中文版 | English
题名

基于宽度学习的直流电阻率法数据去噪与反演研究

其他题名
DENOISING AND INVERSION OF DC RESISTIVITY DATA BASED ON BROAD LEARNING
姓名
姓名拼音
TAO Tao
学号
12031167
学位类型
博士
学位专业
070801 固体地球物理学
学科门类/专业学位类别
07 理学
导师
韩鹏
导师单位
地球与空间科学系
论文答辩日期
2024-05-14
论文提交日期
2024-06-21
学位授予单位
南方科技大学
学位授予地点
深圳
摘要

直流电阻率法是常用的浅地表电性结构成像方法,在工程勘察、环境以及地质灾害监测等领域具有广泛应用。直流电阻率法作为主动源探测方法,本身具有较强的抗干扰能力,但随着经济的发展,人文电磁干扰(特高压输电网及大型设备接地放电等)越来越强、分布越来越广,直流电阻率法观测数据正面临着日益严重的噪声干扰。此外,在实际应用中,直流电阻率法三维反演和四维(电性结构随时间变化)监测逐渐成为主流,如何在提升反演精度的同时保证计算效率、增强监测的时效性是直流电阻率法面临的另一个问题。近年来,机器学习在地球物理数据去噪及反演方面取得了显著的应用效果,而宽度学习作为一种较新的机器学习方法,具有结构简单、效率高、非线性映射能力强的优点。因此,本论文尝试利用宽度学习来解决直流电阻率法面临的上述两方面问题,开展直流电阻率法数据去噪和反演研究。

首先,本文构建宽度学习去噪框架对直流电阻率法的时间域数据进行去噪。理论合成数据表明训练得到的宽度学习网络能有效压制时间域数据中的噪音,提高数据信噪比,提升反演结果准确性。为了进一步验证宽度学习去噪方法的有效性和实用性,我们开发了可采集电位差时间域数据的直流电阻率法装置并进行了室内模拟实验。实验结果表明宽度学习网络能有效去除测量电极电位差时间域数据中的噪音,去噪后的反演结果可以更准确地指示异常体。

然后,本文构建了宽度学习设计初始模型的反演框架,将宽度学习预测结果作为初始模型,利用有限内存拟牛顿法进行反演计算。合成数据测试表明所构建的宽度学习网络可以很好地刻画异常体特征,利用宽度学习设计的初始模型可以提高有限内存拟牛顿法反演收敛速度和精度。此外,当测线较为稀疏时,传统的梯度类算法很难准确刻画测线旁侧的异常体,但宽度学习方法可以通过大量样本训练,建立测线观测数据对旁侧异常体的映射,实现对旁侧异常体的更准确描述。野外控制实验表明,宽度学习能够设计可靠的初始模型,有利于提高反演的收敛速度,提升反演结果的精度。实际考古应用表明,宽度学习方法在实际异常体探测中具有潜在优势。

最后,本文开展了基于宽度学习的直流电阻率法四维监测研究。在实际应用中,不同采集时刻的背景噪音差异会导致反演结果中出现虚假的电性结构变化,降低了电性结构监测的准确度。为此,本文在正则化反演目标函数中添加时移约束项,对相邻时刻电阻率模型变化进行约束,采用宽度学习设计不同时刻的初始反演模型,并对多次监测数据进行时移反演。合成数据和野外实验测试均表明,本文提出的时移反演方法能有效抑制噪音引起的虚假异常。相对于均匀初始模型时移反演结果,宽度学习设计初始模型时移反演可以提高反演的收敛速度和精度。

其他摘要

The direct-current (DC) resistivity method is a frequently employed technique for exploration and monitoring, extensively applied in engineering surveys, environmental assessments, and geological hazard monitoring. As an active source detection method, the DC resistivity method possesses robust anti-noise capabilities. However, with the development of the economy, human-generated electromagnetic interference (such as Ultra High Voltage transmission networks and discharge from large equipment grounding) is becoming more prevalent and intense. Consequently, the observational data obtained through the DC resistivity method are increasingly subject to serious noise interference. In addition, in practical applications, three-dimensional inversion and four-dimensional monitoring (which involves monitoring electrical structure changes over time) using the DC resistivity method have gradually become mainstream. Improving inversion accuracy while ensuring computational efficiency and enhancing monitoring timeliness is another challenge encountered by the DC resistivity method. In recent years, machine learning has yielded significant advancements in the application of denoising and inversion of geophysical data. As a relatively new machine learning method, broad learning possesses the advantages of a simple structure, high efficiency, and robust nonlinear mapping capability. Therefore, to address the aforementioned problems faced by the DC resistivity method, this paper conducts research on data denoising and inversion for the DC resistivity method.

Firstly, this paper proposes a broad learning denoising framework to denoise the time-domain data acquired through the DC resistivity method. Theoretical synthetic data indicates that the trained broad learning network can effectively eliminate noise from time-domain data. To further verify the effectiveness and practicability of the broad learning denoising, we developed a DC resistivity device that can collect potential difference time domain data and conducted indoor simulation experiments. Experimental results demonstrate that broad learning can effectively eliminate noise from the time-domain data, leading to inversion results that more accurately delineate anomaly bodies.

Secondly, this paper constructs an inversion framework for the initial model designed by broad learning. The prediction results obtained from broad learning serve as the initial model for the L-BFGS to perform inversion calculations. The synthetic data demonstrated that the constructed broad learning network effectively characterizes anomalies. Further tests indicated that utilizing the initial model designed with broad learning enhances the convergence speed and accuracy of the L-BFGS inversion. Furthermore, when survey lines are relatively sparse, traditional gradient-based algorithms often struggle to accurately depict anomalies adjacent to the survey lines. However, broad learning can establish a mapping of the observation data to the anomalies adjacent to the survey lines through extensive sample training, thereby achieving a more precise description of the anomalies beside the survey lines. Field control experiments demonstrate that broad learning can design a dependable initial model, leading to enhanced convergence speed and improved accuracy of inversion results. Moreover, practical archaeological applications indicate that the broad learning holds potential advantages for real-world anomaly detection.

