中文版 | English
题名

各向异性三角反铁磁材料的量子磁性

其他题名
QUANTUM MAGNETISM OF ANISOTROPIC TRIANGULAR ANTIFERROMAGNETS
姓名
姓名拼音
LI Tiantian
学号
12132925
学位类型
硕士
学位专业
070205 凝聚态物理
学科门类/专业学位类别
07 理学
导师
吴留锁
导师单位
物理系
论文答辩日期
2024-04-29
论文提交日期
2024-06-21
学位授予单位
南方科技大学
学位授予地点
深圳
摘要

在现代凝聚态物理领域中,围绕量子材料开展的研究逐渐成为领域内主流的 研究方向。量子材料中有许多系统存在竞争相互作用,但并非所有相互作用都会 导致同一种有序态的建立。足够强的竞争可以导致非常规的物理现象的出现,这 些现象包括但不限于非共线有序、丰富的相图,或者极低温下长程有序的缺失。常 见的几何阻挫的晶格类型有二维三角晶格、笼目晶格,三维钙钛矿晶格等。二维 三角晶格反铁磁体是最简单的几何阻挫系统之一,它凭借低维和阻挫的双重特性 常表现出非平庸的物理,因而受到广泛关注。在金属三角晶格体系中可能会出现 由磁场诱导的斯格明子,它们表现出自发的霍尔效应。在交换作用的影响下局域 磁矩会沿着导电电子移动的环路排列,在其波函数中诱导出贝里相。在绝缘体三 角晶格体系中,没有导电电子帮助建立长程有序,相互作用的尺度进一步减小,体 系量子涨落剧烈,可能有 1/3 磁化平台或其他量子态的出现。 本文以稀土基的金属体系 CePtAl4Ge2 和过渡族钴基的绝缘体氧化物 Na2SrCo(PO4)2 为例,探究其晶体生长的改进方法和磁化率和比热等基本物性,着 重研究其极低温下的量子磁性行为。受晶体场劈裂和自旋轨道耦合的影响,两个 体系的基态为双重态,可以由有效自旋 1/2 的模型描述。我们在层状金属三角反铁 磁体 CePtAl4Ge2 中观察到由磁场诱导的非公度相变,该相变可能与导电电子和几 何阻挫共同确定。在钴基畸变三角晶格反铁磁体 Na2SrCo(PO4)2 中我们观察到很 低的相变温度且伴随着体系很强的自旋涨落,而磁场破坏反铁磁相后诱导出了不 同于经典体系的无序态。CePtAl4Ge2 和 Na2SrCo(PO4)2 分别代表着二维三角晶格 体系中的金属体系和绝缘体体系,且各自表现出奇特的物理现象,这两种物理现 象在目前的强关联体系中较为少见,具有一定的独特性,值得进一步的研究和理 论上的解释。

其他摘要

In the realm of strongly correlated electron systems, the exploration of quantum materials is paramount. These materials often feature competing interactions, where some interactions fail to align to promote a singular ordered state. Intense competition can lead to emergent phenomena, including non-collinear ordering, intricate phase diagrams, or a lack of long-range order at low temperatures. The two-dimensional triangular lattice systems, characterized by their inherent low dimensionality and frustration, often unveil novel physical phenomena, thereby attracting much attention. The discovery of Skyrmion crystals induced by a magnetic field might occur in the metallic triangular antiferromagnets. When conduction electrons traverse through a skyrmion spin texture, they manifest a spontaneous Hall effect. As a consequence of the exchange interaction, the underlying local moment texture aligns the spin of a conduction electron traversing a loop, inducing a Berry phase in its wavefunction. In insulating triangular lattice systems, absent the involvement of conducting electrons, the interaction scale further decreases, leading to pronounced quantum fluctuations and the potential emergence of quantum states such as 1/3 magnetization plateaus or other quantum phenomena. Under the influence of crystal field splitting and spin-orbit coupling, the ground states of both systems are described by doublets with effective spins of 1/2. In the layered metallic triangular antiferromagnet CePtAl4Ge2, we observe a fieldinduced inconmmensurate phase transition, which might be determined by the interplay of conducting electrons and geometric frustration. In the cobalt-based distorted triangular lattice antiferromagnet Na2SrCo(PO4)2, we observe a very low transition temperature accompanied by strong spin fluctuations, and a disordered state distinct from classical systems is induced with the antiferromagnetic phase transition suppressed. These two peculiar physical phenomena mentioned in this study have unique characteristics, thereby warranting further research and theoretical explanation.

