(41): 10822-10825.
[131] ADAMO C, BARONE V. Toward reliable density functional methods without adjustable pa-rameters: The PBE0 model[J]. The Journal of Chemical Physics, 1999, 110(13): 6158-6170.
[132] WEIGEND F, AHLRICHS R. Balanced basis sets of split valence, triple zeta valence and quadruple zeta valence quality for h to Rn: Design and assessment of accuracy[J]. Physical Chemistry Chemical Physics, 2005, 7(18): 3297-3305.
[133] GRIMME S, EHRLICH S, GOERIGK L. Effect of the damping function in dispersion corrected density functional theory[J]. Journal of Computational Chemistry, 2011, 32(7): 1456-1465.
[134] VAN LENTHE E, BAERENDS E J. Optimized slater-type basis sets for the elements 1–118 [J]. Journal of Computational Chemistry, 2003, 24(9): 1142-1156.
[135] VAN LENTHE E, VAN LEEUWEN R, BAERENDS E J, et al. Relativistic regular two-component hamiltonians[J]. International Journal of Quantum Chemistry, 1996, 57(3): 281-293.
[136] GLENDENING E D, LANDIS C R, WEINHOLD F. NBO 7.0: New vistas in localized and delocalized chemical bonding theory[J]. Journal of Computational Chemistry, 2019, 40(25): 2234-2241.
[137] ZHANG J X, SHEONG F K, LIN Z. Unravelling chemical interactions with principal interact-ing orbital analysis[J]. Chemistry - A European Journal, 2018, 24(38): 9639-9650.
[138] PERDEW J P, BURKE K, ERNZERHOF M. Generalized gradient approximation made simple [J]. Physical Review Letters, 1996, 77(18): 3865-3868.
[139] BECKE A D. Density-functional exchange-energy approximation with correct asymptotic be-havior[J]. Physical Review A, 1988, 38(6): 3098-3100.
[140] CLOKE F G N, GREEN J C, KILPATRICK A F, et al. Bonding in pentalene complexes and their recent applications[J]. Coordination Chemistry Reviews, 2017, 344: 238-262.
[141] ESTERUELAS M A, GARCIA M P, LOPEZ A M, et al. Indirect cooperative effects leading to synergism in bimetallic homogeneous catalysts containing azolates as bridging ligands[J]. Organometallics, 1991, 10(1): 127-133.
[142] CLOKE F G N, HITCHCOCK P B, KUCHTA M C, et al. Mononuclear tantalum (V) pentalene complexes: synthesis of Ta(η8-C8H4(1,4-SiiPr3)2X3) (X = CH3, Cl, I) and the X-ray crystal structures of Ta(η8-C8H4(1,4-SiiPr3)2(CH3)3), Ta(η8-C8H4(1,4-SiiPr3)2(CH3)2Cl), Ta(η8-C8H4(1,4-SiiPr3)2(CH3)Cl2) and Ta(η8-C8H4(1,4-SiiPr3)2I3)[J]. Polyhedron, 2004, 23 (17): 2625-2630.
[143] JONES S C, O’HARE D. [V(η5-C5H5)]2C8H6: a bimetallic pentalene-bridged complex with multiple bonding between the metal atoms[J]. Chemical Communications, 2003, 17: 2208-2209.
[144] ZHUANG S, CHEN D, YOU Q, et al. Thiolated, reduced palladium nanoclusters with resolved structures for the electrocatalytic reduction of oxygen[J]. Angewandte Chemie International Edition, 2022, 61(46): e202208751.
[145] PYYKKö P, ATSUMI M. Molecular single-bond covalent radii for elements 1–118[J]. Chem-istry–A European Journal, 2009, 15(1): 186-197.
[146] PÉREZ-GONZÁLEZ A, YANG Z Y, LUKOYANOV D A, et al. Exploring the role of the central carbide of the nitrogenase active-site FeMo-cofactor through targeted 13C labeling and ENDOR spectroscopy[J]. Journal of the American Chemical Society, 2021, 143(24): 9183-9190.
[147] LI Y, SONG Y, ZHANG X, et al. Atomically precise Au42 nanorods with longitudinal excitons for an intense photothermal effect[J]. Journal of the American Chemical Society, 2022, 144 (27): 12381-12389.
