[1] 傅良魁, 李金铭. 电法勘探教程 [Z]. 北京: 地质出版社. 1983.
[2] 李金铭. 地电场与电法勘探 [M]. 地质出版社, 2005.
[3] ALI M A H, MEWAFY F M, QIAN W, et al. Integration of Electrical Resistivity Tomography and Induced Polarization for Characterization and Mapping of (Pb-Zn-Ag) Sulfide Deposits [J]. Minerals, 2023, 13(7): 986.
[4] UHLEMANN S, CHAMBERS J, FALCK W E, et al. Applying electrical resistivity tomography in ornamental stone mining: Challenges and solutions [J]. Minerals, 2018, 8(11): 491.
[5] SHIN Y, SHIN S, CHO S-J, et al. Application of 3D Electrical Resistivity Tomography in the Yeoncheon Titanomagnetite Deposit, South Korea [J]. Minerals, 2021, 11(6): 563.
[6] SU Z, REVIL A, GHORBANI A, et al. Combining Electrical Resistivity, Induced Polarization, and Self-Potential for a Better Detection of Ore Bodies [J]. Minerals, 2023, 14(1): 12.
[7] 杨妮妮, 杨进, 王连山. 高密度电阻率法在煤矿岩溶探测中的应用研究 [J]. 工矿自动化, 2008, (5): 1-4.
[8] KURAS O, PRITCHARD J D, MELDRUM P I, et al. Monitoring hydraulic processes with automated time-lapse electrical resistivity tomography (ALERT) [J]. Comptes Rendus Geoscience, 2009, 341(10-11): 868-85.
[9] MEYERHOFF S B, MAXWELL R M, REVIL A, et al. Characterization of groundwater and surface water mixing in a semiconfined karst aquifer using time‐lapse electrical resistivity tomography [J]. Water Resources Research, 2014, 50(3): 2566-85.
[10] LIU B, LIU Z, LI S, et al. An improved Time-Lapse resistivity tomography to monitor and estimate the impact on the groundwater system induced by tunnel excavation [J]. Tunnelling and Underground Space Technology, 2017, 66: 107-20.
[11] BAI L, HUO Z, ZENG Z, et al. Groundwater flow monitoring using time-lapse electrical resistivity and Self Potential data [J]. Journal of Applied Geophysics, 2021, 193: 104411.
[12] HAYLEY K, BENTLEY L, GHARIBI M. Time‐lapse electrical resistivity monitoring of salt‐affected soil and groundwater [J]. Water Resources Research, 2009, 45(7): 12-35.
[13] INIM I J, UDOSEN N I, TIJANI M N, et al. Time-lapse electrical resistivity investigation of seawater intrusion in coastal aquifer of Ibeno, Southeastern Nigeria [J]. Applied Water Science, 2020, 10(11): 1-12.
[14] 张庚成. 利用高密度电阻率法对黄土体中水文监测的应用研究 [J]. 城市建筑, 2019, (7): 139-140.
[15] MOLLARET C, HILBICH C, PELLET C, et al. Mountain permafrost degradation documented through a network of permanent electrical resistivity tomography sites [J]. The Cryosphere, 2019, 13(10): 2557-78.
[16] TESFALDET Y T, PUTTIWONGRAK A. Seasonal groundwater recharge characterization using time-lapse electrical resistivity tomography in the Thepkasattri Watershed on Phuket Island, Thailand [J]. Hydrology, 2019, 6(2): 36.
[17] NIELSON T, BRADFORD J, PIERCE J, et al. Soil structure and soil moisture dynamics inferred from time-lapse electrical resistivity tomography [J]. Catena, 2021, 207: 105553.
[18] MOJICA A, DUARTE B, VERGARA F, et al. Time-lapse electrical resistivity tomography for assessment of seasonal moisture variations in a tropical regolith [J]. Hydrological Research Letters, 2022, 16(1): 18-24.
[19] 付振兴, 谭捍东, 刘慧芳, et al. 高压直流圆环形接地极电位数值模拟及影响因素分析 [J]. 电网技术, 2016, 40(6): 1909-15.
[20] 柯敢攀, 黄清华. 井地电法的三维正反演研究 [J]. 北京大学学报: 自然科学版, 2009, (2): 264-72.
[21] KAYODE J S, ARIFIN M H, BASORI M B I, et al. Gold prospecting mapping in the peninsular Malaysia gold belts [J]. Pure and Applied Geophysics, 2022, 179(9): 3295-328.
[22] CHAMBERS J, GUNN D, WILKINSON P, et al. 4D electrical resistivity tomography monitoring of soil moisture dynamics in an operational railway embankment [J]. Near Surface Geophysics, 2014, 12(1): 61-72.
[23] WILKINSON P B, CHAMBERS J E, MELDRUM P I, et al. Predicting the movements of permanently installed electrodes on an active landslide using time-lapse geoelectrical resistivity data only [J]. Geophysical Journal International, 2010, 183(2): 543-56.