关键词
语种
中文
培养类别
独立培养
入学年份
2021
学位授予年份
2024-07
参考文献列表

[1] BLUNDELL S. Magnetism in Condensed Matter [M]. New York: Oxford University PressInc., 2001.
[2] JACKSON J D. Classical Electrodynamics[M]. 3rd ed. New York: Wiley, 1999.
[3] FRIEDRICH B, HERSCHBACH D. Stern and Gerlach: How a Bad Cigar Helped ReorientAtomic Physics[J]. Physics Today, 2003, 56: 53-59.
[4] 杨福家. 原子物理学[M]. 4 版. 北京: 高等教育出版社, 2008.
[5] 姜寿亭,李卫. 凝聚态磁性物理 [M]. 北京: 科学出版社, 2003.
[6] RUDERMAN M A, KITTEL C. Indirect Exchange Coupling of Nuclear Magnetic Momentsby Conduction Electrons[J]. Physical Review, 1954, 96: 99.
[7] KASUYA T. Elecetrical Resistance of Ferromagnetic Metals[J]. Progress of TheoreticalPhysics, 1956, 16: 58-63.
[8] YOSIDA K. Magnetic Properties of Cu-Mn Alloys[J]. Physical Review, 1957, 106: 893.
[9] JIANG S D, QIN S X. Prediction of the Quantized Axis of Rare-Earth Ions: the ElectrostaticModel with Displaced Point Charges[J]. The Royal Society of Chemistry, 2013, 00: 1-3.
[10] 王冰,周跫桦,王金兰. 二维铁磁材料的理论模拟与设计[J]. 科学通报, 2021, 66: 551-562.
[11] ZHANG Y, GROVER T, TURNER A, et al. Quasiparticle statistics and braiding from groundstate entanglement[J]. Physical Review B, 2012, 85: 235151.
[12] JIANG H C, WANG Z, BALENTS L. Identifying topological order by entanglement entropy[J]. Nature Physics, 2012, 8: 902-905.
[13] GROVER T, ZHANG Y, VISHWANATH A. Entanglement entropy as a portal to the physicsof quantum spin liquids[J]. New Journal of Physics, 2013, 15: 025002.
[14] SHIMIZU Y, MIYAGAWA K, KANODA K, et al. Spin Liquid State in an Organic Mott Insulator with a Triangular Lattice[J]. Physical Review Letters, 2003, 91: 107001.
[15] KANODA K, KATO R. Mott Physics in Organic Conductors with Triangular Lattices[J]. Annual Review of Condensed Matter Physics, 2011, 2: 167-188.
[16] HAN T H, HELTON J S, CHU S, et al. Fractionalized excitations in the spin-liquid state of akagome-lattice antiferromagnet[J]. Nature, 2012, 492: 406-410.
[17] BALENTS L. Spin Liquids in Frustrated Magnets[J]. Nature, 2010, 464: 199-208.
[18] COLLINS M, PETRENKO O. Triangular antiferromagnets[J]. Can. J. Phys., 1997, 75: 605-655.
[19] MA J, KAMIYA Y, HONG T, et al. Static and Dynamical Properties of the Spin-1/2 Equilateral Triangular-Lattice Antiferromagnet Ba3CoSb2O9[J]. Physical Review Letters, 2016, 116:087201.74参考文献
[20] DOI Y, HINATSU Y, OHOYAMA K. Structure and Magnetic Properties of Pseudo-twodimenstional Triangular Antiferromagnets Ba3MSb2O9(M = Mn, Co, and Ni)[J]. Journal ofPhysics: Condensed Matter, 2004, 16: 8923.