[148] WANG L, LIU Y, WANG H, et al. Oxygen-bridged vanadium single-atom dimer catalysts promoting high faradaic efficiency of ammonia electrosynthesis[J]. ACS Nano, 2023, 17(8): 7406-7416.
[149] GENG J, ZHANG S, XU H, et al. An oxygen-coordinated molybdenum single atom catalyst for efficient electrosynthesis of ammonia[J]. Chemical Communications, 2021, 57(44): 5410-5413.
[150] YANG X, SUN S, MENG L, et al. Molecular single iron site catalysts for electrochemical nitrogen fixation under ambient conditions[J]. Applied Catalysis B: Environmental, 2021, 285: 119794.
[151] YU B, LI H, WHITE J, et al. Tuning the catalytic preference of ruthenium catalysts for nitrogen reduction by atomic dispersion[J]. Advanced Functional Materials, 2020, 30(6): 1905665.
[152] LING C, ZHANG Y, LI Q, et al. New mechanism for N2 reduction: The essential role of surface hydrogenation[J]. Journal of the American Chemical Society, 2019, 141(45): 18264-18270.
[153] ERISMAN J W, SUTTON M A, GALLOWAY J, et al. How a century of ammonia synthesis changed the world[J]. Nature Geoscience, 2008, 1(10): 636-639.
[154] CREUTZ S E, PETERS J C. Diiron bridged-thiolate complexes that bind N2 at the FeIIFeII, FeIIFeI, and FeIFeI redox states[J]. Journal of the American Chemical Society, 2015, 137(23): 7310-7313.
[155] DEROSHA D E, CHILKURI V G, VAN STAPPEN C, et al. Planar three-coordinate iron sulfide in a synthetic
[4Fe-3S] cluster with biomimetic reactivity[J]. Nature Chemistry, 2019, 11(11): 1019-1025.
[156] SPEELMAN A L, ČORIĆ I, VAN STAPPEN C, et al. Nitrogenase-relevant reactivity of a synthetic iron–sulfur–carbon site[J]. Journal of the American Chemical Society, 2019, 141(33): 13148-13157.
[157] LI Y, LI Y, WANG B, et al. Ammonia formation by a thiolate-bridged diiron amide complex as a nitrogenase mimic[J]. Nature Chemistry, 2013, 5(4): 320-326.
[158] THORHALLSSON A T, BENEDIKTSSON B, BJORNSSON R. A model for dinitrogen bind-ing in the E4 state of nitrogenase[J]. Chemical Science, 2019, 10: 11110-11124.
[159] BENEDIKTSSON B, BJORNSSON R. Analysis of the geometric and electronic structure of spin-coupled iron–sulfur dimers with broken-symmetry DFT: Implications for FeMoco[J]. Jour-nal of Chemical Theory and Computation, 2022, 18(3): 1437-1457.
[160] RUTLEDGE H L, TEZCAN F A. Electron transfer in nitrogenase[J]. Chemical Reviews, 2020, 120(12): 5158-5193.
[161] REIHER M, SALOMON O, SELLMANN D, et al. Dinuclear diazene iron and ruthenium complexes as models for studying nitrogenase activity[J]. Chemistry - A European Journal, 2001, 7(23): 5195-5202.
[162] ANDERSON J S, RITTLE J, PETERS J C. Catalytic conversion of nitrogen to ammonia by an iron model complex[J]. Nature, 2013, 501(7465): 84-87.
[163] HASANAYN F, HOLLAND P L, GOLDMAN A S, et al. Lewis structures and the bonding clas-sification of end-on bridging dinitrogen transition metal complexes[J]. Journal of the American Chemical Society, 2023, 145(8): 4326-4342.
[164] CHATT J, FAY R C, RICHARDS R L. Preparation and characterisation of the dinu-clear dinitrogen complex, trichloro-µ-dinitrogen-bis(tetrahydrofuran)chlorotetrakis[dimethyl-(phenyl)phosphine]rhenium(I)chromium(III)[(PMe2Ph)4ClReN2CrCl3(thf)2][J]. Journal of the Chemical Society, 1971: 702-704.
[165] LI D, ZAN L, CHEN S, et al. Direct conversion of N2 and O2: status, challenge and perspective [J]. National Science Review, 2022, 9(12): nwac042.
[166] ZHONG M, CUI X, WU B, et al. Dinitrogen functionalization affording structurally well-defined cobalt diazenido complexes[J]. CCS Chemistry, 2022, 4(2): 532-539.
