中文版 | English
题名

不饱和分子高压聚合和性能研究

其他题名
POLYMERIZATION AND PROPERTIES OF UNSATURATED MOLECULES UNDER HIGH- PRESSURE
姓名
姓名拼音
hanjun
学号
12031306
学位类型
博士
学位专业
0702 物理学
学科门类/专业学位类别
07 理学
导师
朱金龙
导师单位
南方科技大学
论文答辩日期
2024-05-13
论文提交日期
2024-06-21
学位授予单位
南方科技大学
学位授予地点
深圳
摘要

  不饱和分子通常指分子中含有碳碳双键或三键等高键能的p键化合物,其中的π键含有不稳定的p轨道电子,容易在高压下发生聚合,促进新材料的合成和应用。根据不饱和键的键能大小及在不同分子体系中的性能表现,高压下的不饱和分子可分为含能分子和发光分子。含能分子是指只含有纯高键能的不饱和分子。此类分子在高温高压(>50 GPa)下,所受到的压缩能(几百kJ/mol)接近最稳定分子的键能,可以使原料的化学键发生断裂,合成新型含能材料。如合成金属氢、聚合氮和聚合一氧化碳等。然而,含能分子在高压下通常生成亚稳态非晶混合物,难以合成稳态或晶态的聚合产物,不利于分析高压下的结构变化和聚合产物不饱和发光分子是指以苯环和碳碳双键等基团构成的共轭分子,其中的共轭基团易产生会发光的π*π跃迁。由于电子动能比静电势能具有更高的密度依赖性,而高压可以连续可调的增加电子云密度,因此高压是调控此类分子发光颜色和光强的有效手段。并且当压力在5-20 GPa时,分子间C···C原子间会距缩短至2.8-3.1 Å,不饱和分子由于电子离域增强而变得不稳定,发生相变或聚合反应,进而导致材料发光性能的突变。然而,此类分子结构通常为单斜晶系,高压样品少且容易无定形化,导致结构分析难度较大,往往需要结合理论计算辅助解决结构分析,进而推测发光性能变化的具体原因。

  因此,本论文针对研究含能分子的问题,通过光谱和衍射研究COCO+N2N2O等,几种具有纯高键能的不饱和分子在高压下的结构变化,以及如何在高温高压下合成稳态或晶态聚合产物1. COCO6.5 GPa发生聚合,并在8 GPa完成。在0-50 GPa, COCO+C在高压和高温(400 ℃)高压时均未得到晶态聚合产物,但高温辅助会提升产物的稳定性。纯CO形成的聚合产物接触空气会和水反应,生成羟基化合物。最后,我们给出了PE压机合成毫克级p-CO聚合产物的实验条件,该聚合产物加热到150 ℃会完全分解为纯无定形碳。2. N2ON2O4.2 GPaPa3 相,在7.3 GPa发生分解,即2N2O→2N2+O2,对应相变为Cmca相。在32.2-46.6 GPaN2O原子发生聚合反应,生成NO2。降压后变回Pa3 相,表明纯加压过程发生可逆相变。在30.2 GP-150 ℃,不能形成更加稳定的固态聚合产物。在46.5 GPa-1100 K,样品发生不可逆聚合反应,形成更稳定的-N-O-链状聚合产物。3. CO+N2N2:CO=1:1的聚合发生在~14 GPa,而N2:CO=1:2~8 GPa,产物均为无定形。CO的聚合会产生活性位点诱导N2发生反应,并且混合物中CO含量比例越高,N2聚合压力越低,N2参与反应比例越高。对49.8 GPa的混合分子通过532 nm-64 mW激光辐照,会促使部分氮气分子与CO发生了更进一步的聚合反应。但在49.8 GPa使用激光加热至1360 K,未能生成晶态产物。

  同时,对于研究发光分子的问题,本文对比研究了TPEPA、顺式/反式二苯乙烯和MOX2 (C29H27NO4S)几种含有部分共轭π键的不饱和分子,在高压下的发光性能、发光增强机制、结构相变以及聚合反应过程等。TPEPA:首先合成一种发光分子TPEPA,在0-20 GPa,拉曼和红外光谱结果显示部分=C-H (sp2)振动转变为C-H (sp2+sp3)键振动,表明TPEPA发生部分不可逆的聚合反应。荧光光谱显示,π*→π电子跃迁从0.2 GPa时的470 nm (青色)处红移至10 GPa时的550 nm (绿色)处消失,表明TPEPA在高压下完全非晶化。同时,拉曼和荧光显示CºC键的非晶化和聚合压力点均比苯环更低,表明苯环在高压下更稳定。紫外可见吸收光谱分析表明,加压前后TPEPA的带隙由2.9 eV降至1.3 eV,此带隙刚好处于p-n结太阳能电池材料的最大转换效率带隙范围(1.3~1.4 eV),为提升p-n结太阳能电池材料性能提供新思路。