Finally, this paper conducts a study on four-dimensional monitoring of DC resistivity based on broad learning. In practical applications, variations in background noise at different acquisition times may lead to false changes in electrical structure in the inversion results, thereby compromising the accuracy of electrical structure monitoring. The paper proposes incorporating a time-lapse constraint term into the regularized inversion objective function, utilizing broad learning to design initial inversion models at different time points, and performing time-lapse inversion on multiple monitoring datasets. Both synthetic data and field experimental tests demonstrate that the proposed method in this article effectively suppresses false anomalies caused by noise. Compared with time-lapse inversion results based on homogeneous initial models, using designed initial models enhances convergence speed and accuracy.

关键词
其他关键词
语种
中文
培养类别
独立培养
入学年份
2020
学位授予年份
2024-07
参考文献列表

[1] 傅良魁, 李金铭. 电法勘探教程 [Z]. 北京: 地质出版社. 1983.
[2] 李金铭. 地电场与电法勘探 [M]. 地质出版社, 2005.
[3] ALI M A H, MEWAFY F M, QIAN W, et al. Integration of Electrical Resistivity Tomography and Induced Polarization for Characterization and Mapping of (Pb-Zn-Ag) Sulfide Deposits [J]. Minerals, 2023, 13(7): 986.
[4] UHLEMANN S, CHAMBERS J, FALCK W E, et al. Applying electrical resistivity tomography in ornamental stone mining: Challenges and solutions [J]. Minerals, 2018, 8(11): 491.
[5] SHIN Y, SHIN S, CHO S-J, et al. Application of 3D Electrical Resistivity Tomography in the Yeoncheon Titanomagnetite Deposit, South Korea [J]. Minerals, 2021, 11(6): 563.
[6] SU Z, REVIL A, GHORBANI A, et al. Combining Electrical Resistivity, Induced Polarization, and Self-Potential for a Better Detection of Ore Bodies [J]. Minerals, 2023, 14(1): 12.
[7] 杨妮妮, 杨进, 王连山. 高密度电阻率法在煤矿岩溶探测中的应用研究 [J]. 工矿自动化, 2008, (5): 1-4.
[8] KURAS O, PRITCHARD J D, MELDRUM P I, et al. Monitoring hydraulic processes with automated time-lapse electrical resistivity tomography (ALERT) [J]. Comptes Rendus Geoscience, 2009, 341(10-11): 868-85.
[9] MEYERHOFF S B, MAXWELL R M, REVIL A, et al. Characterization of groundwater and surface water mixing in a semiconfined karst aquifer using time‐lapse electrical resistivity tomography [J]. Water Resources Research, 2014, 50(3): 2566-85.
[10] LIU B, LIU Z, LI S, et al. An improved Time-Lapse resistivity tomography to monitor and estimate the impact on the groundwater system induced by tunnel excavation [J]. Tunnelling and Underground Space Technology, 2017, 66: 107-20.
[11] BAI L, HUO Z, ZENG Z, et al. Groundwater flow monitoring using time-lapse electrical resistivity and Self Potential data [J]. Journal of Applied Geophysics, 2021, 193: 104411.
[12] HAYLEY K, BENTLEY L, GHARIBI M. Time‐lapse electrical resistivity monitoring of salt‐affected soil and groundwater [J]. Water Resources Research, 2009, 45(7): 12-35.
[13] INIM I J, UDOSEN N I, TIJANI M N, et al. Time-lapse electrical resistivity investigation of seawater intrusion in coastal aquifer of Ibeno, Southeastern Nigeria [J]. Applied Water Science, 2020, 10(11): 1-12.
[14] 张庚成. 利用高密度电阻率法对黄土体中水文监测的应用研究 [J]. 城市建筑, 2019, (7): 139-140.
[15] MOLLARET C, HILBICH C, PELLET C, et al. Mountain permafrost degradation documented through a network of permanent electrical resistivity tomography sites [J]. The Cryosphere, 2019, 13(10): 2557-78.
[16] TESFALDET Y T, PUTTIWONGRAK A. Seasonal groundwater recharge characterization using time-lapse electrical resistivity tomography in the Thepkasattri Watershed on Phuket Island, Thailand [J]. Hydrology, 2019, 6(2): 36.
[17] NIELSON T, BRADFORD J, PIERCE J, et al. Soil structure and soil moisture dynamics inferred from time-lapse electrical resistivity tomography [J]. Catena, 2021, 207: 105553.
[18] MOJICA A, DUARTE B, VERGARA F, et al. Time-lapse electrical resistivity tomography for assessment of seasonal moisture variations in a tropical regolith [J]. Hydrological Research Letters, 2022, 16(1): 18-24.
[19] 付振兴, 谭捍东, 刘慧芳, et al. 高压直流圆环形接地极电位数值模拟及影响因素分析 [J]. 电网技术, 2016, 40(6): 1909-15.
[20] 柯敢攀, 黄清华. 井地电法的三维正反演研究 [J]. 北京大学学报: 自然科学版, 2009, (2): 264-72.
[21] KAYODE J S, ARIFIN M H, BASORI M B I, et al. Gold prospecting mapping in the peninsular Malaysia gold belts [J]. Pure and Applied Geophysics, 2022, 179(9): 3295-328.
[22] CHAMBERS J, GUNN D, WILKINSON P, et al. 4D electrical resistivity tomography monitoring of soil moisture dynamics in an operational railway embankment [J]. Near Surface Geophysics, 2014, 12(1): 61-72.
[23] WILKINSON P B, CHAMBERS J E, MELDRUM P I, et al. Predicting the movements of permanently installed electrodes on an active landslide using time-lapse geoelectrical resistivity data only [J]. Geophysical Journal International, 2010, 183(2): 543-56.