[167] XIE S J, WU R K, HUANG Y F, et al. Direct incorporation of dinitrogen into an aliphatic C–H bond[J]. Journal of the American Chemical Society, 2023, 145(12): 6773-6780.
[168] GAO Y, LI G, DENG L. Bis(dinitrogen)cobalt(-1) complexes with NHC ligation: Synthe-sis, characterization, and their dinitrogen functionalization reactions affording side-on bound diazene complexes[J]. Journal of the American Chemical Society, 2018, 140(6): 2239-2250.
[169] ZHANG Y, HOLM R H. Synthesis of a molecular Mo2Fe6S9 cluster with the topology of the pn cluster of nitrogenase by rearrangement of an edge-bridged Mo2Fe6S8 double cubane[J]. Journal of the American Chemical Society, 2003, 125(13): 3910-3920.
[170] HASHIMOTO T, OHKI Y, TATSUMI K. Synthesis of coordinatively unsaturated mesityliron thiolate complexes and their reactions with elemental sulfur[J]. Inorganic Chemistry, 2010, 49 (13): 6102-6109.
[171] OHKI Y, IKAGAWA Y, TATSUMI K. Synthesis of new
[8Fe-7S] clusters: a topological link between the core structures of P-cluster, FeMo-co, and FeFe-co of nitrogenases[J]. Journal of the American Chemical Society, 2007, 129(34): 10457-10465.
[172] LI W L, LI Y, LI J, et al. How thermal fluctuations influence the function of the FeMo cofactor in nitrogenase enzymes[J]. Chem Catalysis, 2023, 3(7): 100662.
[173] RAUGEI S, SEEFELDT L C, HOFFMAN B M. Critical computational analysis illuminates the reductive-elimination mechanism that activates nitrogenase for N2 reduction[J]. Proceedings of the National Academy of Sciences, 2018, 115(45): E10521-E10530.
[174] SIEGBAHN P E M. Model calculations suggest that the central carbon in the femo-cofactor of nitrogenase becomes protonated in the process of nitrogen fixation[J]. Journal of the American Chemical Society, 2016, 138(33): 10485-10495.
[175] TANIFUJI K, OHKI Y. Metal–sulfur compounds in N2 reduction and nitrogenase-related chemistry[J]. Chemical Reviews, 2020, 120(12): 5194-5251.
[176] MCEVOY J P, BRUDVIG G W. Water-splitting chemistry of photosystem II[J]. Chemical Reviews, 2006, 106(11): 4455-4483.
[177] SHAFAAT H S, RÜDIGER O, OGATA H, et al. [NiFe] hydrogenases: A common active site for hydrogen metabolism under diverse conditions[J]. Biochimica et Biophysica Acta (BBA) -Bioenergetics, 2013, 1827(8): 986-1002.
[178] WITTKAMP F, SENGER M, STRIPP S T, et al. [FeFe]-hydrogenases: recent developments and future perspectives[J]. Chemical Communications, 2018, 54(47): 5934-5942.
[179] AMARA P, MOUESCA J M, VOLBEDA A, et al. Carbon monoxide dehydrogenase reaction mechanism: A likely case of abnormal CO2 insertion to a Ni−H- bond[J]. Inorganic Chemistry, 2011, 50(5): 1868-1878.
[180] FENG J, SHAIK S, WANG B. Spin-regulated electron transfer and exchange-enhanced reac-tivity in Fe4S4-mediated redox reaction of the Dph2 enzyme during the biosynthesis of diph-thamide[J]. Angewandte Chemie International Edition, 2021, 60(37): 20430-20436.
[181] WANG D, LI Y, ZHENG Y, et al. Recent advances in screening methods for the functional investigation of lytic polysaccharide monooxygenases[J]. Frontiers in Chemistry, 2021, 9: 653754.
[182] IMPANO S, YANG H, JODTS R J, et al. Active-site controlled, jahn–teller enabled regiose-lectivity in reductive S–C bond cleavage of s-adenosylmethionine in radical sam enzymes[J]. Journal of the American Chemical Society, 2021, 143(1): 335-348.