[24] XU D, HU X-Y, SHAN C-L, et al. Landslide monitoring in southwestern China via time-lapse electrical resistivity tomography [J]. Applied Geophysics, 2016, 13(1): 1-12.
[25] DI GIUSEPPE M G, TROIANO A. Monitoring active fumaroles through time-lapse electrical resistivity tomograms: An application to the Pisciarelli fumarolic field (Campi Flegrei, Italy) [J]. Journal of Volcanology and Geothermal Research, 2019, 375: 32-42.
[26] 孙亚鑫, 张军. 基于高密度电阻率法数值模拟的露天铁矿高陡边坡完整性动态监测评价研究 [J]. 中国金属通报, 2021, (09): 58-59.
[27] WATLET A, THIRUGNANAM H, SINGH B, et al. 4D electrical resistivity to monitor unstable slopes in mountainous tropical regions: an example from Munnar, India [J]. Landslides, 2023, 20(5): 1031-44.
[28] RADULESCU M, VALERIAN C, YANG J. Time-lapse electrical resistivity anomalies due to contaminant transport around landfills [J]. 2007, 50(3) , pp.453-468.
[29] AUDEBERT M, CLéMENT R, MOREAU S, et al. Understanding leachate flow in municipal solid waste landfills by combining time-lapse ERT and subsurface flow modelling–Part I: Analysis of infiltration shape on two different waste deposit cells [J]. Waste management, 2016, 55: 165-75.
[30] DIMECH A, CHENG L, CHOUTEAU M, et al. A review on applications of time-lapse electrical resistivity tomography over the last 30 years: Perspectives for mining waste monitoring [J]. Surveys in Geophysics, 2022, 43(6): 1699-759.
[31] NAZIFI H M, GüLEN L, GüRBüZ E, et al. Time-lapse electrical resistivity tomography (ERT) monitoring of used engine oil contamination in laboratory setting [J]. Journal of Applied Geophysics, 2022, 197: 104531.
[32] PETERSSON W. Om malmsökande medelst elektricitet [J]. Jernkontorets Annaler, 1907, 2: 153-71.
[33] SCHLUMBERGER C. Etude sur la prospection electrique du sous-sol [M]. Gauthier-Villars, 1920.
[34] BRUCKSHAW J. Principles of Direct Current Resistivity Prospecting Geza Kunetz (Gebriider Borntraeger, Berlin, 1966, pp. 103+ xvi) [Z]. Blackwell Publishing Ltd Oxford, UK. 1967.
[35] KOEFOED O. Geosounding principles, 1. Resistivity sounding measurements [J]. 1979, 37 (4) , pp.1178-1178.
[36] AUBERTIN M, FALA O, MOLSON J, et al. Évaluation du comportement hydrogéologique et géochimique des haldes à stériles; proceedings of the Proceedings of the Symposium sur l’Environnement et les Mines, Rouyn-Noranda, CD-Rom, CIM, F[C]. 2005, 33(3): 447-459.
[37] LI Y, YANG D. Electrical imaging of hydraulic fracturing fluid using steel-cased wells and a deep-learning method [J]. Geophysics, 2021, 86(4): E315-E32.
[38] YU N, LIU H, FENG X, et al. Advancing CO 2 Storage Monitoring via Cross-Borehole Apparent Resistivity Imaging Simulation [J]. IEEE Transactions on Geoscience and Remote Sensing, 2023, 61: 1-12.
[39] GRIFFITHS D, TURNBULL J, OLAYINKA A. Two-dimensional resistivity mapping with a computer-controlled array [J]. First break, 1990, 8(4): 85-88.
[40] 吴小平, 徐果明. 利用共轭梯度法的电阻率三维反演研究 [J]. 地球物理学报, 2000, 43(3): 420-6.
[41] 吴小平, 刘洋, 王威. 基于非结构网格的电阻率三维带地形反演 [J]. 地球物理学报, 2015, 58(8): 2706-17.
[42] LOKE M H. Tutorial: 2-D and 3-D electrical imaging surveys [J]. 2004.
[43] PIDLISECKY A, HABER E, KNIGHT R. RESINVM3D: A 3D resistivity inversion package [J]. Geophysics, 2007, 72(2): H1-H10.
[44] 马欢. 电阻率法和激发极化法不同装置组合数据三维非线性共轭梯度反演并行算法研究 [D]; 中国地质大学 (北京), 2015.
[45] 刘斌. 基于电阻率法与激电法的隧道含水地质构造超前探测与突水灾害实时监测研究 [D]. 山东: 山东大学, 2010.
[46] LI Y, OLDENBURG D W. Approximate inverse mappings in DC resistivity problems [J]. Geophysical Journal International, 1992, 109(2): 343-62.
[47] CHAMBERS J, WILKINSON P, WARDROP D, et al. Bedrock detection beneath river terrace deposits using three-dimensional electrical resistivity tomography [J]. Geomorphology, 2012, 177: 17-25.
[48] RUCKER D F, LEVITT M T, GREENWOOD W J. Three-dimensional electrical resistivity model of a nuclear waste disposal site [J]. Journal of Applied Geophysics, 2009, 69(3-4): 150-64.
