[1] BLUNDELL S. Magnetism in Condensed Matter [M]. New York: Oxford University PressInc., 2001.
[2] JACKSON J D. Classical Electrodynamics[M]. 3rd ed. New York: Wiley, 1999.
[3] FRIEDRICH B, HERSCHBACH D. Stern and Gerlach: How a Bad Cigar Helped ReorientAtomic Physics[J]. Physics Today, 2003, 56: 53-59.
[4] 杨福家. 原子物理学[M]. 4 版. 北京: 高等教育出版社, 2008.
[5] 姜寿亭,李卫. 凝聚态磁性物理 [M]. 北京: 科学出版社, 2003.
[6] RUDERMAN M A, KITTEL C. Indirect Exchange Coupling of Nuclear Magnetic Momentsby Conduction Electrons[J]. Physical Review, 1954, 96: 99.
[7] KASUYA T. Elecetrical Resistance of Ferromagnetic Metals[J]. Progress of TheoreticalPhysics, 1956, 16: 58-63.
[8] YOSIDA K. Magnetic Properties of Cu-Mn Alloys[J]. Physical Review, 1957, 106: 893.
[9] JIANG S D, QIN S X. Prediction of the Quantized Axis of Rare-Earth Ions: the ElectrostaticModel with Displaced Point Charges[J]. The Royal Society of Chemistry, 2013, 00: 1-3.
[10] 王冰,周跫桦,王金兰. 二维铁磁材料的理论模拟与设计[J]. 科学通报, 2021, 66: 551-562.
[11] ZHANG Y, GROVER T, TURNER A, et al. Quasiparticle statistics and braiding from groundstate entanglement[J]. Physical Review B, 2012, 85: 235151.
[12] JIANG H C, WANG Z, BALENTS L. Identifying topological order by entanglement entropy[J]. Nature Physics, 2012, 8: 902-905.
[13] GROVER T, ZHANG Y, VISHWANATH A. Entanglement entropy as a portal to the physicsof quantum spin liquids[J]. New Journal of Physics, 2013, 15: 025002.
[14] SHIMIZU Y, MIYAGAWA K, KANODA K, et al. Spin Liquid State in an Organic Mott Insulator with a Triangular Lattice[J]. Physical Review Letters, 2003, 91: 107001.
[15] KANODA K, KATO R. Mott Physics in Organic Conductors with Triangular Lattices[J]. Annual Review of Condensed Matter Physics, 2011, 2: 167-188.
[16] HAN T H, HELTON J S, CHU S, et al. Fractionalized excitations in the spin-liquid state of akagome-lattice antiferromagnet[J]. Nature, 2012, 492: 406-410.
[17] BALENTS L. Spin Liquids in Frustrated Magnets[J]. Nature, 2010, 464: 199-208.
[18] COLLINS M, PETRENKO O. Triangular antiferromagnets[J]. Can. J. Phys., 1997, 75: 605-655.
[19] MA J, KAMIYA Y, HONG T, et al. Static and Dynamical Properties of the Spin-1/2 Equilateral Triangular-Lattice Antiferromagnet Ba3CoSb2O9[J]. Physical Review Letters, 2016, 116:087201.74参考文献
[20] DOI Y, HINATSU Y, OHOYAMA K. Structure and Magnetic Properties of Pseudo-twodimenstional Triangular Antiferromagnets Ba3MSb2O9(M = Mn, Co, and Ni)[J]. Journal ofPhysics: Condensed Matter, 2004, 16: 8923.
[21] SHIRATA Y, TANAKA H, MATSUO A, et al. Experimental Realization of a Spin-1/2Triangular-Lattice Heisenberg Antiferromagnet[J]. Physical Review Letters, 2012, 108:057205.
[22] ZHOU H D, XU C, HALLAS A M, et al. Successive Phase Transitions and Extended SpinExcitation Continuum in the S = 1/2 Triangular-Lattice Antiferromagnet Ba3CoSb2O9[J]. Physical Review Letters, 2012, 109: 267206.
[23] SUSUKI T, KURITA N, TANAKA T, et al. Magnetization Process and Collective Excitations inthe S = 1/2 Triangular-Lattice Heisenberg Antiferromagnet Ba3CoSb2O9[J]. Physical ReviewLetters, 2013, 110: 267201.
[24] KOUTROULAKIS G, ZHOU T, KAMIYA Y, et al. Quantum phase diagram of the 𝑆 = 12triangular-lattice antiferromagnet Ba3CoSb2O9[J]. Physical Review B, 2015, 91: 024410.