[183] BOVI D, NARZI D, GUIDONI L. The S2 state of the oxygen-evolving complex of photosys-tem II explored by QM/MM dynamics: Spin surfaces and metastable states suggest a reaction path towards the S3 state[J]. Angewandte Chemie International Edition, 2013, 52(45): 11744-11749.
[184] CHEN Z, LU J, LIU C. Electronic structure of the Fe3S4 cluster and its quasi-aromaticity[J]. Journal of Cluster Science, 1993, 4(2): 133-150.
[185] LI J, LIU C, LU J. Ab initio studies of electronic structures and quasi-aromaticity in M3S4−nOn4+ (M = Mo, W; n = 0-4) clusters[J]. Journal of the Chemical Society, Faraday Transactions, 1994, 90(1): 39-45.
[186] COX N, RETEGAN M, NEESE F, et al. Electronic structure of the oxygen-evolving complex in photosystem II prior to O-O bond formation[J]. Science, 2014, 345(6198): 804-808.
[187] KOK B, FORBUSH B, MCGLOIN M. Cooperation of charges in photosynthetic O2 evolution–I. a linear four step mechanism[J]. Photochemistry and Photobiology, 1970, 11(6): 457-475.
[188] DISMUKES G C, SIDERER Y. Intermediates of a polynuclear manganese center involved in photosynthetic oxidation of water[J]. Proceedings of the National Academy of Sciences, 1981, 78(1): 274-278.
[189] GOODIN D B, YACHANDRA V K, BRITT R D, et al. The state of manganese in the photosyn-thetic apparatus. 3. light-induced changes in X-ray absorption (K-edge) energies of manganese in photosynthetic membranes[J]. Biochimica et Biophysica Acta (BBA) - Bioenergetics, 1984, 767(2): 209-216.
[190] DE PAULA J C, BECK W F, MILLER A F, et al. Studies of the manganese site of photosys-tem II by electron spin resonance spectroscopy[J]. Journal of the Chemical Society Faraday Transactions 1, 1987, 83(12): 3635-3651.
[191] DE PAULA J C, BRUDVIG G W. Magnetic properties of manganese in the photosynthetic oxygen-evolving complex[J]. Journal of the American Chemical Society, 1985, 107(9): 2643-2648.
[192] DE PAULA J C, BECK W F, BRUDVIG G W. Magnetic properties of manganese in the photosynthetic O2-evolving complex. 2. evidence for a manganese tetramer[J]. Journal of the American Chemical Society, 1986, 108(14): 4002-4009.
[193] BRUDVIG G W, BECK W F, PAULA J C. Mechanism of photosynthetic water oxidation[J]. Annual Review of Biophysics and Biophysical Chemistry, 1989, 18(1): 25-46.
[194] MARTYNA G J, KLEIN M L, TUCKERMAN M. Nosé–Hoover chains: The canonical en-semble via continuous dynamics[J]. The Journal of Chemical Physics, 1992, 97(4): 2635-2643.
[195] HOOVER W G. Canonical dynamics: Equilibrium phase-space distributions[J]. Physical Re-view A, 1985, 31(3): 1695-1697.
[196] VANDEVONDELE J, HUTTER J. Gaussian basis sets for accurate calculations on molecular systems in gas and condensed phases[J]. The Journal of Chemical Physics, 2007, 127(11): 114105.
[197] SPRIK M, CICCOTTI G. Free energy from constrained molecular dynamics[J]. The Journal of Chemical Physics, 1998, 109(18): 7737-7744.
[198] RYCKAERT J P, CICCOTTI G, BERENDSEN H J. Numerical integration of the cartesian equations of motion of a system with constraints: molecular dynamics of n-alkanes[J]. Journal of Computational Physics, 1977, 23(3): 327-341.
[199] SIEGBAHN P E M, BLOMBERG M R A. Energy diagrams for water oxidation in photosystem II using different density functionals[J]. Journal of Chemical Theory and Computation, 2014, 10(1): 268-272.
[200] GUO Y, MESSINGER J, KLOO L, et al. Reversible structural isomerization of nature’s water oxidation catalyst prior to O–O bond formation[J]. Journal of the American Chemical Society, 2022, 144(26): 11736-11747.
[201] KLAMT A, SCHÜÜRMANN G. COSMO: a new approach to dielectric screening in solvents with explicit expressions for the screening energy and its gradient[J]. Journal of the Chemical Society Perkin Transactions 2, 1993, 5: 799-805.