[49] JONES G, ZIELINSKI M, SENTENAC P. Mapping desiccation fissures using 3-D electrical resistivity tomography [J]. Journal of Applied Geophysics, 2012, 84: 39-51.
[50] ARATO A, PIRO S, SAMBUELLI L. 3D inversion of ERT data on an archaeological site using GPR reflection and 3D inverted magnetic data as a priori information [J]. Near Surface Geophysics, 2015, 13(6): 545-56.
[51] LOKE M. Res2Dinv and Res3dinv Software Version 3.59 [J]. Geoelectrical Imaging 2D&3D, Penang, Malaysia, 2009, 73.
[52] KARAOULIS M, REVIL A, TSOURLOS P, et al. IP4DI: A software for time-lapse 2D/3D DC-resistivity and induced polarization tomography [J]. Computers & Geosciences, 2013, 54: 164-70.
[53] BLANCHY G, SANEIYAN S, BOYD J, et al. ResIPy, an intuitive open source software for complex geoelectrical inversion/modeling [J]. Computers & Geosciences, 2020, 137: 104423.
[54] DOYORO Y G, CHANG P-Y, PUNTU J M, et al. A review of open software resources in python for electrical resistivity modelling [J]. Geoscience Letters, 2022, 9(1): 1-16.
[55] ELIS V R, USTRA A T, HIDALGO-GATO M C, et al. Application of induced polarization and resistivity to the environmental investigation of an old waste disposal area [J]. Environmental Earth Sciences, 2016, 75: 1-13.
[56] JIANG F, DONG L, DAI Q, et al. Using wavelet packet denoising and ANFIS networks based on COSFLA optimization for electrical resistivity imaging inversion [J]. Fuzzy Sets and Systems, 2018, 337: 93-112.
[57] 严加永, 孟贵祥, 吕庆田, et al. 高密度电法的进展与展望 [J]. 物探与化探, 2012, 36(4): 576-84.
[58] 侯彦威, 王信文, 张卜文, et al. 中值空间滤波去噪技术研究 [J]. 勘探地球物理进展, 2009, 32(1): 55-7.
[59] 苏兆锋, 陈昌彦, 张在武. 小波降噪技术在高密度电阻率信号处理中的应用 [J]. 工程勘察, 2008, (1): 72-4.
[60] 田成富, 杨俊杰. 基于小波变换的高密度电法资料去噪研究 [J]. 工程地球物理学报, 2011, 8(2): 200-5.
[61] 李文刚, 张振勇, 王艳波, et al. 小波分析在矿井高密度电法数据处理中的应用 [J]. 中国煤炭地质, 2011, 23(6): 52-5.
[62] HUO J, WANG G, LI H. EMD decomposition-based signal denoising method for DC electrical methods; proceedings of the International Conference on Electronic Information Engineering and Data Processing (EIEDP 2023), F, SPIE [C]. 2023.
[63] STANLEY RAJ A, HUDSON OLIVER D, SRINIVAS Y, et al. Wavelet denoising algorithm to refine noisy geoelectrical data for versatile inversion [J]. Modeling Earth Systems and Environment, 2016, 2: 1-11.
[64] 马欢, 郭越, 吴萍萍, et al. 基于 MPI 并行算法的电阻率法多种装置数据的三维联合反演 [J]. 地球物理学报, 2018, 61(12): 5052-65.
[65] 吴萍萍, 谭捍东, 陶涛, et al. 基于交叉梯度约束的电阻率法和背景噪声法三维联合反演研究 [J]. 地球物理学报, 2020, 63(10): 3912-30.
[66] RAMIREZ A L, NITAO J J, HANLEY W G, et al. Stochastic inversion of electrical resistivity changes using a Markov Chain Monte Carlo approach [J]. Journal of Geophysical Research: Solid Earth, 2005, 110(B2).
[67] LI H, XUE G, ZHANG L. Accelerated Bayesian inversion of transient electromagnetic data using MCMC subposteriors [J]. IEEE Transactions on Geoscience and Remote Sensing, 2020, 59(12): 10000-10.
[68] SCHWARZBACH C, BöRNER R-U, SPITZER K. Two-dimensional inversion of direct current resistivity data using a parallel, multi-objective genetic algorithm [J]. Geophysical Journal International, 2005, 162(3): 685-95.
[69] LIU B, LI S, NIE L, et al. 3D resistivity inversion using an improved Genetic Algorithm based on control method of mutation direction [J]. Journal of Applied Geophysics, 2012, 87: 1-8.
[70] LIU B, GUO Q, LI S, et al. Deep learning inversion of electrical resistivity data [J]. IEEE Transactions on Geoscience and Remote Sensing, 2020, 58(8): 5715-28.
[71] VU M, JARDANI A. Convolutional neural networks with SegNet architecture applied to three-dimensional tomography of subsurface electrical resistivity: CNN-3D-ERT [J]. Geophysical Journal International, 2021, 225(2): 1319-31.