[21] SHIRATA Y, TANAKA H, MATSUO A, et al. Experimental Realization of a Spin-1/2Triangular-Lattice Heisenberg Antiferromagnet[J]. Physical Review Letters, 2012, 108:057205.
[22] ZHOU H D, XU C, HALLAS A M, et al. Successive Phase Transitions and Extended SpinExcitation Continuum in the S = 1/2 Triangular-Lattice Antiferromagnet Ba3CoSb2O9[J]. Physical Review Letters, 2012, 109: 267206.
[23] SUSUKI T, KURITA N, TANAKA T, et al. Magnetization Process and Collective Excitations inthe S = 1/2 Triangular-Lattice Heisenberg Antiferromagnet Ba3CoSb2O9[J]. Physical ReviewLetters, 2013, 110: 267201.
[24] KOUTROULAKIS G, ZHOU T, KAMIYA Y, et al. Quantum phase diagram of the 𝑆 = 12triangular-lattice antiferromagnet Ba3CoSb2O9[J]. Physical Review B, 2015, 91: 024410.
[25] QUIRION G, LAPOINTE-MAJOR M, POIRIER M, et al. Magnetic phase diagram ofBa3CoSb2O9 as determined by ultrasound velocity measurements[J]. Physical Review B, 2015,92: 014414.
[26] NARUSE K, KAWAMATA T, OHNO M, et al. Thermal Conductivity in the Triangular-latticeAntiferromagnet Ba3CoSb2O9[J]. Journal of Physics: Conference Series, 2014, 568: 042014.
[27] ITO S, KURITA N, TANAKA H, et al. Structure of The Magnetic Excitations in the Spin1/2 Triangular-Lattice Heisenberg Antiferromagnet Ba3CoSb2O9[J]. Nature Communications,2017, 8: 235.
[28] KAMIYA Y, GE L, HONG T, et al. The Nature of Spin Excitations in the One-third Magnetization Plateau Phase of Ba3CoSb2O9[J]. Nature Communications, 2018, 9: 2666.
[29] GHIOLDI E A, MEZIO A, MAUEL L O, et al. Magnons and Excitation Continuum in XXZtriangular antiferromagnetic model: Application to 𝐵𝑎3𝐶𝑜𝑆𝑏2𝑂9[J]. Physical Review B, 2015,91: 134423.
[30] ZHONG R, GUO S, XU G, et al. Strong Quantum Fluctuations in a Quantum Spin LiquidCandidate with a Co-based Triangular Lattice[J]. PNAS, 2019, 116: 14505-14510.
[31] LI N, HUANG Q, YUE X Y, et al. Possible Itinerant Excitations and Quantum Spin StateTransitions in the Effective Spin-1/2 Triangular-Lattice Antiferromagnet Na2BaCo(PO4)2[J].Nature Communications, 2020, 11: 4216.
[32] LEE S, LEE C H, BERLIE A, et al. Temporal and Field Evolution of Spin Excitations in thedisorder-free Triangular Antiferromagnet Na2BaCo(PO4)2[J]. Physical Review B, 2021, 103:024413.
[33] SHENG J, WANG L, CANDINI A, et al. Two-Dimensional Quantum Universality in theSpin-1/2 Triangular-Lattice Quantum Antiferromagnet Na2BaCo(PO4)2[J]. PNAS, 2022, 119:e2211193119.
[34] YE F, FERNANDEZ-BACA J A, FISHMAN R S, et al. Magnetic Interactions in the Geometrically Frustrated Triangular Lattice Antiferromagnet CuFeO2[J]. Physical Review Letters,2007, 99: 157201.75参考文献
[35] LIU W, ZHANG Z, JI J, et al. Rare-Earth Chalcogenides: A Large Family of Triangular LatticeSpin Liquid Candidtates[J]. Chinese Physics Letters, 2018, 35: 117501.
