题名 | Weyl Law on Product Manifolds |
其他题名 | 乘积流形上的外尔定律
|
姓名 | |
姓名拼音 | PENG Jianan
|
学号 | 12232861
|
学位类型 | 硕士
|
学位专业 | 070101 基础数学
|
学科门类/专业学位类别 | 07 理学
|
导师 | |
导师单位 | 数学系
|
论文答辩日期 | 2024-05-13
|
论文提交日期 | 2024-06-22
|
学位授予单位 | 南方科技大学
|
学位授予地点 | 深圳
|
摘要 | The classical Weyl law is a phenomena which describes the distribution of eigenvalues of the Laplace-Beltrami operator on manifolds. Since its proposal by Hermann Weyl in 1912, it has played a central role in mathematical physics, spectral geometry, and related fields. Specifically, if $N_M(\lambda)$ represents the number of eigenvalues of the Laplacian on a $d$-dimensional compact boundaryless Riemannian manifold $(M,g)$ that are less than $\lambda$, then the Weyl law can be expressed as This paper primarily introduces two new works that utilize the product structure of product manifolds to obtain better results, and a weak version of the Weyl law with exponential improvement is obtained by emulating their methods. In 2021, A. Iosevich and E. Wyman demonstrated that the remainder in Weyl law would have an exponential improvement on products of spheres. Moreover, the obtained improvement is related to the number of product components, $n$, as expressed by Based on their results, this paper will prove that, on general product manifolds, if the number of eigenvalues near integers is used as the multiplicity of integers to fit the eigenvalue counting function, and then a fairly accurate estimate of this fitting function is given by the Hadamard parametrix, a weaker version of Weyl law with the same exponential improvement can be achieved through a similar method. In general, this result is not compatible with the normal Weyl law, as the fitting error is concentrated on the boundary where the eigenvalue density is higher, which in fact covers the improvement obtained. However, this method still has potential for development. If a more refined method for dividing eigenvalues can be found and the counting error is controlled below the obtained improvement, then it can be extended to the general Weyl law. Another part of this article is a review of the work contributed by Xiaoqi Huang, Christopher D. Sogge, and Michael E. Taylor in 2022. They proved that when the remainder of the eigenvalue counting function on a manifold has $\varepsilon(\lambda)$-improvement, the product with arbitrary manifolds will receive the same improvement. This result primarily relies on the composition of the spectrum of product manifolds. By setting special forms of eigenvalues, the square of the eigenvalues on the product manifold can be represented by the sum of the squares of the eigenvalues on each product component, forming a space similar to a Euclidean space with dimensions equal to the length of the product, where the coordinate of each point is given by the eigenvalues on the corresponding product components. With this unique structure, we can transform the counting function into a familiar mathematical object and get improvement. |
其他摘要 | 经典外尔定律描述了流形上,拉普拉斯-贝尔特拉米算子的特征值的分布情况。自1912年由Hermann Weyl提出以来,已在数学物理、谱几何及相关领域中发挥了核心作用。具体来讲,如果$N_M(\lambda)$表示在$d$维紧致无边黎曼流形$(M,g)$上小于$\lambda$的拉普拉斯算子的特征值的个数,那么外尔定律可以被表示为 A. Iosevich和E. Wyman在2021年证明,外尔定律中的余项在若干球面乘积所得的乘积流形上拥有指数提升,并且所得提升与乘积分量的个数$n$相关,即 在余下的部分中,我们将会回顾Xiaoqi Huang,Christopher D. Sogge和Michael E. Taylor在2022年做出的工作。他们证明了当特征值计数函数的余项在一个流形上有$\varepsilon(\lambda)$的提升时,该流形与任意流形的乘积都将获得相同的提升。这一结果主要依托于乘积流形的谱的特殊构成。通过设定特殊的特征值形式,乘积流形的特征值的平方可以用各乘积分量上的特征值的平方和表示,这形成了一个类似于维数为乘积长度的欧式空间,其中每一个点的坐标都由对应的乘积分量上的特征值给出,而特征值计数函数则可以看作一个计算半径为$\lambda$的球内的特征值个数的函数。通过这一特殊的结构,我们可以将计数函数转化为熟悉的数学对象并获得提升。 |
关键词 | |
其他关键词 | |
语种 | 英语
|
培养类别 | 独立培养
|
入学年份 | 2022
|
学位授予年份 | 2024-07
|
参考文献列表 | [1] SOMMERFELD A. Die Greensche Funktion der Schwingungslgleichung.[J/OL]. Jahresbericht der Deutschen Mathematiker-Vereinigung, 1912, 21: 309-352. http://eudml.org/doc/145344. |
所在学位评定分委会 | 数学
|
国内图书分类号 | O177.7
|
来源库 | 人工提交
|
成果类型 | 学位论文 |
条目标识符 | http://sustech.caswiz.com/handle/2SGJ60CL/765815 |
专题 | 南方科技大学 理学院_数学系 |
推荐引用方式 GB/T 7714 |
Peng JN. Weyl Law on Product Manifolds[D]. 深圳. 南方科技大学,2024.
|
条目包含的文件 | ||||||
文件名称/大小 | 文献类型 | 版本类型 | 开放类型 | 使用许可 | 操作 | |
12232861-彭嘉楠-数学系.pdf(821KB) | -- | -- | 限制开放 | -- | 请求全文 |
个性服务 |
原文链接 |
推荐该条目 |
保存到收藏夹 |
查看访问统计 |
导出为Endnote文件 |
导出为Excel格式 |
导出为Csv格式 |
Altmetrics Score |
谷歌学术 |
谷歌学术中相似的文章 |
[彭嘉楠]的文章 |
百度学术 |
百度学术中相似的文章 |
[彭嘉楠]的文章 |
必应学术 |
必应学术中相似的文章 |
[彭嘉楠]的文章 |
相关权益政策 |
暂无数据 |
收藏/分享 |
|
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论