[72] WILSON B, SINGH A, SETHI A. Appraisal of Resistivity Inversion Models With Convolutional Variational Encoder–Decoder Network [J]. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60: 1-10.
[73] 刘云鹤, 殷长春. 三维频率域航空电磁反演研究 [J]. 地球物理学报, 2013, 56(12): 4278-87.
[74] 王家映. 地球物理资料非线性反演方法讲座 (一) 地球物理反演问题概述 [J]. 工程地球物理学报, 2007, 4(1): 1-3.
[75] YUVAL D, OLDENBURG W. DC resistivity and IP methods in acid mine drainage problems: results from the Copper Cliff mine tailings impoundments [J]. Journal of Applied Geophysics, 1996, 34(3): 187-98.
[76] PIDLISECKY A, KNIGHT R, HABER E. Cone-based electrical resistivity tomography [J]. Geophysics, 2006, 71(4): G157-G67.
[77] WUNDERLICH T, FISCHER P, WILKEN D, et al. Constraining electric resistivity tomography by direct push electric conductivity logs and vibracores: An exemplary study of the Fiume Morto silted riverbed (Ostia Antica, western Italy) [J]. Geophysics, 2018, 83(3): B87-B103.
[78] DUMONT G, PILAWSKI T, DZAOMUHO-LENIEREGUE P, et al. Gravimetric water distribution assessment from geoelectrical methods (ERT and EMI) in municipal solid waste landfill [J]. Waste management, 2016, 55: 129-40.
[79] ORLANDO L. GPR to constrain ERT data inversion in cavity searching: Theoretical and practical applications in archeology [J]. Journal of Applied Geophysics, 2013, 89: 35-47.
[80] LOKE M, BARKER R. Practical techniques for 3D resistivity surveys and data inversion1 [J]. Geophysical prospecting, 1996, 44(3): 499-523.
[81] GüNTHER T, RüCKER C, SPITZER K. Three-dimensional modelling and inversion of DC resistivity data incorporating topography—II. Inversion [J]. Geophysical Journal International, 2006, 166(2): 506-17.
[82] ASTIC T, OLDENBURG D W. A framework for petrophysically and geologically guided geophysical inversion using a dynamic Gaussian mixture model prior [J]. Geophysical Journal International, 2019, 219(3): 1989-2012.
[83] WAGNER F, MOLLARET C, GüNTHER T, et al. Quantitative imaging of water, ice and air in permafrost systems through petrophysical joint inversion of seismic refraction and electrical resistivity data [J]. Geophysical Journal International, 2019, 219(3): 1866-75.
[84] PALACIOS A, LEDO J J, LINDE N, et al. Time-lapse cross-hole electrical resistivity tomography (CHERT) for monitoring seawater intrusion dynamics in a Mediterranean aquifer [J]. Hydrology and Earth System Sciences, 2020, 24(4): 2121-39.
[85] WU P, TAN H, TAO T, et al. Three-dimensional joint inversion of the resistivity method and ambient noise method with cross-gradient constraints [J]. Chinese Journal of Geophysics, 2020, 63(10): 3912-30.
[86] REN Z, KALSCHEUER T. Uncertainty and resolution analysis of 2D and 3D inversion models computed from geophysical electromagnetic data [J]. Surveys in Geophysics, 2020, 41(1): 47-112.
[87] BABAIWA D, IKPONMWEN M. Application of 2D and 3D Electrical Resistivity Tomography (ERT) in Predicting Soil Erodibility in Oredide Village, Auchi in Etsako West LGA of Edo State, Southern Nigeria [J]. Journal of Applied Sciences and Environmental Management, 2021, 25(6): 1073-9.
[88] LIU Z, ZHANG Y, ZHANG X, et al. Time Series Data Inversion and Monitoring Method for Cross-Hole ERT Based on an Improved Extended Kalman Filter [J]. Journal of Environmental and Engineering Geophysics, 2021, 26(3): 209-25.
[89] GOEBEL M, KNIGHT R, KANG S. Enhancing the resolving ability of electrical resistivity tomography for imaging saltwater intrusion through improvements in inversion methods: A laboratory and numerical study [J]. Geophysics, 2021, 86(5): WB101-WB15.
[90] SLEZAK K, JOZWIAK W, NOWOZYNSKI K, et al. 3-D studies of MT data in the Central Polish Basin: Influence of inversion parameters, model space and transfer function selection [J]. Journal of Applied Geophysics, 2019, 161: 26-36.
[91] SINGHA K, DAY‐LEWIS F D, JOHNSON T, et al. Advances in interpretation of subsurface processes with time‐lapse electrical imaging [J]. Hydrological Processes, 2015, 29(6): 1549-76.
[92] DE FRANCO R, BIELLA G, TOSI L, et al. Monitoring the saltwater intrusion by time lapse electrical resistivity tomography: The Chioggia test site (Venice Lagoon, Italy) [J]. Journal of Applied Geophysics, 2009, 69(3-4): 117-30.
