中文版 | English
题名

On the Quantum Modularity Conjecture for Knots

其他题名
论纽结的量子模态猜想
姓名
姓名拼音
LI Yunsheng
学号
12232850
学位类型
硕士
学位专业
070101 基础数学
学科门类/专业学位类别
07 理学
导师
STAVROS GAROUFALIDIS
导师单位
数学系
论文答辩日期
2024-05-15
论文提交日期
2024-06-22
学位授予单位
南方科技大学
学位授予地点
深圳
摘要

Quantum topology is considered to be initiated by the discovery of the Jones polynomial in 1984,  followed with observations of numerous links to physics. In the late '80s,  Atiyah,  Segal,  and Witten established an intrinsic definition of the Jones polynomial using SU(2) Chern-Simons theory,  revealing the rich connections of the Jones polynomial with the physical world. Successive findings around the Jones polynomial emerged,  including one famous conjecture that is the main topic of this thesis,  the Quantum Modularity Conjecture. 

In 1995,  R. Kashaev introduced a knot invariant using the quantum dilogarithm function,  which for a hyperbolic knot K is conjectured to have an exponential growth rate,  a conjecture known as the Volume Conjecture. In 2001,  H. Murakami and J. Murakami discovered that Kashaev's invariant is equal to the value of the N-colored Jones polynomial at N-th roots of the unity. With this,  D. Zagier observed a modular relation between the values of the N-colored Jones polynomial at different roots of the unity and extended the statement of Volume Conjecture to a modular relation of the functions. The extended statement is known as the Quantum Modularity Conjecture  (QMC).

More recently,  J. E. Andersen and R. Kashaev introduced the Teichmuller TQFT based on Chern-Simons theory with infinite dimensional gauge groups,  promoting the quantum Teichmuller theory to a TQFT of categroids. On further investigation into values of the Teichmuller TQFT on knot complements of the 4-1 knot and the 5-2 knot,  S. Garoufalidis and D. Zagier discovered phenomena suggesting deep relationships between the state integral from the Teichmuller TQFT and QMC. Furthermore,  their observation also suggested rich connections with several other topics,  such as the Dimofte-Gaiotto-Gukov index and the quantum spin network.

This thesis will mainly focus on introducing the construction of the Teichmuller TQFT and the contents of QMC,  and demonstrate their connections by listing the observations made by S. Garoufalidis and D. Zagier and more recent results along with elementary proofs for some of them from joint work of the author,  N. An and S. Garoufalidis.

