中文版 | English
题名

Weyl Law on Product Manifolds

其他题名
乘积流形上的外尔定律
姓名
姓名拼音
PENG Jianan
学号
12232861
学位类型
硕士
学位专业
070101 基础数学
学科门类/专业学位类别
07 理学
导师
刘博辰
导师单位
数学系
论文答辩日期
2024-05-13
论文提交日期
2024-06-22
学位授予单位
南方科技大学
学位授予地点
深圳
摘要

The classical Weyl law is a phenomena which describes the distribution of eigenvalues of the Laplace-Beltrami operator on manifolds. Since its proposal by Hermann Weyl in 1912, it has played a central role in mathematical physics, spectral geometry, and related fields. Specifically, if $N_M(\lambda)$ represents the number of eigenvalues of the Laplacian on a $d$-dimensional compact boundaryless Riemannian manifold $(M,g)$ that are less than $\lambda$, then the Weyl law can be expressed as
  $$N_M(\lambda)=c\lambda^d+O(\lambda^{d-1}).$$
  This has been verified as the optimal estimate, with examples given by spheres of different dimensions. However, with certain restrictions on the manifolds, especially requirements on the chaos of geodesic flows on the manifold, more precise estimates on the remainder can often be made. A classic example is that Hans Duistermaat and Victor Guillemin proved in 1975 that when the set of periodic geodesics on the manifold is of measure zero, the big O estimate of the remainder can be improved to a little o estimate. From the perspective of semi-classical analysis, this is because in a chaotic classical mechanical system, the quantized system can approximate the classical mechanical system better, leading to improved estimates. This also provides ample motivation for the mathematical community to study the special type of manifolds known as product manifolds.

  This paper primarily introduces two new works that utilize the product structure of product manifolds to obtain better results, and a weak version of the Weyl law with exponential improvement is obtained by emulating their methods.

  In 2021, A. Iosevich and E. Wyman demonstrated that the remainder in Weyl law would have an exponential improvement on products of spheres. Moreover, the obtained improvement is related to the number of product components, $n$, as expressed by
  $$N_M(\lambda)=c\lambda^d+O(\lambda^{d-1-\frac{n-1}{n+1}}).$$
  By clear understanding of the spectrum of spheres, the eigenvalue counting function for spheres can be approximated with considerable precision by polynomial functions. Through the Poisson summation formula, we further transfer the approximating function for the summation over integers to the frequency space, thereby obtaining better estimates.

  Based on their results, this paper will prove that, on general product manifolds, if the number of eigenvalues near integers is used as the multiplicity of integers to fit the eigenvalue counting function, and then a fairly accurate estimate of this fitting function is given by the Hadamard parametrix, a weaker version of Weyl law with the same exponential improvement can be achieved through a similar method. In general, this result is not compatible with the normal Weyl law, as the fitting error is concentrated on the boundary where the eigenvalue density is higher, which in fact covers the improvement obtained. However, this method still has potential for development. If a more refined method for dividing eigenvalues can be found and the counting error is controlled below the obtained improvement, then it can be extended to the general Weyl law.

  Another part of this article is a review of the work contributed by Xiaoqi Huang, Christopher D. Sogge, and Michael E. Taylor in 2022. They proved that when the remainder of the eigenvalue counting function on a manifold has $\varepsilon(\lambda)$-improvement, the product with arbitrary manifolds will receive the same improvement. This result primarily relies on the composition of the spectrum of product manifolds. By setting special forms of eigenvalues, the square of the eigenvalues on the product manifold can be represented by the sum of the squares of the eigenvalues on each product component, forming a space similar to a Euclidean space with dimensions equal to the length of the product, where the coordinate of each point is given by the eigenvalues on the corresponding product components. With this unique structure, we can transform the counting function into a familiar mathematical object and get improvement.