[93] MONEGO M, CASSIANI G, DEIANA R, et al. A tracer test in a shallow heterogeneous aquifer monitored via time-lapse surface electrical resistivity tomography [J]. Geophysics, 2010, 75(4): WA61-WA73.
[94] HAYLEY K, PIDLISECKY A, BENTLEY L. Simultaneous time-lapse electrical resistivity inversion [J]. Journal of Applied Geophysics, 2011, 75(2): 401-11.
[95] 马欢, 张洪洋, 郭越, et al. 时移电阻率法归一化数据反演分辨电阻率结构微小变化 [J]. 物探与化探, 2019, 43(6): 1320-5.
[96] LABRECQUE D, ALUMBAUGH D L, YANG X, et al. Three-dimensional monitoring of vadose zone infiltration using electrical resistivity tomography and cross-borehole ground-penetrating radar [M]. Methods in Geochemistry and Geophysics. Elsevier. 2002: 259-72.
[97] LESPARRE N, NGUYEN F, KEMNA A, et al. A new approach for time-lapse data weighting in electrical resistivity tomography [J]. Geophysics, 2017, 82(6): E325-E33.
[98] OLDENBORGER G A, KNOLL M D, ROUTH P S, et al. Time-lapse ERT monitoring of an injection/withdrawal experiment in a shallow unconfined aquifer [J]. Geophysics, 2007, 72(4): F177-F87.
[99] MILLER C R, ROUTH P S, BROSTEN T R, et al. Application of time-lapse ERT imaging to watershed characterization [J]. Geophysics, 2008, 73(3): G7-G17.
[100] KIM J-H, YI M-J, PARK S-G, et al. 4-D inversion of DC resistivity monitoring data acquired over a dynamically changing earth model [J]. Journal of Applied Geophysics, 2009, 68(4): 522-32.
[101] LOKE M, DAHLIN T, RUCKER D. Smoothness‐constrained time‐lapse inversion of data from 3D resistivity surveys [J]. Near Surface Geophysics, 2014, 12(1): 5-24.
[102] 苏鹏, 杨进. 时移电阻率反演模拟研究 [J]. 物探与化探, 2021, 45(1): 159-64.
[103] LOKE M, WILKINSON P, CHAMBERS J, et al. The use of asymmetric time constraints in 4-D ERT inversion [J]. Journal of Applied Geophysics, 2022, 197: 104536.
[104] SU P, YANG J. Time-lapse adaptive inversion on resistivity monitoring data with Lp norm regularization and cross-time weight [J]. Journal of Applied Geophysics, 2022, 204: 104672.
[105] KARAOULIS M, TSOURLOS P, KIM J H, et al. 4D time‐lapse ERT inversion: introducing combined time and space constraints [J]. Near Surface Geophysics, 2014, 12(1): 25-34.
[106] LIU B, PANG Y, MAO D, et al. A rapid four-dimensional resistivity data inversion method using temporal segmentation [J]. Geophysical Journal International, 2020, 221(1): 586-602.
[107] MOUSAVI S M, BEROZA G C. Deep-learning seismology [J]. Science, 2022, 377(6607): eabm4470.
[108] LINVILLE L, PANKOW K, DRAELOS T. Deep learning models augment analyst decisions for event discrimination [J]. Geophysical Research Letters, 2019, 46(7): 3643-51.
[109] TITOS M, BUENO A, GARCíA L, et al. Classification of isolated volcano-seismic events based on inductive transfer learning [J]. IEEE Geoscience and Remote Sensing Letters, 2019, 17(5): 869-73.
[110] PEROL T, GHARBI M, DENOLLE M. Convolutional neural network for earthquake detection and location [J]. Science Advances, 2018, 4(2): e1700578.
[111] ROSS Z E, MEIER M A, HAUKSSON E, et al. Generalized seismic phase detection with deep learning [J]. Bulletin of the Seismological Society of America, 2018, 108(5A): 2894-901.
[112] ZHU T. Passive seismic imaging of subwavelength natural fractures: Theory and 2-D synthetic and ultrasonic data tests [J]. Geophysical Journal International, 2019, 216(3): 1831-41.
[113] MOUSAVI S M, ELLSWORTH W L, ZHU W, et al. Earthquake transformer—an attentive deep-learning model for simultaneous earthquake detection and phase picking [J]. Nature communications, 2020, 11(1): 3952.
[114] ROSS Z E, MEIER M A, HAUKSSON E. P wave arrival picking and first‐motion polarity determination with deep learning [J]. Journal of Geophysical Research: Solid Earth, 2018, 123(6): 5120-9.
[115] TIAN X, ZHANG W, ZHANG X, et al. Comparison of single‐trace and multiple‐trace polarity determination for surface microseismic data using deep learning [J]. Seismological Research Letters, 2020, 91(3): 1794-803.
[116] ZHENG Y, ZHANG Q, YUSIFOV A, et al. Applications of supervised deep learning for seismic interpretation and inversion [J]. The Leading Edge, 2019, 38(7): 526-33.