[25] QUIRION G, LAPOINTE-MAJOR M, POIRIER M, et al. Magnetic phase diagram ofBa3CoSb2O9 as determined by ultrasound velocity measurements[J]. Physical Review B, 2015,92: 014414.
[26] NARUSE K, KAWAMATA T, OHNO M, et al. Thermal Conductivity in the Triangular-latticeAntiferromagnet Ba3CoSb2O9[J]. Journal of Physics: Conference Series, 2014, 568: 042014.
[27] ITO S, KURITA N, TANAKA H, et al. Structure of The Magnetic Excitations in the Spin1/2 Triangular-Lattice Heisenberg Antiferromagnet Ba3CoSb2O9[J]. Nature Communications,2017, 8: 235.
[28] KAMIYA Y, GE L, HONG T, et al. The Nature of Spin Excitations in the One-third Magnetization Plateau Phase of Ba3CoSb2O9[J]. Nature Communications, 2018, 9: 2666.
[29] GHIOLDI E A, MEZIO A, MAUEL L O, et al. Magnons and Excitation Continuum in XXZtriangular antiferromagnetic model: Application to 𝐵𝑎3𝐶𝑜𝑆𝑏2𝑂9[J]. Physical Review B, 2015,91: 134423.
[30] ZHONG R, GUO S, XU G, et al. Strong Quantum Fluctuations in a Quantum Spin LiquidCandidate with a Co-based Triangular Lattice[J]. PNAS, 2019, 116: 14505-14510.
[31] LI N, HUANG Q, YUE X Y, et al. Possible Itinerant Excitations and Quantum Spin StateTransitions in the Effective Spin-1/2 Triangular-Lattice Antiferromagnet Na2BaCo(PO4)2[J].Nature Communications, 2020, 11: 4216.
[32] LEE S, LEE C H, BERLIE A, et al. Temporal and Field Evolution of Spin Excitations in thedisorder-free Triangular Antiferromagnet Na2BaCo(PO4)2[J]. Physical Review B, 2021, 103:024413.
[33] SHENG J, WANG L, CANDINI A, et al. Two-Dimensional Quantum Universality in theSpin-1/2 Triangular-Lattice Quantum Antiferromagnet Na2BaCo(PO4)2[J]. PNAS, 2022, 119:e2211193119.
[34] YE F, FERNANDEZ-BACA J A, FISHMAN R S, et al. Magnetic Interactions in the Geometrically Frustrated Triangular Lattice Antiferromagnet CuFeO2[J]. Physical Review Letters,2007, 99: 157201.75参考文献
[35] LIU W, ZHANG Z, JI J, et al. Rare-Earth Chalcogenides: A Large Family of Triangular LatticeSpin Liquid Candidtates[J]. Chinese Physics Letters, 2018, 35: 117501.
[36] SCHMIDT B, SICHELSCHMIDT J, RANJITH K M, et al. Yb delafossites: Unique exchangefrustration of 4𝑓 spin- 12moments on a perfect triangular lattice[J]. Physical Review B, 2021,103: 214445.
[37] BAENITZ M, SCHLENDER P, SICHELSCHMIDT J, et al. NaYbS2: A planar spin- 12triangular-lattice magnet and putative spin liquid[J]. Physical Review B, 2018, 98: 220409.
[38] DING L, MANUEL P, BACHUS S, et al. Gapless spin-liquid state in the structurally disorderfree triangular antiferromagnet NaYbO2[J]. Physical Review B, 2019, 100: 144432.
[39] XING J, SANJEEWA L D, MAY A F, et al. Synthesis and anisotropic magnetism in quantumspin-liquid candidates 𝐴YbSe2(𝐴 = K and Rb)[J]. APL Materials, 2021, 9: 111104.
[40] ZHANG Z, MA X, LI J, et al. Crystalline Electric-Field Excitations in Quantum Spin LiquidsCandidate NaYbSe2[J]. Physical Review B, 2021, 103: 035144.
[41] RANJITH K M, LUTHER S, REIMANN T, et al. Anisotropic field-induced ordering in thetriangular-lattice quantum spin liquid NaYbSe2[J]. Physical Review B, 2019, 100: 224417.
[42] BORDELON M M, KENNEY E, LIU C, et al. Field-tunable quantum disordered ground statein the triangular-lattice antiferromagnet NaYbO2[J]. Nature Physics, 2019, 15: 1058-1065.
[43] XING J, SANJEEWA L D, KIM J, et al. Field-induced magnetic transition and spin fluctuationin quantum spin liquid candidate CsYbSe2[J]. Physical Review B, 2019, 100: 220407.