其他摘要

经典外尔定律描述了流形上,拉普拉斯-贝尔特拉米算子的特征值的分布情况。自1912年由Hermann Weyl提出以来,已在数学物理、谱几何及相关领域中发挥了核心作用。具体来讲,如果$N_M(\lambda)$表示在$d$维紧致无边黎曼流形$(M,g)$上小于$\lambda$的拉普拉斯算子的特征值的个数,那么外尔定律可以被表示为
  $$N_M(\lambda)=c\lambda^d+O(\lambda^{d-1}).$$
  这已经被验证是最优的估计,其例子则由不同维数的球面给出。但如果对考虑的流形加以限制,尤其是对流形上测地流的混沌性做出要求,我们往往可以对余项作出更精确的估计。一个经典的例子是,Hans Duistermat和Victor Guillemin在1975年证明了,当流形上的周期测地线为零测集时,我们可以将余项的大O估计改进为小o估计。从半经典分析的角度来看,这是因为在一个混沌的经典力学系统中,我们可以更好地用量子化系统逼近这个经典力学系统,并以此得到更好的估计。这也给数学界研究乘积流形这一特殊的流形类型提供了充足的动力。
  
  本文主要回顾了两个利用乘积流形的乘积结构来得到更好结果的最新工作,并仿照其中的方法得到了一个带有指数提升的弱版本的外尔定律。

  A. Iosevich和E. Wyman在2021年证明,外尔定律中的余项在若干球面乘积所得的乘积流形上拥有指数提升,并且所得提升与乘积分量的个数$n$相关,即
  $$N_M(\lambda)=c\lambda^d+O(\lambda^{d-1-\frac{n-1}{n+1}}).$$
  由于我们对球面的谱具有非常清楚的认知,球面的特征值计数函数可以被多项式函数相当精确的拟合。通过泊松和公式,我们进而将对整点求和的拟合函数转移到频率空间并以此得到更好的估计。
  
  基于他们的结果,本文将会证明更一般的结论,在一般的乘积流形上,如果通过适当的划分将整点附近的特征值的个数作为整点的重数来拟合特征值计数函数,再由Hadamard拟基本解给出该拟合函数较为精确的估计,那么通过类似的方法,我们可以得到一个带有相同指数提升的弱版本的外尔定律。一般情况下,这一结果无法兼容于正常的外尔定律,因为其拟合的误差集中在特征值密度最大的边界部分,这导致了该误差事实上覆盖了我们所得到的提升。但此方法仍然拥有潜在的发展空间。如果能找到更精细的划分特征值的方法并将计数误差控制在所得提升以下,那么就能将其推广到一般的外尔定律上。

  在余下的部分中,我们将会回顾Xiaoqi Huang,Christopher D. Sogge和Michael E. Taylor在2022年做出的工作。他们证明了当特征值计数函数的余项在一个流形上有$\varepsilon(\lambda)$的提升时,该流形与任意流形的乘积都将获得相同的提升。这一结果主要依托于乘积流形的谱的特殊构成。通过设定特殊的特征值形式,乘积流形的特征值的平方可以用各乘积分量上的特征值的平方和表示,这形成了一个类似于维数为乘积长度的欧式空间,其中每一个点的坐标都由对应的乘积分量上的特征值给出,而特征值计数函数则可以看作一个计算半径为$\lambda$的球内的特征值个数的函数。通过这一特殊的结构,我们可以将计数函数转化为熟悉的数学对象并获得提升。