[36] SCHMIDT B, SICHELSCHMIDT J, RANJITH K M, et al. Yb delafossites: Unique exchangefrustration of 4𝑓 spin- 12moments on a perfect triangular lattice[J]. Physical Review B, 2021,103: 214445.
[37] BAENITZ M, SCHLENDER P, SICHELSCHMIDT J, et al. NaYbS2: A planar spin- 12triangular-lattice magnet and putative spin liquid[J]. Physical Review B, 2018, 98: 220409.
[38] DING L, MANUEL P, BACHUS S, et al. Gapless spin-liquid state in the structurally disorderfree triangular antiferromagnet NaYbO2[J]. Physical Review B, 2019, 100: 144432.
[39] XING J, SANJEEWA L D, MAY A F, et al. Synthesis and anisotropic magnetism in quantumspin-liquid candidates 𝐴YbSe2(𝐴 = K and Rb)[J]. APL Materials, 2021, 9: 111104.
[40] ZHANG Z, MA X, LI J, et al. Crystalline Electric-Field Excitations in Quantum Spin LiquidsCandidate NaYbSe2[J]. Physical Review B, 2021, 103: 035144.
[41] RANJITH K M, LUTHER S, REIMANN T, et al. Anisotropic field-induced ordering in thetriangular-lattice quantum spin liquid NaYbSe2[J]. Physical Review B, 2019, 100: 224417.
[42] BORDELON M M, KENNEY E, LIU C, et al. Field-tunable quantum disordered ground statein the triangular-lattice antiferromagnet NaYbO2[J]. Nature Physics, 2019, 15: 1058-1065.
[43] XING J, SANJEEWA L D, KIM J, et al. Field-induced magnetic transition and spin fluctuationin quantum spin liquid candidate CsYbSe2[J]. Physical Review B, 2019, 100: 220407.
[44] RANJITH K M, DMYTRIIEVA D, KHIM S, et al. Field-induced instability of the quantum spinliquid ground state in the 𝐽eff =12triangular-lattice compound NaYbO2[J]. Physical Review B,2019, 99: 180401.
[45] DAI P L, ZHANG G, XIE Y, et al. Spinon Fermi Surface Spin Liquid in a Triangular LatticeAntiferromagnet NaYbSe2[J]. Physical Review X, 2021, 11: 021044.
[46] SCHEIE A O, GHIOLDI E A, XING J, et al. Proximate spin liquid and fractionalization in thetriangular antiferromagnet KYbSe2[J]. Nature Physics, 2024, 20: 74-81.
[47] BORDELON M M, LIU C, POSTHUMA L, et al. Spin excitations in the frustrated triangularlattice antiferromagnet NaYbO2[J]. Physical Review B, 2020, 101: 224427.
[48] SCHEIE A O, KAMIYA Y, ZHANG H, et al. Nonlinear magnons and exchange Hamiltoniansof the delafossite proximate quantum spin liquid candidates KYbSe2 and NaYbSe2[J]. PhysicalReview B, 2024, 109: 014425.
[49] XIE T, EBERHARTER A A, XING J, et al. Complete field-induced spectral response of thespin-1/2 triangular-lattice antiferromagnet CsYbSe2[J]. npj Quantum Materials, 2023, 8: 48.
[50] SICHELSCHMIDT J, SCHLENDER P, SCHMIDT B, et al. Electron Spin Resonance onthe Spin-1/2 Triangular Magnet NaYbS2[J]. Journal of Physics: Condesed Matter, 2019, 31:205601.
[51] STARYKH O A. Unusual Ordered Phases of Highly Frustrated Magnets: A Review[J]. Reporton Progress in Physics, 2015, 78: 052502.76参考文献
[52] TING V, LIU Y, WITHERS R L, et al. An electron diffraction and bond valence sum study ofthe space group symmetries and structures of the photocatalytic 1:2 𝐵 site ordered 𝐴3CoNb2O9perovskites (𝐴 = Ca2+, Sr2+, Ba2+[J]. Journal of Solid State Chemistry, 2004, 177: 2295-2304.