[44] RANJITH K M, DMYTRIIEVA D, KHIM S, et al. Field-induced instability of the quantum spinliquid ground state in the 𝐽eff =12triangular-lattice compound NaYbO2[J]. Physical Review B,2019, 99: 180401.
[45] DAI P L, ZHANG G, XIE Y, et al. Spinon Fermi Surface Spin Liquid in a Triangular LatticeAntiferromagnet NaYbSe2[J]. Physical Review X, 2021, 11: 021044.
[46] SCHEIE A O, GHIOLDI E A, XING J, et al. Proximate spin liquid and fractionalization in thetriangular antiferromagnet KYbSe2[J]. Nature Physics, 2024, 20: 74-81.
[47] BORDELON M M, LIU C, POSTHUMA L, et al. Spin excitations in the frustrated triangularlattice antiferromagnet NaYbO2[J]. Physical Review B, 2020, 101: 224427.
[48] SCHEIE A O, KAMIYA Y, ZHANG H, et al. Nonlinear magnons and exchange Hamiltoniansof the delafossite proximate quantum spin liquid candidates KYbSe2 and NaYbSe2[J]. PhysicalReview B, 2024, 109: 014425.
[49] XIE T, EBERHARTER A A, XING J, et al. Complete field-induced spectral response of thespin-1/2 triangular-lattice antiferromagnet CsYbSe2[J]. npj Quantum Materials, 2023, 8: 48.
[50] SICHELSCHMIDT J, SCHLENDER P, SCHMIDT B, et al. Electron Spin Resonance onthe Spin-1/2 Triangular Magnet NaYbS2[J]. Journal of Physics: Condesed Matter, 2019, 31:205601.
[51] STARYKH O A. Unusual Ordered Phases of Highly Frustrated Magnets: A Review[J]. Reporton Progress in Physics, 2015, 78: 052502.76参考文献
[52] TING V, LIU Y, WITHERS R L, et al. An electron diffraction and bond valence sum study ofthe space group symmetries and structures of the photocatalytic 1:2 𝐵 site ordered 𝐴3CoNb2O9perovskites (𝐴 = Ca2+, Sr2+, Ba2+[J]. Journal of Solid State Chemistry, 2004, 177: 2295-2304.
[53] DAI J, ZHOU P, WANG P, et al. Spin frustration and magnetic ordering in triangular latticeantiferromagnet Ca3CoNb2O9[J]. Chin. Phys. B, 2021, 30: 117505.
[54] HUANG Q, LEE M, CHOI E S, et al. Successive Phase Transitions and Multiferroicity in Deformed Triangular-Lattice Antiferromagnets Ca3MNb2O9(M = Co, Ni) with Spatial Anisotropy[J]. ECS Journal of Solid State Science and Technology, 2022, 11: 063004.
[55] LAL S, SEBASTIAN S J, ISLAM S S, et al. Double magnetic transitions and exotic fieldinduced phase in the triangular lattice antiferromagnets Sr3Co(Nb,Ta)2O9[J]. Physical ReviewB, 2023, 108: 014429.
[56] HIRAI D, YAJIMA T, NISHIO-HAMANE D, et al. ”Visible” 5d Orbital States in a PleochroicOxychloride[J]. Journal of the American Chemical Society, 2017, 139: 10784-10789.
[57] HIRAI D, NAWA K, KAWAMURA M, et al. One-Dimensionalization by Geometrical Frustration in the Anisotropic Triangular Lattice of the 5d Quantum Antiferromagnet Ca3ReO5Cl2[J].Journal of the Physical Society of Japan, 2019, 88: 044708.
[58] HIRAI D, YAJIMA T, NAWA K, et al. Anisotropic Triangular Lattice Realized in RheniumOxychlorides A3ReO5Cl2(A = Ba, Sr)[J]. Inorganic Chemistry, 2020, 59: 10025-10033.
[59] NAWA K, HIRAI D, KOFU M, et al. Bound Spinon Excitations in the Spin-1/2 AnisotropicTriangular Antiferromagnet Ca3ReO5Cl2[J]. Physical Review Research, 2020, 2: 043121.
[60] CHOI Y, LEE S, LEE J H, et al. Bosonic spinons in anisotropic triangular antiferromagnets[J].Nature Communications, 2021, 12: 6453.
[61] ZVYAGIN S A, PONOMARYOV A N, WOSNITZA J, et al. Dimensional Reduction andIncommensurate Dynamic Correlations in the S = 1/2 Triangular-Lattice AntiferromagnetCa3ReO5Cl2[J]. Nature Communications, 2022, 13: 6310.
[62] 介万奇. 晶体生长原理与技术[M]. 北京: 科学出版社, 2010.