[117] LI S, LIU B, REN Y, et al. Deep-learning inversion of seismic data [J]. arXiv preprint arXiv:190107733, 2019.
[118] DAS V, MUKERJI T. Petrophysical properties prediction from prestack seismic data using convolutional neural networks [J]. Geophysics, 2020, 85(5): N41-N55.
[119] WEINZIERL W, WIESE B. Deep learning a poroelastic rock-physics model for pressure and saturation discrimination [J]. Geophysics, 2021, 86(1): MR53-MR66.
[120] MüNCHMEYER J, BINDI D, LESER U, et al. Earthquake magnitude and location estimation from real time seismic waveforms with a transformer network [J]. Geophysical Journal International, 2021, 226(2): 1086-104.
[121] STEINBERG A, VASYURA‐BATHKE H, GAEBLER P, et al. Estimation of seismic moment tensors using variational inference machine learning [J]. Journal of Geophysical Research: Solid Earth, 2021, 126(10): e2021JB022685.
[122] WU S, HUANG Q, ZHAO L. De-noising of transient electromagnetic data based on the long short-term memory-autoencoder [J]. Geophysical Journal International, 2021, 224(1): 669-81.
[123] XUE J, HUANG Q, WU S, et al. LSTM-autoencoder network for the detection of seismic electric signals [J]. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60: 1-12.
[124] LI G, ZHOU X, CHEN C, et al. Multi-type geomagnetic noise removal via an improved U-Net deep learning network [J]. IEEE Transactions on Geoscience and Remote Sensing, 2023, 61: 1-12.
[125] KONG S, OH J, YOON D, et al. Integrating Deep Learning and Deterministic Inversion for Enhancing Fault Detection in Electrical Resistivity Surveys [J]. Applied Sciences, 2023, 13(10): 6250.
[126] CHEN C P, LIU Z. Broad learning system: An effective and efficient incremental learning system without the need for deep architecture [J]. IEEE transactions on neural networks and learning systems, 2017, 29(1): 10-24.
[127] YANG X-H, ZU Q, ZHOU Y, et al. A Sample Selection Method for Neural-network-based Rayleigh Wave Inversion [J]. IEEE Transactions on Geoscience and Remote Sensing, 2024 62: 1-13.
[128] YANG X-H, HAN P, YANG Z, et al. Two-stage broad learning inversion framework for shear-wave velocity estimation [J]. Geophysics, 2023, 88(1): WA219-WA37.
[129] HU K, REN H, HUANG Q, et al. Water Table and Permeability Estimation from Multi‐Channel Seismoelectric Spectral Ratios [J]. Journal of Geophysical Research: Solid Earth, 2023: e2022JB025505.
[130] ZHOU Y, LI X, TANG Q, et al. An Assimilating Model Using Broad Learning System for Incorporating Multi‐Source Precipitation Data With Environmental Factors Over Southeast China [J]. Earth and Space Science, 2022, 9(4): e2021EA002043.
[131] YANG X-H, HAN P, YANG Z, et al. Broad Learning Framework for Search Space Design in Rayleigh Wave Inversion [J]. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60: 1-17.
[132] 徐世浙, 刘斌, 阮百尧. 电阻率法中求解异常电位的有限单元法 [J]. 地球物理学报, 1994, 37(A02): 511-5.
[133] COGGON J. Electromagnetic and electrical modeling by the finite element method [J]. Geophysics, 1971, 36(1): 132-55.
[134] DEY A, MORRISON H. Resistivity modelling for arbitrarily shaped two‐dimensional structures [J]. Geophysical prospecting, 1979, 27(1): 106-36.
[135] MA H, TAN H, GUO Y. Three-dimensional induced polarization parallel inversion using nonlinear conjugate gradients method [J]. Mathematical Problems in Engineering, 2015, 2015.
[136] 施庆国. 高密度电阻率法二维和三维有限差分正演计算 [D]; 长春: 吉林大学, 2012.
[137] 韩江涛. 起伏地表三维电阻率法数值模拟与分析 [J]. 长春: 吉林大学地球探测科学与技术学院, 2009, (01): 195-200.
[138] 张刚. 电阻率法层析成像研究及其应用 [D]; 北京: 中国地质大学 (北京), 2015.
[139] SPITZER K. A 3-D finite-difference algorithm for DC resistivity modelling using conjugate gradient methods [J]. Geophysical Journal International, 1995, 123(3): 903-14.
[140] DAI S-K, LING J-X, CHEN Q-R, et al. Numerical modeling of 3D DC resistivity method in the mixed space-wavenumber domain [J]. Applied Geophysics, 2021, 18(3): 361-74.
[141] 柴新朝. 基于有限体积法的三维电阻率正反演研究 [D]; 中南大学, 2012.
[142] 吴小平, 汪彤彤. 利用共轭梯度算法的电阻率三维有限元正演 [J]. 地球物理学报, 2003, 46(3): 428-32.
[143] 任政勇, 汤井田. 基于局部加密非结构化网格的三维电阻率法有限元数值模拟 [J]. 地球物理学报, 2009, 52(10): 2627-34.