  顺式/反式二苯乙烯:在0~20 GPa,顺式二苯乙烯由于π-π堆积作用,没有出现荧光增强。在16 GPa,红外光谱中C(sp2)-H转变为C(sp2+sp3)-H,表明顺式二苯乙烯分子中的苯环发生了不可逆的聚合反应。而反式二苯乙烯在0~4 GPa,由于苯环和C=C键扭转角的减小,导致刚性平面分子的形成,非辐射跃迁减弱,荧光辐射增强。在8 GPa发生结构相变,但由于反式二苯乙烯的结构更稳定,因此卸压后回到初始状态,即在高压下发生可逆转变。最后,采用直接加热和激光辐照相结合的方法,对高压下的顺反异构化进行了简要研究。发现顺式反式二苯乙烯跃迁只能在固定范围的光照射下发生,但反式顺式二苯乙烯跃迁即使在360 nm激光辐照下因温度不足也未能发生。此研究为合成更高纯度的反式异构体提供了新的思路。

  MOX2 (C29H27NO4S)Y7 (C29H24N2O2)MOX2的取代基是-SO2CH3, Y7的取代基是-CºNMOX2Y7分子除了取代基,其他基团均相同,并且均具有聚集诱导发光和机械变色发光效应。MOX2-SO2CH3基团具有较大的空间位阻且更易形成氢键,导致其在3 GPa时荧光增强了6.3倍,峰位却没有发生改变,并且发光增强效应可以部分保留至卸压。MOX2在高压下只有少数样品发生了非晶化和聚合反应,大部分样品发生可逆变化。因此,MOX2可用于不改变发光颜色,只调节其发光强度的材料需求。由于Y7-CºN取代基空间位阻较小,且氢键较弱,故无压力诱导增强现象。Y7样品经历了可逆的非晶化过程,在高压下其谱峰位移最大,适合作为应力敏感材料。