[24] XU D, HU X-Y, SHAN C-L, et al. Landslide monitoring in southwestern China via time-lapse electrical resistivity tomography [J]. Applied Geophysics, 2016, 13(1): 1-12.
[25] DI GIUSEPPE M G, TROIANO A. Monitoring active fumaroles through time-lapse electrical resistivity tomograms: An application to the Pisciarelli fumarolic field (Campi Flegrei, Italy) [J]. Journal of Volcanology and Geothermal Research, 2019, 375: 32-42.
[26] 孙亚鑫, 张军. 基于高密度电阻率法数值模拟的露天铁矿高陡边坡完整性动态监测评价研究 [J]. 中国金属通报, 2021, (09): 58-59.
[27] WATLET A, THIRUGNANAM H, SINGH B, et al. 4D electrical resistivity to monitor unstable slopes in mountainous tropical regions: an example from Munnar, India [J]. Landslides, 2023, 20(5): 1031-44.
[28] RADULESCU M, VALERIAN C, YANG J. Time-lapse electrical resistivity anomalies due to contaminant transport around landfills [J]. 2007, 50(3) , pp.453-468.
[29] AUDEBERT M, CLéMENT R, MOREAU S, et al. Understanding leachate flow in municipal solid waste landfills by combining time-lapse ERT and subsurface flow modelling–Part I: Analysis of infiltration shape on two different waste deposit cells [J]. Waste management, 2016, 55: 165-75.
[30] DIMECH A, CHENG L, CHOUTEAU M, et al. A review on applications of time-lapse electrical resistivity tomography over the last 30 years: Perspectives for mining waste monitoring [J]. Surveys in Geophysics, 2022, 43(6): 1699-759.
[31] NAZIFI H M, GüLEN L, GüRBüZ E, et al. Time-lapse electrical resistivity tomography (ERT) monitoring of used engine oil contamination in laboratory setting [J]. Journal of Applied Geophysics, 2022, 197: 104531.
[32] PETERSSON W. Om malmsökande medelst elektricitet [J]. Jernkontorets Annaler, 1907, 2: 153-71.
[33] SCHLUMBERGER C. Etude sur la prospection electrique du sous-sol [M]. Gauthier-Villars, 1920.
[34] BRUCKSHAW J. Principles of Direct Current Resistivity Prospecting Geza Kunetz (Gebriider Borntraeger, Berlin, 1966, pp. 103+ xvi) [Z]. Blackwell Publishing Ltd Oxford, UK. 1967.
[35] KOEFOED O. Geosounding principles, 1. Resistivity sounding measurements [J]. 1979, 37 (4) , pp.1178-1178.
[36] AUBERTIN M, FALA O, MOLSON J, et al. Évaluation du comportement hydrogéologique et géochimique des haldes à stériles; proceedings of the Proceedings of the Symposium sur l’Environnement et les Mines, Rouyn-Noranda, CD-Rom, CIM, F[C]. 2005, 33(3): 447-459.
[37] LI Y, YANG D. Electrical imaging of hydraulic fracturing fluid using steel-cased wells and a deep-learning method [J]. Geophysics, 2021, 86(4): E315-E32.
[38] YU N, LIU H, FENG X, et al. Advancing CO 2 Storage Monitoring via Cross-Borehole Apparent Resistivity Imaging Simulation [J]. IEEE Transactions on Geoscience and Remote Sensing, 2023, 61: 1-12.
[39] GRIFFITHS D, TURNBULL J, OLAYINKA A. Two-dimensional resistivity mapping with a computer-controlled array [J]. First break, 1990, 8(4): 85-88.
[40] 吴小平, 徐果明. 利用共轭梯度法的电阻率三维反演研究 [J]. 地球物理学报, 2000, 43(3): 420-6.
[41] 吴小平, 刘洋, 王威. 基于非结构网格的电阻率三维带地形反演 [J]. 地球物理学报, 2015, 58(8): 2706-17.
[42] LOKE M H. Tutorial: 2-D and 3-D electrical imaging surveys [J]. 2004.
[43] PIDLISECKY A, HABER E, KNIGHT R. RESINVM3D: A 3D resistivity inversion package [J]. Geophysics, 2007, 72(2): H1-H10.
[44] 马欢. 电阻率法和激发极化法不同装置组合数据三维非线性共轭梯度反演并行算法研究 [D]; 中国地质大学 (北京), 2015.
[45] 刘斌. 基于电阻率法与激电法的隧道含水地质构造超前探测与突水灾害实时监测研究 [D]. 山东: 山东大学, 2010.
[46] LI Y, OLDENBURG D W. Approximate inverse mappings in DC resistivity problems [J]. Geophysical Journal International, 1992, 109(2): 343-62.
[47] CHAMBERS J, WILKINSON P, WARDROP D, et al. Bedrock detection beneath river terrace deposits using three-dimensional electrical resistivity tomography [J]. Geomorphology, 2012, 177: 17-25.
[48] RUCKER D F, LEVITT M T, GREENWOOD W J. Three-dimensional electrical resistivity model of a nuclear waste disposal site [J]. Journal of Applied Geophysics, 2009, 69(3-4): 150-64.
[49] JONES G, ZIELINSKI M, SENTENAC P. Mapping desiccation fissures using 3-D electrical resistivity tomography [J]. Journal of Applied Geophysics, 2012, 84: 39-51.
[50] ARATO A, PIRO S, SAMBUELLI L. 3D inversion of ERT data on an archaeological site using GPR reflection and 3D inverted magnetic data as a priori information [J]. Near Surface Geophysics, 2015, 13(6): 545-56.
[51] LOKE M. Res2Dinv and Res3dinv Software Version 3.59 [J]. Geoelectrical Imaging 2D&3D, Penang, Malaysia, 2009, 73.
[52] KARAOULIS M, REVIL A, TSOURLOS P, et al. IP4DI: A software for time-lapse 2D/3D DC-resistivity and induced polarization tomography [J]. Computers & Geosciences, 2013, 54: 164-70.