[53] DAI J, ZHOU P, WANG P, et al. Spin frustration and magnetic ordering in triangular latticeantiferromagnet Ca3CoNb2O9[J]. Chin. Phys. B, 2021, 30: 117505.
[54] HUANG Q, LEE M, CHOI E S, et al. Successive Phase Transitions and Multiferroicity in Deformed Triangular-Lattice Antiferromagnets Ca3MNb2O9(M = Co, Ni) with Spatial Anisotropy[J]. ECS Journal of Solid State Science and Technology, 2022, 11: 063004.
[55] LAL S, SEBASTIAN S J, ISLAM S S, et al. Double magnetic transitions and exotic fieldinduced phase in the triangular lattice antiferromagnets Sr3Co(Nb,Ta)2O9[J]. Physical ReviewB, 2023, 108: 014429.
[56] HIRAI D, YAJIMA T, NISHIO-HAMANE D, et al. ”Visible” 5d Orbital States in a PleochroicOxychloride[J]. Journal of the American Chemical Society, 2017, 139: 10784-10789.
[57] HIRAI D, NAWA K, KAWAMURA M, et al. One-Dimensionalization by Geometrical Frustration in the Anisotropic Triangular Lattice of the 5d Quantum Antiferromagnet Ca3ReO5Cl2[J].Journal of the Physical Society of Japan, 2019, 88: 044708.
[58] HIRAI D, YAJIMA T, NAWA K, et al. Anisotropic Triangular Lattice Realized in RheniumOxychlorides A3ReO5Cl2(A = Ba, Sr)[J]. Inorganic Chemistry, 2020, 59: 10025-10033.
[59] NAWA K, HIRAI D, KOFU M, et al. Bound Spinon Excitations in the Spin-1/2 AnisotropicTriangular Antiferromagnet Ca3ReO5Cl2[J]. Physical Review Research, 2020, 2: 043121.
[60] CHOI Y, LEE S, LEE J H, et al. Bosonic spinons in anisotropic triangular antiferromagnets[J].Nature Communications, 2021, 12: 6453.
[61] ZVYAGIN S A, PONOMARYOV A N, WOSNITZA J, et al. Dimensional Reduction andIncommensurate Dynamic Correlations in the S = 1/2 Triangular-Lattice AntiferromagnetCa3ReO5Cl2[J]. Nature Communications, 2022, 13: 6310.
[62] 介万奇. 晶体生长原理与技术[M]. 北京: 科学出版社, 2010.
[63] 王国富. 晶体生长基础与技术[M]. 北京: 科学出版社, 2023.
[64] BRIDGMAN P W. Certain Physical Properties of Single Crystals of Tungsten, Antimony, Bismuth, Tellurium, Cadmium, Zinc, and Tin[J]. Proceedings of the American Academy of Artsand Sciences, 1925, 60: 305-383.
[65] 姚连增, 等. 晶体生长基础[J]. 中国科学与技术大学出版社, 合肥, 1995: 247-249.
[66] DHANARAJ G, BYRAPPA K, PRASAD V, et al. Springer handbook of crystal growth: Vol. 2[M]. Springer, 2010.
[67] 朱永法,宗瑞隆,姚文清,张灏,梁淑惠,林洁,黄光莉,徐同广,张立武,郑涵云. 材料分析化学 [M]. 北京: 化学工业出版社, 2009.
[68] 李树棠. 晶体 X 射线衍射学基础[M]. 北京: 冶金工业出版社, 1990.
[69] 苏少奎. 低温物性及测量——一个实验技术人员的理解和经验总结 [M]. 北京: 科学出版社, 2019.