[63] 王国富. 晶体生长基础与技术[M]. 北京: 科学出版社, 2023.
[64] BRIDGMAN P W. Certain Physical Properties of Single Crystals of Tungsten, Antimony, Bismuth, Tellurium, Cadmium, Zinc, and Tin[J]. Proceedings of the American Academy of Artsand Sciences, 1925, 60: 305-383.
[65] 姚连增, 等. 晶体生长基础[J]. 中国科学与技术大学出版社, 合肥, 1995: 247-249.
[66] DHANARAJ G, BYRAPPA K, PRASAD V, et al. Springer handbook of crystal growth: Vol. 2[M]. Springer, 2010.
[67] 朱永法,宗瑞隆,姚文清,张灏,梁淑惠,林洁,黄光莉,徐同广,张立武,郑涵云. 材料分析化学 [M]. 北京: 化学工业出版社, 2009.
[68] 李树棠. 晶体 X 射线衍射学基础[M]. 北京: 冶金工业出版社, 1990.
[69] 苏少奎. 低温物性及测量——一个实验技术人员的理解和经验总结 [M]. 北京: 科学出版社, 2019.
[70] 汪志诚. 热力学与统计物理[M]. 5 版. 北京: 高等教育出版社, 2013.77参考文献
[71] KUZMIN M D, TISHIN A M. Magnetocaloric effect. Part 1: An introduction to various aspectsof theory and practice[J]. Cryogenics, 1992, 32: 545-558.
[72] FURRER A, et al. Neutron Scattering in Condensed Matter Physics [M]. Singapore: WorldScientific Publishing Co. Pte. Ltd., 2009.
[73] YU D, MOLE R, NOAKES T, et al. Pelican - a Time of Flight Cold Neutron PolarizationAnalysis Spectrometer at OPAL[J]. The Physical Society of Japan, 2013, 82: SA027.
[74] NI WU X, KANATZIDIS M G. REAuAl4Ge2 and REAuAl4(Au𝑥Ge1−𝑥)2(RE = rare earth element): Quaternary intermetallics grown in liquid aluminum[J]. Journal of Solid State Chemistry, 2005, 178: 3233-3242.
[75] ZHANG S, ARYAL N, HUANG K, et al. Electronic Structure and Magnetism in the layeredTriangular Lattice Compound CeAuAl4Ge2[J]. Physical Review Materials, 2017, 1: 4.
[76] FENG K, LEAHY I A, OLADEHIN O, et al. Magnetic ordering in GdAuAl4Ge2 andTbAuAl4Ge2: Layered compounds with triangular lanthanide nets[J]. Journal of Magnetismand Magnetic Materials, 2022, 564: 170006.
[77] CONG M, GE H, ZHANG L, et al. Magnetic phase diagram and multiple field-induced statesin the intermetallic triangular-lattice antiferromagnetic NdAuAl4Ge2 with Ising-like spins[J].Physical Review Materials, 2023, 7: 024423.
[78] SHIN S, ROSA P F, RONNING F, et al. Synthesis and characterization of the heavy-fermioncompound CePtAl4Ge2[J]. Journal of Alloys and Compounds, 2018, 738: 550-555.
[79] SHIN S, POMJAKUSHIN V, KELLER L, et al. Magnetic structure and crystalline electricfield effects in the triangular antiferromagnet CePtAl4Ge2[J]. Physical Review B, 2020, 101:224421.
[80] RICHARDSON R C. The Pomeranchuk effect[J]. Reviews of Modern Physics, 1997, 69: 683.
[81] LEE D M. The extraordinary phases of liquid 3He[J]. Reviews of Modern Physics, 1997, 69:645-665.
[82] 扫描隧道显微学引论[M/OL]. 中国轻工业出版社, 1996. https://books.google.co.kr/books?id=kIKEAAAACAAJ.
[83] ZHANG C, XU Q, ZENG X T, et al. Doping-induced structural transformation in the spin1/2 triangular-lattice antiferromagnet Na2Ba1−𝑥Sr𝑥Co(PO4)2[J]. Journal of Alloys and Coumpounds, 2022, 905: 164147.
[84] VERA P. BADER P G, Jan Langmann, TSIRLIN A A. Deformation of the Triangular Spin-1/2Lattice in Na2SrCo(PO4)2[J]. Physical Review B, 2022, 106: 054415 1-054415 12.
[85] 谷亦杰,宫声凯. 材料分析检测技术 [M]. 长沙: 中南大学出版社, 2009.
[86] KITTEL C. Introduction to Solid States Physics[M]. 8th ed. The United States of America:John Wiley & Sons, Inc., 2005.
修改评论