关键词
其他关键词
语种
英语
培养类别
独立培养
入学年份
2022
学位授予年份
2024-07
参考文献列表

[1] SOMMERFELD A. Die Greensche Funktion der Schwingungslgleichung.[J/OL]. Jahresbericht der Deutschen Mathematiker-Vereinigung, 1912, 21: 309-352. http://eudml.org/doc/145344.
[2] LORENTZ H. Alte und neue Fragen der Physik[M/OL]. 1910. https://books.google.fr/books? id=ivxqGwAACAAJ.
[3] STRUTT J W. Cambridge Library Collection - Physical Sciences: The Theory of Sound[M]. Cambridge University Press, 2011.
[4] WEYL H. Ueber die asymptotische Verteilung der Eigenwerte[J/OL]. Nachrichten von der Gesellschaft der Wissenschaften zu Göttingen, Mathematisch-Physikalische Klasse, 1911, 1911: 110-117. http://eudml.org/doc/58792.
[5] WEYL H. Das asymptotische Verteilungsgesetz der Eigenwerte linearer partiellerDifferentialgleichungen (mit einer Anwendung auf die Theorie der Hohlraumstrahlung)[J/OL]. Math. Ann., 1912, 71(4): 441-479. https://doi.org/10.1007/BF01456804.
[6] WEYL H. Über die Abhängigkeit der Eigenschwingungen einer Membran und deren Begrenzung[J/OL]. J. Reine Angew. Math., 1912, 141: 1-11. https://doi.org/10.1515/crll.1912.141.1.
[7] WEYL H V. Das asymptotische verteilungsgesetz der eigenschwingungen eines beliebig gestalteten elastischen körpers[J/OL]. Rendiconti del Circolo Matematico di Palermo (1884-1940), 1915, 39: 1-49. https://api.semanticscholar.org/CorpusID:120306277.
[8] WEYL H. Über die Randwertaufgabe der Strahlungstheorie und asymptotische Spektralgesetze [J/OL]. J. Reine Angew. Math., 1913, 143: 177-202. https://doi.org/10.1515/crll.1913.143.177.
[9] COURANT R. Über die Eigenwerte bei den Differentialgleichungen der mathematischen Physik [J/OL]. Math. Z., 1920, 7(1-4): 1-57. https://doi.org/10.1007/BF01199396.
[10] CARLEMAN T. Propriétés asymptotiques des fonctions fondamentales des membranes vibrantes[J]. Comptes Rendus des Mathématiciens Scandinaves á Stockholm, 1934: 14-18.
[11] CARLEMAN T. Über die asymptotische Verteilung der Eigenwerte partieller Differentialgleichungen[M/OL]. Hirzel, 1936. https://books.google.fr/books?id=ZQrfZwEACAAJ.
[12] LEVITAN B M. On the asymptotic behaviour of the spectral function of the second order elliptic equation[J]. Izv. AN SSSR, 1952: 325-352.
[13] AVAKUMOVIC V G. Über die Eigenfunktionen auf geschlossenen Riemannschen Mannigfaltigkeiten.[J/OL]. Mathematische Zeitschrift, 1956, 65: 327-344. http://eudml.org/doc/169601.
[14] IVRII V. 100 years of Weyl’s law[J/OL]. Bulletin of Mathematical Sciences, 2016, 6(3): 379–452. http://dx.doi.org/10.1007/s13373-016-0089-y.
[15] HORMANDER L. On the Riesz means of spectral functions and eigenfunction expansions forelliptic differential operators[M]//Some Recent Advances in the Basic Sciences, Vol. 2 (Proc. Annual Sci. Conf., Belfer Grad. School Sci., Yeshiva Univ., New York, 1965-1966). Yeshiva University, Belfer Graduate School of Science, New York, 1969: 155-202.
[16] HORMANDER L. The spectral function of an elliptic operator[J/OL]. Acta Math., 1968, 121: 193-218. https://doi.org/10.1007/BF02391913.
[17] IVRII V J. The second term of the spectral asymptotics for a Laplace-Beltrami operator on manifolds with boundary[J]. Funktsional. Anal. i Prilozhen., 1980, 14(2): 25-34.
[18] SEELEY R. A sharp asymptotic remainder estimate for the eigenvalues of the Laplacian in a domain of R3 [J/OL]. Adv. in Math., 1978, 29(2): 244-269. https://doi.org/10.1016/0001-8708(78)90013-0.
[19] SEELEY R. An estimate near the boundary for the spectral function of the Laplace operator [J/OL]. Amer. J. Math., 1980, 102(5): 869-902. https://doi.org/10.2307/2374196.
[20] SOGGE C D. Hangzhou Lectures on Eigenfunctions of the Laplacian[M]. Princeton and Oxford: Princeton University Press, 2014: 39-58.
[21] DUISTERMAAT J J, GUILLEMIN V W. The spectrum of positive elliptic operators and periodic geodesics[M]//Proc. Sympos. Pure Math.: Vol. XXVII, Part 2 Differential geometry (Proc. Sympos. Pure Math., Vol. XXVII, Part 2, Stanford Univ., Stanford, Calif., 1973). Amer. Math. Soc., Providence, RI, 1975: 205-209.