[144] 黄俊革. 三维电阻率/极化率有限元正演模拟与反演成像 [D]. 中南大学, 2003.
[145] 袁建平. 电阻率法二维各向异性正演与主轴各向异性反演研究 [D]; 中国地质大学 (北京), 2018.
[146] LI Y, SPITZER K. Three-dimensional DC resistivity forward modelling using finite elements in comparison with finite-difference solutions [J]. Geophysical Journal International, 2002, 151(3): 924-34.
[147] 朱姣, 殷长春, 任秀艳, et al. 任意各向异性介质三维非结构谱元法直流电阻率正演模拟研究 [J]. 地球物理学报, 2021, 64(12): 4644-57.
[148] TIKHONOV A N. On the solution of ill-posed problems and the method of regularization; proceedings of the Doklady akademii nauk, F, [C]. Russian Academy of Sciences, 1963.
[149] EGBERT G D, KELBERT A. Computational recipes for electromagnetic inverse problems [J]. Geophysical Journal International, 2012, 189(1): 251-67.
[150] NOCEDAL J. Updating quasi-Newton matrices with limited storage [J]. Mathematics of computation, 1980, 35(151): 773-82.
[151] 邓琰, 汤吉, 阮帅. 三维大地电磁自适应正则化有限内存拟牛顿反演 [J]. 地球物理学报, 2019, 62(9): 3601-14.
[152] 余辉, 邓居智, 陈辉, et al. 起伏地形下大地电磁 L-BFGS 三维反演方法 [J]. 地球物理学报, 2019, 62(8): 3175-88.
[153] 马逢群, 谭捍东, 孔文新. 基于有限内存拟牛顿法的电阻率法三维主轴各向异性反演研究 [J]. 地球物理学进展, 2022, 37(2): 637-47.
[154] BYRD R H, NOCEDAL J, SCHNABEL R B. Representations of quasi-Newton matrices and their use in limited memory methods [J]. Mathematical Programming, 1994, 63(1-3): 129-56.
[155] 李墩柱, 黄清华, 陈小斌. 误差对大地电磁测深反演的影响 [J]. 地球物理学报, 2009, 52(1): 268-74.
[156] HANSEN P C, O’LEARY D P. The use of the L-curve in the regularization of discrete ill-posed problems [J]. SIAM journal on scientific computing, 1993, 14(6): 1487-503.
[157] 吴小平, 徐果明. 大地电磁数据的 Occam 反演改进 [J]. 地球物理学报, 1998, 41(4): 547-54.
[158] 吴小平, 汪彤彤. 利用共轭梯度方法的电阻率三维反演若干问题研究 [J]. 地震地质, 2001, 23(2): 321-7.
[159] WANG T, WANG K-P, TAN H-D. Forward modeling and inversion of tensor CSAMT in 3D anisotropic media [J]. Applied Geophysics, 2017, 14: 590-605.
[160] 陈小斌, 赵国泽, 汤吉, et al. 大地电磁自适应正则化反演算法 [J]. 地球物理学报, 2005, 48(4): 937-46.
[161] ZHDANOV M S, GRIBENKO A, CUMA M. Regularized focusing inversion of marine CSEM data using minimum vertical support stabilizer; proceedings of the SEG International Exposition and Annual Meeting, F, 2007 [C]. SEG.
[162] 谭捍东, 佟拓, 林昌洪. 大地电磁三维正演并行算法研究 [J]. Applied Geophysics, 2006, 04: 197-202.
[163] 林昌洪, 谭捍东, 佟拓. 大地电磁三维快速松弛反演并行算法研究 [J]. GEOPHYSICS, 2009, 6(1): 77-83.
[164] 胡祥云, 李焱, 杨文采, et al. 大地电磁三维数据空间反演并行算法研究 [J]. 地球物理学报, 2012, 55(12): 3969-78.
[165] TIBSHIRANI R. Regression shrinkage and selection via the lasso [J]. Journal of the Royal Statistical Society Series B: Statistical Methodology, 1996, 58(1): 267-88.
[166] TROPP J A, GILBERT A C. Signal recovery from random measurements via orthogonal matching pursuit [J]. IEEE Transactions on information theory, 2007, 53(12): 4655-66.
[167] AHARON M, ELAD M, BRUCKSTEIN A. K-SVD: An algorithm for designing overcomplete dictionaries for sparse representation [J]. IEEE Transactions on signal processing, 2006, 54(11): 4311-22.
[168] BOYD S, PARIKH N, CHU E, et al. Distributed optimization and statistical learning via the alternating direction method of multipliers [J]. Foundations and Trends® in Machine learning, 2011, 3(1): 1-122.
[169] BECK A, TEBOULLE M. A fast iterative shrinkage-thresholding algorithm for linear inverse problems [J]. SIAM journal on imaging sciences, 2009, 2(1): 183-202.
[170] EL-QADY G, USHIJIMA K. Inversion of DC resistivity data using neural networks [J]. Geophysical Prospecting, 2001, 49(4): 417-30.