关键词
语种
英语
培养类别
独立培养
入学年份
2022
学位授予年份
2024-07
参考文献列表

[1] WITTEN E. Quantum field theory and the Jones polynomial[J]. Communications in Mathematical Physics, 1989, 121(3): 351 - 399.
[2] KASHAEV R. A LINK INVARIANT FROM QUANTUM DILOGARITHM[J/OL]. Modern Physics Letters A, 1995, 10(19): 1409-1418. https://doi.org/10.1142%2Fs0217732395001526. DOI: 10.1142/s0217732395001526.
[3] MURAKAMI H, MURAKAMI J. The colored Jones polynomials and the simplicial volume of a knot[J/OL]. Acta Math., 2001, 186(1): 85-104. http://dx.doi.org/10.1007/BF02392716.
[4] ZAGIER D. Quantum modular forms[M]//Clay Math. Proc.: Vol. 11 Quanta of maths. Prov- idence, RI: Amer. Math. Soc., 2010: 659-675.
[5] ANDERSEN J E, KASHAEV R. A TQFT from Quantum Teichmüller theory[J/OL]. Comm. Math. Phys., 2014, 330(3): 887-934. http://dx.doi.org.prx.library.gatech.edu/10.1007/s00220 -014-2073-2.
[6] ATIYAH M F. Topological quantum field theory[J/OL]. Publications Mathématiques de l’IHÉS, 1988, 68: 175-186. http://www.numdam.org/item/PMIHES_1988__68__175_0/.
[7] THURSTON W P. The Geometry and Topology of Three-Manifolds[M]. New York, 2002.
[8] REED M, SIMON B. Methods of Modern Mathematical Physics. IV Analysis of Operators[M]. New York: Academic Press, 1978.
[9] GAROUFALIDIS S, KASHAEV R. From state integrals to 𝑞-series[J/OL]. Math. Res. Lett., 2017, 24(3): 781-801. https://doi.org/10.4310/MRL.2017.v24.n3.a8.
[10] FADDEEV L D. Discrete Heisenberg-Weyl Group and modular group[J/OL]. Letters in Mathematical Physics, 1995, 34(3): 249-254. https://doi.org/10.1007%2Fbf01872779. DOI:10.1007/bf01872779.
[11] ANDERSEN J E, KASHAEV R. The Teichmüller TQFT[C]//International Congress of Math-ematicians. 2018: 2527-2552.
[12] KASHAEV R, LUO F, VARTANOV G. A TQFT of Turaev-Viro type on shaped triangulations[J/OL]. Ann. Henri Poincaré, 2016, 17(5): 1109-1143. http://dx.doi.org/10.1007/s00023-015-0427-8.
[13] GAROUFALIDIS S, KASHAEV R. Evaluation of state integrals at rational points[J/OL]. Commun. Number Theory Phys., 2015, 9(3): 549-582. https://doi.org/10.4310/CNTP.2015.v9.n3.a3.
[14] BRUINIER J H, VAN DER GEER G, HARDER G, et al. Universitext: The 1-2-3 of modularforms[M/OL]. Springer-Verlag, Berlin, 2008: x+266. https://doi.org/10.1007/978-3-540-74119-0.
[15] GUKOV S. Three-Dimensional Quantum Gravity, Chern-Simons Theory, and the A-Polynomial[J/OL]. Communications in Mathematical Physics, 2005, 255(3): 577-627. https: //doi.org/10.1007%2Fs00220-005-1312-y. DOI: 10.1007/s00220-005-1312-y.
[16] MURAKAMI H. An introduction to the volume conjecture[J]. Interactions between hyperbolic geometry, quantum topology and number theory, 2011, 541: 1-40.
[17] WHEELER C. Modular 𝑞-difference equations and quantum invariants of hyperbolic three- manifolds[M]. 2023: 433.
[18] GAROUFALIDIS S, ZAGIER D. Knots and their related 𝑞-series[A]. 2023. arXiv: 2304.09377.
[19] GAROUFALIDIS S, GU J, MARIñO M. The resurgent structure of quantum knot invariants [J/OL]. Comm. Math. Phys., 2021, 386(1): 469-493. https://doi.org/10.1007/s00220-021-040 76-0.
[20] DIMOFTE T. Perturbative and nonperturbative aspects of complex Chern-Simons theory [J/OL]. J. Phys. A, 2017, 50(44): 443009, 25. https://doi.org/10.1088/1751-8121/aa6a5b.
[21] DIMOFTE T, GAIOTTO D, GUKOV S. 3-manifolds and 3d indices[J/OL]. Adv. Theor. Math. Phys., 2013, 17(5): 975-1076. http://projecteuclid.org.prx.library.gatech.edu/euclid.atmp/140 8626510.
[22] GAROUFALIDIS S, ZAGIER D. Knots, perturbative series and quantum modularity[A]. arXiv:2111.06645.
[23] AN N, GAROUFALIDIS S, LI S Y. Algebraic aspects of holomorphic quantum modular forms [A]. 2024. arXiv: 2403.02880.
[24] GAROUFALIDIS S. Quantum knot invariants[J/OL]. Res. Math. Sci., 2018, 5(1): Paper No. 11, 17. https://doi.org/10.1007/s40687-018-0127-3.
[25] DIMOFTE T, GAROUFALIDIS S. The quantum content of the gluing equations[J/OL]. Geom. Topol., 2013, 17(3): 1253-1315. http://dx.doi.org/10.2140/gt.2013.17.1253.
[26] DIMOFTE T, GAROUFALIDIS S. Quantum modularity and complex Chern-Simons theory [J/OL]. Commun. Number Theory Phys., 2018, 12(1): 1-52. https://doi.org/10.4310/CNTP.2 018.v12.n1.a1.
[27] GAROUFALIDIS S, GU J, MARINO M. Peacock patterns and resurgence in complex Chern– Simons theory[J]. Research in the Mathematical Sciences, 2023, 10(3): 29.
[28] GAROUFALIDIS S, KOUTSCHAN C. Irreducibility of 𝑞-difference operators and the knot 74 [J/OL]. Algebr. Geom. Topol., 2013, 13(6): 3261-3286. https://doi.org/10.2140/agt.2013.13. 3261.
[29] GAROUFALIDIS S, WHEELER C. Modular 𝑞-holonomic modules[A]. 2022. arXiv: 2203.17029.
[30] OLVER F. Computer Science and Applied Mathematics: Asymptotics and special functions [M]. Academic Press [Harcourt Brace Jovanovich, Publishers], New York-London, 1974: xvi+572.
[31] MALHAM S J. An introduction to asymptotic analysis[J]. University lectures, 2005.

所在学位评定分委会
数学
国内图书分类号
O1-0
来源库
人工提交
成果类型学位论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/765812
专题南方科技大学
理学院_数学系
推荐引用方式
GB/T 7714
Li YS. On the Quantum Modularity Conjecture for Knots[D]. 深圳. 南方科技大学,2024.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可 操作
12232850-李昀升-数学系.pdf(1968KB)----限制开放--请求全文
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[李昀升]的文章
百度学术
百度学术中相似的文章
[李昀升]的文章
必应学术
必应学术中相似的文章
[李昀升]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。