[53] BLANCHY G, SANEIYAN S, BOYD J, et al. ResIPy, an intuitive open source software for complex geoelectrical inversion/modeling [J]. Computers & Geosciences, 2020, 137: 104423.
[54] DOYORO Y G, CHANG P-Y, PUNTU J M, et al. A review of open software resources in python for electrical resistivity modelling [J]. Geoscience Letters, 2022, 9(1): 1-16.
[55] ELIS V R, USTRA A T, HIDALGO-GATO M C, et al. Application of induced polarization and resistivity to the environmental investigation of an old waste disposal area [J]. Environmental Earth Sciences, 2016, 75: 1-13.
[56] JIANG F, DONG L, DAI Q, et al. Using wavelet packet denoising and ANFIS networks based on COSFLA optimization for electrical resistivity imaging inversion [J]. Fuzzy Sets and Systems, 2018, 337: 93-112.
[57] 严加永, 孟贵祥, 吕庆田, et al. 高密度电法的进展与展望 [J]. 物探与化探, 2012, 36(4): 576-84.
[58] 侯彦威, 王信文, 张卜文, et al. 中值空间滤波去噪技术研究 [J]. 勘探地球物理进展, 2009, 32(1): 55-7.
[59] 苏兆锋, 陈昌彦, 张在武. 小波降噪技术在高密度电阻率信号处理中的应用 [J]. 工程勘察, 2008, (1): 72-4.
[60] 田成富, 杨俊杰. 基于小波变换的高密度电法资料去噪研究 [J]. 工程地球物理学报, 2011, 8(2): 200-5.
[61] 李文刚, 张振勇, 王艳波, et al. 小波分析在矿井高密度电法数据处理中的应用 [J]. 中国煤炭地质, 2011, 23(6): 52-5.
[62] HUO J, WANG G, LI H. EMD decomposition-based signal denoising method for DC electrical methods; proceedings of the International Conference on Electronic Information Engineering and Data Processing (EIEDP 2023), F, SPIE [C]. 2023.
[63] STANLEY RAJ A, HUDSON OLIVER D, SRINIVAS Y, et al. Wavelet denoising algorithm to refine noisy geoelectrical data for versatile inversion [J]. Modeling Earth Systems and Environment, 2016, 2: 1-11.
[64] 马欢, 郭越, 吴萍萍, et al. 基于 MPI 并行算法的电阻率法多种装置数据的三维联合反演 [J]. 地球物理学报, 2018, 61(12): 5052-65.
[65] 吴萍萍, 谭捍东, 陶涛, et al. 基于交叉梯度约束的电阻率法和背景噪声法三维联合反演研究 [J]. 地球物理学报, 2020, 63(10): 3912-30.
[66] RAMIREZ A L, NITAO J J, HANLEY W G, et al. Stochastic inversion of electrical resistivity changes using a Markov Chain Monte Carlo approach [J]. Journal of Geophysical Research: Solid Earth, 2005, 110(B2).
[67] LI H, XUE G, ZHANG L. Accelerated Bayesian inversion of transient electromagnetic data using MCMC subposteriors [J]. IEEE Transactions on Geoscience and Remote Sensing, 2020, 59(12): 10000-10.
[68] SCHWARZBACH C, BöRNER R-U, SPITZER K. Two-dimensional inversion of direct current resistivity data using a parallel, multi-objective genetic algorithm [J]. Geophysical Journal International, 2005, 162(3): 685-95.
[69] LIU B, LI S, NIE L, et al. 3D resistivity inversion using an improved Genetic Algorithm based on control method of mutation direction [J]. Journal of Applied Geophysics, 2012, 87: 1-8.
[70] LIU B, GUO Q, LI S, et al. Deep learning inversion of electrical resistivity data [J]. IEEE Transactions on Geoscience and Remote Sensing, 2020, 58(8): 5715-28.
[71] VU M, JARDANI A. Convolutional neural networks with SegNet architecture applied to three-dimensional tomography of subsurface electrical resistivity: CNN-3D-ERT [J]. Geophysical Journal International, 2021, 225(2): 1319-31.
[72] WILSON B, SINGH A, SETHI A. Appraisal of Resistivity Inversion Models With Convolutional Variational Encoder–Decoder Network [J]. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60: 1-10.
[73] 刘云鹤, 殷长春. 三维频率域航空电磁反演研究 [J]. 地球物理学报, 2013, 56(12): 4278-87.
[74] 王家映. 地球物理资料非线性反演方法讲座 (一) 地球物理反演问题概述 [J]. 工程地球物理学报, 2007, 4(1): 1-3.
[75] YUVAL D, OLDENBURG W. DC resistivity and IP methods in acid mine drainage problems: results from the Copper Cliff mine tailings impoundments [J]. Journal of Applied Geophysics, 1996, 34(3): 187-98.
[76] PIDLISECKY A, KNIGHT R, HABER E. Cone-based electrical resistivity tomography [J]. Geophysics, 2006, 71(4): G157-G67.
[77] WUNDERLICH T, FISCHER P, WILKEN D, et al. Constraining electric resistivity tomography by direct push electric conductivity logs and vibracores: An exemplary study of the Fiume Morto silted riverbed (Ostia Antica, western Italy) [J]. Geophysics, 2018, 83(3): B87-B103.
[78] DUMONT G, PILAWSKI T, DZAOMUHO-LENIEREGUE P, et al. Gravimetric water distribution assessment from geoelectrical methods (ERT and EMI) in municipal solid waste landfill [J]. Waste management, 2016, 55: 129-40.
[79] ORLANDO L. GPR to constrain ERT data inversion in cavity searching: Theoretical and practical applications in archeology [J]. Journal of Applied Geophysics, 2013, 89: 35-47.
[80] LOKE M, BARKER R. Practical techniques for 3D resistivity surveys and data inversion1 [J]. Geophysical prospecting, 1996, 44(3): 499-523.