关键词
语种
中文
培养类别
独立培养
入学年份
2020
学位授予年份
2024-07
参考文献列表

[1] PARISER R, PARR R G. A Semi‐Empirical Theory of the Electronic Spectra and Electronic Structure of Complex Unsaturated Molecules. I [J]. The Journal of Chemical Physics, 1953, 21(3): 466-71.
[2] POWER P P. Interaction of multiple bonded and unsaturated heavier main group compounds with hydrogen, ammonia, olefins, and related molecules [J]. Accounts of Chemical Research, 2011, 44(8): 627-37.
[3] COULSON C. On the calculation of the energy in unsaturated hydrocarbon molecules; proceedings of the Mathematical Proceedings of the Cambridge Philosophical Society, F, 1940 [C]. Cambridge University Press.
[4] POPLE J A. Electron interaction in unsaturated hydrocarbons [J]. Transactions of the Faraday Society, 1953, 49: 1375-85.
[5] PARADIES J. Metal‐free hydrogenation of unsaturated hydrocarbons employing molecular hydrogen [J]. Angewandte Chemie International Edition, 2014, 53(14): 3552-7.
[6] TOZER D J, AMOS R D, HANDY N C, et al. Does density functional theory contribute to the understanding of excited states of unsaturated organic compounds? [J]. Molecular physics, 1999, 97(7): 859-68.
[7] ZHANG X, MALHOTRA S, MOLINA M, et al. Micro-and nanogels with labile crosslinks–from synthesis to biomedical applications [J]. Chemical Society Reviews, 2015, 44(7): 1948-73.
[8] LIU Y, HAN S-J, LIU W-B, et al. Catalytic enantioselective construction of quaternary stereocenters: assembly of key building blocks for the synthesis of biologically active molecules [J]. Accounts of chemical research, 2015, 48(3): 740-51.
[9] EL-SUBBAGH H I, ABU-ZAID S M, MAHRAN M A, et al. Synthesis and biological evaluation of certain α, β-unsaturated ketones and their corresponding fused pyridines as antiviral and cytotoxic agents [J]. Journal of medicinal chemistry, 2000, 43(15): 2915-21.
[10] BOGER D L, WEINREB S M. Hetero Diels-Alder methodology in organic synthesis [M]. Elsevier, 2012.
[11] TAKAO K-I, MUNAKATA R, TADANO K-I. Recent advances in natural product synthesis by using intramolecular Diels− Alder reactions [J]. Chemical reviews, 2005, 105(12): 4779-807.
[12] NICOLAOU K C, SNYDER S A, MONTAGNON T, et al. The Diels–Alder reaction in total synthesis [J]. Angewandte Chemie International Edition, 2002, 41(10): 1668-98.
[13] BRUFFAERTS J, PIERROT D, MAREK I. Efficient and stereodivergent synthesis of unsaturated acyclic fragments bearing contiguous stereogenic elements [J]. Nature chemistry, 2018, 10(11): 1164-70.
[14] MORTON D, LEACH S, CORDIER C, et al. Synthesis of natural-product-like molecules with over eighty distinct scaffolds [J]. Angewandte Chemie, 2009, 121(1): 110-5.
[15] SCHLüTER A-D, LöFFLER M, ENKELMANN V. Synthesis of a fully unsaturated all-carbon ladder polymer [J]. Nature, 1994, 368(6474): 831-4.
[16] BRANDSMA L, VERKRUIJSSE H. Synthesis of acetylenes, allenes, and cumulenes [M]. Elsevier, 1981.
[17] BESSE V, CAMARA F, VOIRIN C, et al. Synthesis and applications of unsaturated cyclocarbonates [J]. Polymer Chemistry, 2013, 4(17): 4545-61.
[18] HINZMANN A, DRUHMANN S S, GRöGER H. Synthesis of Bifunctional Molecules for the Production of Polymers Based on Unsaturated Fatty Acids as Bioderived Raw Materials [J]. Sustainable Chemistry, 2020, 1(3): 18.
[19] DHOLAKIYA B. Unsaturated polyester resin for specialty applications [J]. Polyester, 2012, 7: 167-202.
[20] GEWERT B, PLASSMANN M M, MACLEOD M. Pathways for degradation of plastic polymers floating in the marine environment [J]. Environmental science: processes & impacts, 2015, 17(9): 1513-21.
[21] ZHANG K, HAMIDIAN A H, TUBIĆ A, et al. Understanding plastic degradation and microplastic formation in the environment: A review [J]. Environmental Pollution, 2021, 274: 116554.
[22] JAGANATHAN A, GARZAN A, WHITEHEAD D C, et al. A catalytic asymmetric chlorocyclization of unsaturated amides [J]. Angewandte Chemie, 2011, 123(11): 2641-4.
[23] SUGINOME M, ITO Y. Transition-metal-catalyzed additions of silicon− silicon and silicon− heteroatom bonds to unsaturated organic molecules [J]. Chemical Reviews, 2000, 100(8): 3221-56.
[24] KAWAKITA K, PARKER B F, KAKIUCHI Y, et al. Reactivity of terminal imido complexes of group 4–6 metals: Stoichiometric and catalytic reactions involving cycloaddition with unsaturated organic molecules [J]. Coordination chemistry reviews, 2020, 407: 213118.
[25] FELDMAN D, BARBALATA A. Synthetic polymers: technology, properties, applications [M]. Springer Science & Business Media, 1996.