[70] 汪志诚. 热力学与统计物理[M]. 5 版. 北京: 高等教育出版社, 2013.77参考文献
[71] KUZMIN M D, TISHIN A M. Magnetocaloric effect. Part 1: An introduction to various aspectsof theory and practice[J]. Cryogenics, 1992, 32: 545-558.
[72] FURRER A, et al. Neutron Scattering in Condensed Matter Physics [M]. Singapore: WorldScientific Publishing Co. Pte. Ltd., 2009.
[73] YU D, MOLE R, NOAKES T, et al. Pelican - a Time of Flight Cold Neutron PolarizationAnalysis Spectrometer at OPAL[J]. The Physical Society of Japan, 2013, 82: SA027.
[74] NI WU X, KANATZIDIS M G. REAuAl4Ge2 and REAuAl4(Au𝑥Ge1−𝑥)2(RE = rare earth element): Quaternary intermetallics grown in liquid aluminum[J]. Journal of Solid State Chemistry, 2005, 178: 3233-3242.
[75] ZHANG S, ARYAL N, HUANG K, et al. Electronic Structure and Magnetism in the layeredTriangular Lattice Compound CeAuAl4Ge2[J]. Physical Review Materials, 2017, 1: 4.
[76] FENG K, LEAHY I A, OLADEHIN O, et al. Magnetic ordering in GdAuAl4Ge2 andTbAuAl4Ge2: Layered compounds with triangular lanthanide nets[J]. Journal of Magnetismand Magnetic Materials, 2022, 564: 170006.
[77] CONG M, GE H, ZHANG L, et al. Magnetic phase diagram and multiple field-induced statesin the intermetallic triangular-lattice antiferromagnetic NdAuAl4Ge2 with Ising-like spins[J].Physical Review Materials, 2023, 7: 024423.
[78] SHIN S, ROSA P F, RONNING F, et al. Synthesis and characterization of the heavy-fermioncompound CePtAl4Ge2[J]. Journal of Alloys and Compounds, 2018, 738: 550-555.
[79] SHIN S, POMJAKUSHIN V, KELLER L, et al. Magnetic structure and crystalline electricfield effects in the triangular antiferromagnet CePtAl4Ge2[J]. Physical Review B, 2020, 101:224421.
[80] RICHARDSON R C. The Pomeranchuk effect[J]. Reviews of Modern Physics, 1997, 69: 683.
[81] LEE D M. The extraordinary phases of liquid 3He[J]. Reviews of Modern Physics, 1997, 69:645-665.
[82] 扫描隧道显微学引论[M/OL]. 中国轻工业出版社, 1996. https://books.google.co.kr/books?id=kIKEAAAACAAJ.
[83] ZHANG C, XU Q, ZENG X T, et al. Doping-induced structural transformation in the spin1/2 triangular-lattice antiferromagnet Na2Ba1−𝑥Sr𝑥Co(PO4)2[J]. Journal of Alloys and Coumpounds, 2022, 905: 164147.
[84] VERA P. BADER P G, Jan Langmann, TSIRLIN A A. Deformation of the Triangular Spin-1/2Lattice in Na2SrCo(PO4)2[J]. Physical Review B, 2022, 106: 054415 1-054415 12.
[85] 谷亦杰,宫声凯. 材料分析检测技术 [M]. 长沙: 中南大学出版社, 2009.
[86] KITTEL C. Introduction to Solid States Physics[M]. 8th ed. The United States of America:John Wiley & Sons, Inc., 2005.

所在学位评定分委会
物理学
国内图书分类号
O469
来源库
人工提交
成果类型学位论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/765813
专题南方科技大学
理学院_物理系
推荐引用方式
GB/T 7714
李田恬. 各向异性三角反铁磁材料的量子磁性[D]. 深圳. 南方科技大学,2024.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可 操作
12132925-李田恬-物理系.pdf(108827KB)----限制开放--请求全文
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[李田恬]的文章
百度学术
百度学术中相似的文章
[李田恬]的文章
必应学术
必应学术中相似的文章
[李田恬]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。