[81] GüNTHER T, RüCKER C, SPITZER K. Three-dimensional modelling and inversion of DC resistivity data incorporating topography—II. Inversion [J]. Geophysical Journal International, 2006, 166(2): 506-17.
[82] ASTIC T, OLDENBURG D W. A framework for petrophysically and geologically guided geophysical inversion using a dynamic Gaussian mixture model prior [J]. Geophysical Journal International, 2019, 219(3): 1989-2012.
[83] WAGNER F, MOLLARET C, GüNTHER T, et al. Quantitative imaging of water, ice and air in permafrost systems through petrophysical joint inversion of seismic refraction and electrical resistivity data [J]. Geophysical Journal International, 2019, 219(3): 1866-75.
[84] PALACIOS A, LEDO J J, LINDE N, et al. Time-lapse cross-hole electrical resistivity tomography (CHERT) for monitoring seawater intrusion dynamics in a Mediterranean aquifer [J]. Hydrology and Earth System Sciences, 2020, 24(4): 2121-39.
[85] WU P, TAN H, TAO T, et al. Three-dimensional joint inversion of the resistivity method and ambient noise method with cross-gradient constraints [J]. Chinese Journal of Geophysics, 2020, 63(10): 3912-30.
[86] REN Z, KALSCHEUER T. Uncertainty and resolution analysis of 2D and 3D inversion models computed from geophysical electromagnetic data [J]. Surveys in Geophysics, 2020, 41(1): 47-112.
[87] BABAIWA D, IKPONMWEN M. Application of 2D and 3D Electrical Resistivity Tomography (ERT) in Predicting Soil Erodibility in Oredide Village, Auchi in Etsako West LGA of Edo State, Southern Nigeria [J]. Journal of Applied Sciences and Environmental Management, 2021, 25(6): 1073-9.
[88] LIU Z, ZHANG Y, ZHANG X, et al. Time Series Data Inversion and Monitoring Method for Cross-Hole ERT Based on an Improved Extended Kalman Filter [J]. Journal of Environmental and Engineering Geophysics, 2021, 26(3): 209-25.
[89] GOEBEL M, KNIGHT R, KANG S. Enhancing the resolving ability of electrical resistivity tomography for imaging saltwater intrusion through improvements in inversion methods: A laboratory and numerical study [J]. Geophysics, 2021, 86(5): WB101-WB15.
[90] SLEZAK K, JOZWIAK W, NOWOZYNSKI K, et al. 3-D studies of MT data in the Central Polish Basin: Influence of inversion parameters, model space and transfer function selection [J]. Journal of Applied Geophysics, 2019, 161: 26-36.
[91] SINGHA K, DAY‐LEWIS F D, JOHNSON T, et al. Advances in interpretation of subsurface processes with time‐lapse electrical imaging [J]. Hydrological Processes, 2015, 29(6): 1549-76.
[92] DE FRANCO R, BIELLA G, TOSI L, et al. Monitoring the saltwater intrusion by time lapse electrical resistivity tomography: The Chioggia test site (Venice Lagoon, Italy) [J]. Journal of Applied Geophysics, 2009, 69(3-4): 117-30.
[93] MONEGO M, CASSIANI G, DEIANA R, et al. A tracer test in a shallow heterogeneous aquifer monitored via time-lapse surface electrical resistivity tomography [J]. Geophysics, 2010, 75(4): WA61-WA73.
[94] HAYLEY K, PIDLISECKY A, BENTLEY L. Simultaneous time-lapse electrical resistivity inversion [J]. Journal of Applied Geophysics, 2011, 75(2): 401-11.
[95] 马欢, 张洪洋, 郭越, et al. 时移电阻率法归一化数据反演分辨电阻率结构微小变化 [J]. 物探与化探, 2019, 43(6): 1320-5.
[96] LABRECQUE D, ALUMBAUGH D L, YANG X, et al. Three-dimensional monitoring of vadose zone infiltration using electrical resistivity tomography and cross-borehole ground-penetrating radar [M]. Methods in Geochemistry and Geophysics. Elsevier. 2002: 259-72.
[97] LESPARRE N, NGUYEN F, KEMNA A, et al. A new approach for time-lapse data weighting in electrical resistivity tomography [J]. Geophysics, 2017, 82(6): E325-E33.
[98] OLDENBORGER G A, KNOLL M D, ROUTH P S, et al. Time-lapse ERT monitoring of an injection/withdrawal experiment in a shallow unconfined aquifer [J]. Geophysics, 2007, 72(4): F177-F87.
[99] MILLER C R, ROUTH P S, BROSTEN T R, et al. Application of time-lapse ERT imaging to watershed characterization [J]. Geophysics, 2008, 73(3): G7-G17.
[100] KIM J-H, YI M-J, PARK S-G, et al. 4-D inversion of DC resistivity monitoring data acquired over a dynamically changing earth model [J]. Journal of Applied Geophysics, 2009, 68(4): 522-32.
[101] LOKE M, DAHLIN T, RUCKER D. Smoothness‐constrained time‐lapse inversion of data from 3D resistivity surveys [J]. Near Surface Geophysics, 2014, 12(1): 5-24.
[102] 苏鹏, 杨进. 时移电阻率反演模拟研究 [J]. 物探与化探, 2021, 45(1): 159-64.
[103] LOKE M, WILKINSON P, CHAMBERS J, et al. The use of asymmetric time constraints in 4-D ERT inversion [J]. Journal of Applied Geophysics, 2022, 197: 104536.
[104] SU P, YANG J. Time-lapse adaptive inversion on resistivity monitoring data with Lp norm regularization and cross-time weight [J]. Journal of Applied Geophysics, 2022, 204: 104672.
[105] KARAOULIS M, TSOURLOS P, KIM J H, et al. 4D time‐lapse ERT inversion: introducing combined time and space constraints [J]. Near Surface Geophysics, 2014, 12(1): 25-34.