[22] IVRII V. Accurate spectral asymptotics for elliptic operators that act in vector bundles[J/OL]. Functional Analysis and Its Applications, 1982, 16: 101-108. https://api.semanticscholar.org/ CorpusID:120206763.
[23] BERARD P H. On the wave equation on a compact Riemannian manifold without conjugate points[J/OL]. Math. Z., 1977, 155(3): 249-276. https://doi.org/10.1007/BF02028444.
[24] BURQ N, ZUILY C. Laplace eigenfunctions and damped wave equation on product manifolds [J/OL]. Appl. Math. Res. Express. AMRX, 2015(2): 296-310. https://doi.org/10.1093/amrx/abv005.
[25] CANZANI Y, GALKOWSKI J. Weyl remainders: an application of geodesic beams[J/OL]. Invent. Math., 2023, 232(3): 1195-1272. https://doi.org/10.1007/s00222-023-01178-5.
[26] HAAKE F. Quantum Signatures of Chaos[M]. Berlin, Heidelberg: Springer-Verlag, 2006.
[27] AL-KHALILI J. Quantum: A Guide for the Perplexed[M/OL]. Orion Publishing Group, Limited, 2012. https://books.google.fr/books?id=h2quugAACAAJ.
[28] IOSEVICH A, WYMAN E. Weyl law improvement for products of spheres[J/OL]. Anal. Math., 2021, 47(3): 593-612. https://doi.org/10.1007/s10476-021-0090-x.
[29] HUANG X, SOGGE C D, TAYLOR M E. Product manifolds with improved spectral cluster and Weyl remainder estimates[M/OL]//Appl. Numer. Harmon. Anal.: From classical analysis to analysis on fractals. Vol. 1. A tribute to Robert Strichartz. Birkhäuser/Springer, Cham,
[2023] ©2023: 109-136. https://doi.org/10.1007/978-3-031-37800-3_6. DOI: 10.1007/978-3-031-3 7800-3_6.
[30] DO CARMO M. Mathematics (Boston, Mass.): Riemannian Geometry[M/OL]. Birkhäuser, 1992. https://books.google.co.id/books?id=uXJQQgAACAAJ.
[31] JOST J. Universitext: Riemannian Geometry and Geometric Analysis[M/OL]. Springer Berlin Heidelberg, 2008. https://books.google.co.id/books?id=Z02dYgJAljsC.
[32] GELFAND I M, SHILOV G E, GRAEV M I, et al. AMS Chelsea Publishing: Generalized functions[M/OL]. New York, NY: Academic Press, 1964. https://cds.cern.ch/record/105396.
[33] HORMANDER L. Classics in Mathematics: The analysis of linear partial differential operators.I[M/OL]. Springer-Verlag, Berlin, 2003: x+440. https://doi.org/10.1007/978-3-642-61497-2.
[34] HADAMARD J. Dover phoenix editions: Lectures on Cauchy’s Problem in Linear Partial Differential Equations[M/OL]. Dover Publications, 2003. https://books.google.co.id/books?i d=B25O-x21uqkC.
[35] HLAWKA E. Über Integrale auf konvexen Körpern. I[J/OL]. Monatsh. Math., 1950, 54: 1-36. https://doi.org/10.1007/BF01304101.
[36] FRICKER F. Lehrbücher und Monographien aus dem Gebiete der Exakten Wissenschaften (LMW). Mathematische Reihe [Textbooks and Monographs in the Exact Sciences. Mathematical Series]: Vol. 73 Einführung in die Gitterpunktlehre[M]. Birkhäuser Verlag, Basel-Boston, Mass., 1982: xvi+215.
[37] LI X, YANG X. An improvement on Gauss’s Circle Problem and Dirichlet’s Divisor Problem [A]. 2023. arXiv: 2308.14859.
[38] HEATH-BROWN D. Lattice points in the sphere[M/OL]. Berlin, Boston: De Gruyter, 1999: 883-892. https://doi.org/10.1515/9783110285581.883. DOI: doi:10.1515/9783110285581.883.
[39] HUXLEY M N. London Mathematical Society Monographs. New Series: Vol. 13 Area, lattice points, and exponential sums[M]. The Clarendon Press, Oxford University Press, New York, 1996: xii+494.
[40] KRATZEL E, NOWAK W G. Lattice points in large convex bodies. II[J/OL]. Acta Arith., 1992, 62(3): 285-295. https://doi.org/10.4064/aa-62-3-285-295.
[41] SOGGE C D. Fourier Integrals in Classical Analysis[M]. Cambridge: Cambridge University Press, 1993.

所在学位评定分委会
数学
国内图书分类号
O177.7
来源库
人工提交
成果类型学位论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/765815
专题南方科技大学
理学院_数学系
推荐引用方式
GB/T 7714
Peng JN. Weyl Law on Product Manifolds[D]. 深圳. 南方科技大学,2024.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可 操作
12232861-彭嘉楠-数学系.pdf(821KB)----限制开放--请求全文
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[彭嘉楠]的文章
百度学术
百度学术中相似的文章
[彭嘉楠]的文章
必应学术
必应学术中相似的文章
[彭嘉楠]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。