[202] JUSéLIUS J, SUNDHOLM D, GAUSS J. Calculation of current densities using gauge-including atomic orbitals[J]. The Journal of Chemical Physics, 2004, 121(9): 3952-3963.
[203] AVERKIEV B B, BOLDYREV A I. Hf3 cluster is triply (σ-, π-, and δ-) aromatic in the lowest D3ℎ, 1A1’ state[J]. The Journal of Physical Chemistry A, 2007, 111(50): 12864-12866.
[204] WANNERE C S, CORMINBOEUF C, WANG Z X, et al. Evidence for d orbital aromaticity in square planar coinage metal clusters[J]. Journal of the American Chemical Society, 2005, 127 (15): 5701-5705.
[205] LIU N, YOU X R, ZHAI H J. Chemical bonding in transition metal nitride Os3N3+ cluster: 6π inorganic benzene and δ2δ*1δ*1 aromaticity[J]. ACS Omega, 2018, 3(12): 17083-17091.
[206] ZHAI H J, AVERKIEV B, ZUBAREV D, et al. δ aromaticity in [Ta3O3]-[J]. Angewandte Chemie International Edition, 2007, 46(23): 4277-4280.
[207] TSIPIS A C, TSIPIS C A. Hydrometal analogues of aromatic hydrocarbons: a new class of cyclic hydrocoppers(I)[J]. Journal of the American Chemical Society, 2003, 125(5): 1136-1137.
[208] ALVARADO-SOTO L, RAMÍREZ-TAGLE R, ARRATIA-PÉREZ R. Spin–orbit effects on the aromaticity of the Re3Cl9 and Re3Br9 clusters[J]. Chemical Physics Letters, 2008, 467(1):94- 96.
[209] ALVARADO-SOTO L, RAMíREZ-TAGLE R, ARRATIA-PÉREZ R. Spin−orbit effects on the aromaticity of the Re3X92- (X = Cl, Br) cluster ions[J]. The Journal of Physical Chemistry A, 2009, 113(9): 1671-1673.
[210] XU Q, JIANG L, TSUMORI N. cyclo-Ti3[η2(μ2-C,O)]3: A side-on-bonded polycarbonyl ti-tanium cluster with potentially antiaromatic character[J]. Angewandte Chemie International Edition, 2005, 44(28): 4338-4342.
[211] TAM N M, PHAM H T, NGUYEN M T. Ring currents in silicon tetramer (Si4, Si42+) and planar tetracoordinate carbon doped cluster Si4C2+: σ versus π aromaticity[J]. Chemical Physics Letters, 2014, 608: 255-263.
[212] PAUL B K. On the aromaticity of puckered ions C4H42+ and B4H42-: Deciphering the origin of nonplanarity[J]. ChemistrySelect, 2023, 8(39): 1-6.
[213] KREWALD V, RETEGAN M, COX N, et al. Metal oxidation states in biological water splitting [J]. Chemical Science, 2015, 6(3): 1676-1695.
[214] EULENSTEIN A R, FRANZKE Y J, LICHTENBERGER N, et al. Substantial 𝜋-aromaticity in the anionic heavy-metal cluster [Th@Bi12]4-[J]. Nature Chemistry, 2021, 13(2): 149-155.
[215] PEERLESS B, SCHMIDT A, FRANZKE Y J, et al. 𝜙-aromaticity in prismatic Bi6-based clusters[J]. Nature Chemistry, 2023, 15(3): 347-356.
[216] GEUENICH D, HESS K, KÖHLER F, et al. Anisotropy of the induced current density (ACID), a general method to quantify and visualize electronic delocalization[J]. Chemical Reviews, 2005, 105(10): 3758-3772.
[217] LIN X, WU W, MO Y. Planar four-membered diboron actinide compound with double möbius aromaticity[J]. Journal of the American Chemical Society, 2023, 145(14): 8107-8113.
[218] SHEN T, CHEN D, LIN L, et al. Dual aromaticity in both the t0 and s1 states: Osmapyridinium with phosphonium substituents[J]. Journal of the American Chemical Society, 2019, 141(14): 5720-5727.
[219] IRON M A, LUCASSEN A C B, COHEN H, et al. A computational foray into the formation and reactivity of metallabenzenes[J]. Journal of the American Chemical Society, 2004, 126(37): 11699-11710.
修改评论