[106] LIU B, PANG Y, MAO D, et al. A rapid four-dimensional resistivity data inversion method using temporal segmentation [J]. Geophysical Journal International, 2020, 221(1): 586-602.
[107] MOUSAVI S M, BEROZA G C. Deep-learning seismology [J]. Science, 2022, 377(6607): eabm4470.
[108] LINVILLE L, PANKOW K, DRAELOS T. Deep learning models augment analyst decisions for event discrimination [J]. Geophysical Research Letters, 2019, 46(7): 3643-51.
[109] TITOS M, BUENO A, GARCíA L, et al. Classification of isolated volcano-seismic events based on inductive transfer learning [J]. IEEE Geoscience and Remote Sensing Letters, 2019, 17(5): 869-73.
[110] PEROL T, GHARBI M, DENOLLE M. Convolutional neural network for earthquake detection and location [J]. Science Advances, 2018, 4(2): e1700578.
[111] ROSS Z E, MEIER M A, HAUKSSON E, et al. Generalized seismic phase detection with deep learning [J]. Bulletin of the Seismological Society of America, 2018, 108(5A): 2894-901.
[112] ZHU T. Passive seismic imaging of subwavelength natural fractures: Theory and 2-D synthetic and ultrasonic data tests [J]. Geophysical Journal International, 2019, 216(3): 1831-41.
[113] MOUSAVI S M, ELLSWORTH W L, ZHU W, et al. Earthquake transformer—an attentive deep-learning model for simultaneous earthquake detection and phase picking [J]. Nature communications, 2020, 11(1): 3952.
[114] ROSS Z E, MEIER M A, HAUKSSON E. P wave arrival picking and first‐motion polarity determination with deep learning [J]. Journal of Geophysical Research: Solid Earth, 2018, 123(6): 5120-9.
[115] TIAN X, ZHANG W, ZHANG X, et al. Comparison of single‐trace and multiple‐trace polarity determination for surface microseismic data using deep learning [J]. Seismological Research Letters, 2020, 91(3): 1794-803.
[116] ZHENG Y, ZHANG Q, YUSIFOV A, et al. Applications of supervised deep learning for seismic interpretation and inversion [J]. The Leading Edge, 2019, 38(7): 526-33.
[117] LI S, LIU B, REN Y, et al. Deep-learning inversion of seismic data [J]. arXiv preprint arXiv:190107733, 2019.
[118] DAS V, MUKERJI T. Petrophysical properties prediction from prestack seismic data using convolutional neural networks [J]. Geophysics, 2020, 85(5): N41-N55.
[119] WEINZIERL W, WIESE B. Deep learning a poroelastic rock-physics model for pressure and saturation discrimination [J]. Geophysics, 2021, 86(1): MR53-MR66.
[120] MüNCHMEYER J, BINDI D, LESER U, et al. Earthquake magnitude and location estimation from real time seismic waveforms with a transformer network [J]. Geophysical Journal International, 2021, 226(2): 1086-104.
[121] STEINBERG A, VASYURA‐BATHKE H, GAEBLER P, et al. Estimation of seismic moment tensors using variational inference machine learning [J]. Journal of Geophysical Research: Solid Earth, 2021, 126(10): e2021JB022685.
[122] WU S, HUANG Q, ZHAO L. De-noising of transient electromagnetic data based on the long short-term memory-autoencoder [J]. Geophysical Journal International, 2021, 224(1): 669-81.
[123] XUE J, HUANG Q, WU S, et al. LSTM-autoencoder network for the detection of seismic electric signals [J]. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60: 1-12.
[124] LI G, ZHOU X, CHEN C, et al. Multi-type geomagnetic noise removal via an improved U-Net deep learning network [J]. IEEE Transactions on Geoscience and Remote Sensing, 2023, 61: 1-12.
[125] KONG S, OH J, YOON D, et al. Integrating Deep Learning and Deterministic Inversion for Enhancing Fault Detection in Electrical Resistivity Surveys [J]. Applied Sciences, 2023, 13(10): 6250.
[126] CHEN C P, LIU Z. Broad learning system: An effective and efficient incremental learning system without the need for deep architecture [J]. IEEE transactions on neural networks and learning systems, 2017, 29(1): 10-24.
[127] YANG X-H, ZU Q, ZHOU Y, et al. A Sample Selection Method for Neural-network-based Rayleigh Wave Inversion [J]. IEEE Transactions on Geoscience and Remote Sensing, 2024 62: 1-13.
[128] YANG X-H, HAN P, YANG Z, et al. Two-stage broad learning inversion framework for shear-wave velocity estimation [J]. Geophysics, 2023, 88(1): WA219-WA37.
[129] HU K, REN H, HUANG Q, et al. Water Table and Permeability Estimation from Multi‐Channel Seismoelectric Spectral Ratios [J]. Journal of Geophysical Research: Solid Earth, 2023: e2022JB025505.
[130] ZHOU Y, LI X, TANG Q, et al. An Assimilating Model Using Broad Learning System for Incorporating Multi‐Source Precipitation Data With Environmental Factors Over Southeast China [J]. Earth and Space Science, 2022, 9(4): e2021EA002043.
[131] YANG X-H, HAN P, YANG Z, et al. Broad Learning Framework for Search Space Design in Rayleigh Wave Inversion [J]. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60: 1-17.
[132] 徐世浙, 刘斌, 阮百尧. 电阻率法中求解异常电位的有限单元法 [J]. 地球物理学报, 1994, 37(A02): 511-5.
[133] COGGON J. Electromagnetic and electrical modeling by the finite element method [J]. Geophysics, 1971, 36(1): 132-55.
[134] DEY A, MORRISON H. Resistivity modelling for arbitrarily shaped two‐dimensional structures [J]. Geophysical prospecting, 1979, 27(1): 106-36.
[135] MA H, TAN H, GUO Y. Three-dimensional induced polarization parallel inversion using nonlinear conjugate gradients method [J]. Mathematical Problems in Engineering, 2015, 2015.