[171] TAO T, HAN P, YANG X-H, et al. Fast Initial Model Design for Electrical Resistivity Inversion by Using Broad Learning Framework [J]. Minerals, 2024, 14(2): 184.
[172] DAHLIN T, ZHOU B. A numerical comparison of 2D resistivity imaging with 10 electrode arrays [J]. Geophysical prospecting, 2004, 52(5): 379-98.
[173] IBRAHEEM I M, TEZKAN B, BERGERS R. Integrated interpretation of magnetic and ERT data to characterize a landfill in the north-west of Cologne, Germany [J]. Pure and Applied Geophysics, 2021, 178(6): 2127-48.
[174] ZHOU B, DAHLIN T. Properties and effects of measurement errors on 2D resistivity imaging surveying [J]. Near surface geophysics, 2003, 1(3): 105-17.
[175] 唐际根. 中商文化研究 [J]. 考古学报, 1999, (4): 393-420.
[176] TANG P, CHEN F, JIANG A, et al. Multi-frequency electromagnetic induction survey for archaeological prospection: Approach and results in Han Hangu Pass and Xishan Yang in China [J]. Surveys in Geophysics, 2018, 39: 1285-302.
[177] 闫永利, 底青云, 高立兵, et al. 高密度电阻率法在考古勘探中的应用 [J]. 物探与化探, 1998, 22(6): 452-457.
[178] JING Z, RAPP JR G, GAO T. Geoarchaeological aids in the investigation of early Shang civilization on the floodplain of the lower Yellow River, China [J]. World Archaeology, 1997, 29(1): 36-50.
[179] 雨珩. 《 豫东考古报告:“中国商丘地区早商文明探索” 野外勘察与发掘》 简介 [J]. 考古, 2017, (12): 20.
[180] LOKE M. Rapid 2-D Resistivity and IP inversion using the least-squares method, Geoelectrical Imaging 2D and 3D [J]. Geotomo Softw, 2002.
[181] 叶涛, 黄清华, 陈小斌. 滇西南地区南汀河断裂带三维深部电性结构及其孕震环境 [J]. 地球物理学报, 2018, 61(11): 4504-17.
[182] JIANG F, CHEN X, UNSWORTH M J, et al. Mechanism for the uplift of Gongga Shan in the southeastern Tibetan Plateau constrained by 3D magnetotelluric data [J]. Geophysical Research Letters, 2022, 49(9): e2021GL097394.
[183] SASAKI Y. Resolution of resistivity tomography inferred from numerical SIMULATION1 [J]. Geophysical prospecting, 1992, 40(4): 453-63.
[184] LOKE M H, BARKER R D. Rapid least‐squares inversion of apparent resistivity pseudosections by a quasi‐Newton method1 [J]. Geophysical prospecting, 1996, 44(1): 131-52.
[185] 高立兵, 阎永利, 底青云, et al. 高密度电阻率法在商丘东周城址考古勘探中的应用 [J]. 考古, 2004, (7): 72-8.
[186] TIETZE K, RITTER O. Three-dimensional magnetotelluric inversion in practice—the electrical conductivity structure of the San Andreas Fault in Central California [J]. Geophysical Journal International, 2013, 195(1): 130-47.
[187] ZHANG H, HUANG Q, ZHAO G, et al. Three-dimensional conductivity model of crust and uppermost mantle at the northern Trans North China Orogen: Evidence for a mantle source of Datong volcanoes [J]. Earth and Planetary Science Letters, 2016, 453: 182-92.
[188] 胡琪璇, 谭捍东, 于翠. 时移可控源音频大地电磁法三维反演研究 [J]. 现代地质, 2023, 37(01): 90.
[189] DECEUSTER J, KAUFMANN O, VAN CAMP M. Automated identification of changes in electrode contact properties for long-term permanent ERT monitoring experiments [J]. Geophysics, 2013, 78(2): E79-E94.
[190] 殷长春, 杨志龙, 刘云鹤, et al. 基于环形扫面测量的三维直流电阻率法任意各向异性模型响应特征 [J]. 吉林大学学报 (地球科学版), 2018, 48(03): 872-880.
[191] 任政勇, 邱乐稳, 汤井田, et al. 基于电流密度连续性条件的直流电阻率各向异性问题自适应有限元模拟 [J]. 地球物理学报, 2018, 61(1): 331-43.
[192] 熊治涛, 唐新功, 李丹丹. 基于非结构网格有限元的三维井地电阻率法任意各向异性正演模拟 [J]. 地球物理学报, 2023, 66(5): 2201-18.
[193] 彭淼, 谭捍东, 姜枚, et al. 基于交叉梯度耦合的大地电磁与地震走时资料三维联合反演 [J]. 地球物理学报, 2013, 56(8): 2728-38.
[194] LIU B, PANG Y, JIANG P, et al. Physics-Driven Deep Learning Inversion for Direct Current Resistivity Survey Data [J]. IEEE Transactions on Geoscience and Remote Sensing, 2023, 61: 1-11.
修改评论