[136] 施庆国. 高密度电阻率法二维和三维有限差分正演计算 [D]; 长春: 吉林大学, 2012.
[137] 韩江涛. 起伏地表三维电阻率法数值模拟与分析 [J]. 长春: 吉林大学地球探测科学与技术学院, 2009, (01): 195-200.
[138] 张刚. 电阻率法层析成像研究及其应用 [D]; 北京: 中国地质大学 (北京), 2015.
[139] SPITZER K. A 3-D finite-difference algorithm for DC resistivity modelling using conjugate gradient methods [J]. Geophysical Journal International, 1995, 123(3): 903-14.
[140] DAI S-K, LING J-X, CHEN Q-R, et al. Numerical modeling of 3D DC resistivity method in the mixed space-wavenumber domain [J]. Applied Geophysics, 2021, 18(3): 361-74.
[141] 柴新朝. 基于有限体积法的三维电阻率正反演研究 [D]; 中南大学, 2012.
[142] 吴小平, 汪彤彤. 利用共轭梯度算法的电阻率三维有限元正演 [J]. 地球物理学报, 2003, 46(3): 428-32.
[143] 任政勇, 汤井田. 基于局部加密非结构化网格的三维电阻率法有限元数值模拟 [J]. 地球物理学报, 2009, 52(10): 2627-34.
[144] 黄俊革. 三维电阻率/极化率有限元正演模拟与反演成像 [D]. 中南大学, 2003.
[145] 袁建平. 电阻率法二维各向异性正演与主轴各向异性反演研究 [D]; 中国地质大学 (北京), 2018.
[146] LI Y, SPITZER K. Three-dimensional DC resistivity forward modelling using finite elements in comparison with finite-difference solutions [J]. Geophysical Journal International, 2002, 151(3): 924-34.
[147] 朱姣, 殷长春, 任秀艳, et al. 任意各向异性介质三维非结构谱元法直流电阻率正演模拟研究 [J]. 地球物理学报, 2021, 64(12): 4644-57.
[148] TIKHONOV A N. On the solution of ill-posed problems and the method of regularization; proceedings of the Doklady akademii nauk, F, [C]. Russian Academy of Sciences, 1963.
[149] EGBERT G D, KELBERT A. Computational recipes for electromagnetic inverse problems [J]. Geophysical Journal International, 2012, 189(1): 251-67.
[150] NOCEDAL J. Updating quasi-Newton matrices with limited storage [J]. Mathematics of computation, 1980, 35(151): 773-82.
[151] 邓琰, 汤吉, 阮帅. 三维大地电磁自适应正则化有限内存拟牛顿反演 [J]. 地球物理学报, 2019, 62(9): 3601-14.
[152] 余辉, 邓居智, 陈辉, et al. 起伏地形下大地电磁 L-BFGS 三维反演方法 [J]. 地球物理学报, 2019, 62(8): 3175-88.
[153] 马逢群, 谭捍东, 孔文新. 基于有限内存拟牛顿法的电阻率法三维主轴各向异性反演研究 [J]. 地球物理学进展, 2022, 37(2): 637-47.
[154] BYRD R H, NOCEDAL J, SCHNABEL R B. Representations of quasi-Newton matrices and their use in limited memory methods [J]. Mathematical Programming, 1994, 63(1-3): 129-56.
[155] 李墩柱, 黄清华, 陈小斌. 误差对大地电磁测深反演的影响 [J]. 地球物理学报, 2009, 52(1): 268-74.
[156] HANSEN P C, O’LEARY D P. The use of the L-curve in the regularization of discrete ill-posed problems [J]. SIAM journal on scientific computing, 1993, 14(6): 1487-503.
[157] 吴小平, 徐果明. 大地电磁数据的 Occam 反演改进 [J]. 地球物理学报, 1998, 41(4): 547-54.
[158] 吴小平, 汪彤彤. 利用共轭梯度方法的电阻率三维反演若干问题研究 [J]. 地震地质, 2001, 23(2): 321-7.
[159] WANG T, WANG K-P, TAN H-D. Forward modeling and inversion of tensor CSAMT in 3D anisotropic media [J]. Applied Geophysics, 2017, 14: 590-605.
[160] 陈小斌, 赵国泽, 汤吉, et al. 大地电磁自适应正则化反演算法 [J]. 地球物理学报, 2005, 48(4): 937-46.
[161] ZHDANOV M S, GRIBENKO A, CUMA M. Regularized focusing inversion of marine CSEM data using minimum vertical support stabilizer; proceedings of the SEG International Exposition and Annual Meeting, F, 2007 [C]. SEG.
[162] 谭捍东, 佟拓, 林昌洪. 大地电磁三维正演并行算法研究 [J]. Applied Geophysics, 2006, 04: 197-202.
[163] 林昌洪, 谭捍东, 佟拓. 大地电磁三维快速松弛反演并行算法研究 [J]. GEOPHYSICS, 2009, 6(1): 77-83.
[164] 胡祥云, 李焱, 杨文采, et al. 大地电磁三维数据空间反演并行算法研究 [J]. 地球物理学报, 2012, 55(12): 3969-78.
[165] TIBSHIRANI R. Regression shrinkage and selection via the lasso [J]. Journal of the Royal Statistical Society Series B: Statistical Methodology, 1996, 58(1): 267-88.
[166] TROPP J A, GILBERT A C. Signal recovery from random measurements via orthogonal matching pursuit [J]. IEEE Transactions on information theory, 2007, 53(12): 4655-66.
[167] AHARON M, ELAD M, BRUCKSTEIN A. K-SVD: An algorithm for designing overcomplete dictionaries for sparse representation [J]. IEEE Transactions on signal processing, 2006, 54(11): 4311-22.
[168] BOYD S, PARIKH N, CHU E, et al. Distributed optimization and statistical learning via the alternating direction method of multipliers [J]. Foundations and Trends® in Machine learning, 2011, 3(1): 1-122.
[169] BECK A, TEBOULLE M. A fast iterative shrinkage-thresholding algorithm for linear inverse problems [J]. SIAM journal on imaging sciences, 2009, 2(1): 183-202.
[170] EL-QADY G, USHIJIMA K. Inversion of DC resistivity data using neural networks [J]. Geophysical Prospecting, 2001, 49(4): 417-30.
[171] TAO T, HAN P, YANG X-H, et al. Fast Initial Model Design for Electrical Resistivity Inversion by Using Broad Learning Framework [J]. Minerals, 2024, 14(2): 184.
[172] DAHLIN T, ZHOU B. A numerical comparison of 2D resistivity imaging with 10 electrode arrays [J]. Geophysical prospecting, 2004, 52(5): 379-98.
[173] IBRAHEEM I M, TEZKAN B, BERGERS R. Integrated interpretation of magnetic and ERT data to characterize a landfill in the north-west of Cologne, Germany [J]. Pure and Applied Geophysics, 2021, 178(6): 2127-48.
[174] ZHOU B, DAHLIN T. Properties and effects of measurement errors on 2D resistivity imaging surveying [J]. Near surface geophysics, 2003, 1(3): 105-17.
[175] 唐际根. 中商文化研究 [J]. 考古学报, 1999, (4): 393-420.
[176] TANG P, CHEN F, JIANG A, et al. Multi-frequency electromagnetic induction survey for archaeological prospection: Approach and results in Han Hangu Pass and Xishan Yang in China [J]. Surveys in Geophysics, 2018, 39: 1285-302.
[177] 闫永利, 底青云, 高立兵, et al. 高密度电阻率法在考古勘探中的应用 [J]. 物探与化探, 1998, 22(6): 452-457.
[178] JING Z, RAPP JR G, GAO T. Geoarchaeological aids in the investigation of early Shang civilization on the floodplain of the lower Yellow River, China [J]. World Archaeology, 1997, 29(1): 36-50.
[179] 雨珩. 《 豫东考古报告:“中国商丘地区早商文明探索” 野外勘察与发掘》 简介 [J]. 考古, 2017, (12): 20.
[180] LOKE M. Rapid 2-D Resistivity and IP inversion using the least-squares method, Geoelectrical Imaging 2D and 3D [J]. Geotomo Softw, 2002.
[181] 叶涛, 黄清华, 陈小斌. 滇西南地区南汀河断裂带三维深部电性结构及其孕震环境 [J]. 地球物理学报, 2018, 61(11): 4504-17.
[182] JIANG F, CHEN X, UNSWORTH M J, et al. Mechanism for the uplift of Gongga Shan in the southeastern Tibetan Plateau constrained by 3D magnetotelluric data [J]. Geophysical Research Letters, 2022, 49(9): e2021GL097394.
[183] SASAKI Y. Resolution of resistivity tomography inferred from numerical SIMULATION1 [J]. Geophysical prospecting, 1992, 40(4): 453-63.
[184] LOKE M H, BARKER R D. Rapid least‐squares inversion of apparent resistivity pseudosections by a quasi‐Newton method1 [J]. Geophysical prospecting, 1996, 44(1): 131-52.
[185] 高立兵, 阎永利, 底青云, et al. 高密度电阻率法在商丘东周城址考古勘探中的应用 [J]. 考古, 2004, (7): 72-8.
[186] TIETZE K, RITTER O. Three-dimensional magnetotelluric inversion in practice—the electrical conductivity structure of the San Andreas Fault in Central California [J]. Geophysical Journal International, 2013, 195(1): 130-47.
[187] ZHANG H, HUANG Q, ZHAO G, et al. Three-dimensional conductivity model of crust and uppermost mantle at the northern Trans North China Orogen: Evidence for a mantle source of Datong volcanoes [J]. Earth and Planetary Science Letters, 2016, 453: 182-92.
[188] 胡琪璇, 谭捍东, 于翠. 时移可控源音频大地电磁法三维反演研究 [J]. 现代地质, 2023, 37(01): 90.
[189] DECEUSTER J, KAUFMANN O, VAN CAMP M. Automated identification of changes in electrode contact properties for long-term permanent ERT monitoring experiments [J]. Geophysics, 2013, 78(2): E79-E94.
[190] 殷长春, 杨志龙, 刘云鹤, et al. 基于环形扫面测量的三维直流电阻率法任意各向异性模型响应特征 [J]. 吉林大学学报 (地球科学版), 2018, 48(03): 872-880.
[191] 任政勇, 邱乐稳, 汤井田, et al. 基于电流密度连续性条件的直流电阻率各向异性问题自适应有限元模拟 [J]. 地球物理学报, 2018, 61(1): 331-43.
[192] 熊治涛, 唐新功, 李丹丹. 基于非结构网格有限元的三维井地电阻率法任意各向异性正演模拟 [J]. 地球物理学报, 2023, 66(5): 2201-18.
[193] 彭淼, 谭捍东, 姜枚, et al. 基于交叉梯度耦合的大地电磁与地震走时资料三维联合反演 [J]. 地球物理学报, 2013, 56(8): 2728-38.
[194] LIU B, PANG Y, JIANG P, et al. Physics-Driven Deep Learning Inversion for Direct Current Resistivity Survey Data [J]. IEEE Transactions on Geoscience and Remote Sensing, 2023, 61: 1-11.

所在学位评定分委会
地球物理学
国内图书分类号
P319
来源库
人工提交
成果类型学位论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/765808
专题南方科技大学
理学院_地球与空间科学系
推荐引用方式
GB/T 7714
陶涛. 基于宽度学习的直流电阻率法数据去噪与反演研究[D]. 深圳. 南方科技大学,2024.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可 操作
12031167-陶涛-地球与空间科学系(454813KB)----限制开放--请求全文
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[陶涛]的文章
百度学术
百度学术中相似的文章
[陶涛]的文章
必应学术
必应学术中相似的文章
[陶涛]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。