[26] LILLI M, JURKO M, SIRJOVOVA V, et al. Basalt fibre surface modification via plasma polymerization of tetravinylsilane/oxygen mixtures for improved interfacial adhesion with unsaturated polyester matrix [J]. Materials Chemistry and Physics, 2021, 274: 125106.
[27] LIU F, BIN F, XUE J, et al. Polymer electrolyte membrane with high ionic conductivity and enhanced interfacial stability for lithium metal battery [J]. ACS applied materials & interfaces, 2020, 12(20): 22710-20.
[28] GRAU R, DE MENDOZA D. Regulation of the synthesis of unsaturated fatty acids by growth temperature in Bacillus subtilis [J]. Molecular microbiology, 1993, 8(3): 535-42.
[29] BOUSQUET M P, WILLEMOT R M, MONSAN P, et al. Enzymatic synthesis of unsaturated fatty acid glucoside esters for dermo-cosmetic applications [J]. Biotechnology and bioengineering, 1999, 63(6): 730-6.
[30] WINKLER M, MEIER M A. Highly efficient oxyfunctionalization of unsaturated fatty acid esters: an attractive route for the synthesis of polyamides from renewable resources [J]. Green Chemistry, 2014, 16(4): 1784-8.
[31] PRYOR W A. Vitamin E and heart disease:: Basic science to clinical intervention trials [J]. Free radical biology and medicine, 2000, 28(1): 141-64.
[32] SCHNEIDER C. Chemistry and biology of vitamin E [J]. Molecular nutrition & food research, 2005, 49(1): 7-30.
[33] CHEN W, WANG J, CHENG L, et al. Polypyrrole-coated mesoporous TiO2 nanocomposites simultaneously loading DOX and aspirin prodrugs for a synergistic theranostic and anti-inflammatory effect [J]. ACS Applied Bio Materials, 2021, 4(2): 1483-92.
[34] PICKARD C J, NEEDS R. High-pressure phases of nitrogen [J]. Physical review letters, 2009, 102(12): 125702.
[35] DRAKE R P, DRAKE R P. Introduction to high-energy-density physics [M]. Springer, 2006.
[36] DELOCHE R, MONCHICOURT P, CHERET M, et al. High-pressure helium afterglow at room temperature [J]. Physical Review A, 1976, 13(3): 1140.
[37] 薄晓旭. 含 N_5 分子体系的结构和稳定性的量子化学研究 [D]; 吉林大学, 2021.
[38] 李玉川, 庞思平. 全氮型超高能含能材料研究进展 [J]. 2012.
[39] SUN J, WU J, TONG X, et al. Organic/Inorganic Metal Halide Perovskite Optoelectronic Devices beyond Solar Cells [J]. Advanced Science, 2018, 5(5): 1700780.
[40] LIU Y-F, FENG J, BI Y-G, et al. Recent Developments in Flexible Organic Light-Emitting Devices [J]. Advanced Materials Technologies, 2019, 4(1): 1800371.
[41] LI Q, LI Z. Molecular Packing: Another Key Point for the Performance of Organic and Polymeric Optoelectronic Materials [J]. Accounts of Chemical Research, 2020, 53(4): 962-73.
[42] KELLER N, BEIN T. Optoelectronic processes in covalent organic frameworks [J]. Chemical Society Reviews, 2021, 50(3): 1813-45.
[43] YANG J, FANG M, LI Z. Organic luminescent materials: The concentration on aggregates from aggregation-induced emission [J]. Aggregate, 2020, 1(1): 6-18.
[44] SERVAITES J D, RATNER M A, MARKS T J. Organic solar cells: A new look at traditional models [J]. Energy & Environmental Science, 2011, 4(11): 4410-22.
[45] XIONG Y, LIAO Q, HUANG Z, et al. Ultrahigh Responsivity Photodetectors of 2D Covalent Organic Frameworks Integrated on Graphene [J]. Advanced Materials, 2020, 32(9): 1907242.
[46] XUE R, ZHANG J, LI Y, et al. Organic Solar Cell Materials toward Commercialization [J]. Small, 2018, 14(41): 1801793.
[47] LUO J, XIE Z, LAM J W, et al. Aggregation-induced emission of 1-methyl-1, 2, 3, 4, 5-pentaphenylsilole [J]. Chemical communications, 2001, (18): 1740-1.
[48] MEI J, LEUNG N L C, KWOK R T K, et al. Aggregation-Induced Emission: Together We Shine, United We Soar! [J]. Chemical Reviews, 2015, 115(21): 11718-940.
[49] MIAO M, SUN Y, ZUREK E, et al. Chemistry under high pressure [J]. Nature Reviews Chemistry, 2020, 4(10): 508-27.
[50] BRIDGMAN P W. Water, in the liquid and five solid forms, under pressure, F, 1913 [C]. American Academy of Arts and Sciences Cambridge, MA.
[51] BRIDGMAN P W. Recent work in the field of high pressures [J]. Reviews of Modern Physics, 1946, 18(1): 1.
[52] BRIDGMAN P W. High-pressure physics [M]. 1935.
[53] BRIDGMAN P, ŠIMON I. Effects of very high pressures on glass [J]. Journal of applied physics, 1953, 24(4): 405-13.
[54] DONG X, OGANOV A R, CUI H, et al. Electronegativity and chemical hardness of elements under pressure [J]. Proceedings of the National Academy of Sciences, 2022, 119(10): e2117416119.
[55] MAO W L, MAO H-K, ENG P J, et al. Bonding changes in compressed superhard graphite [J]. Science, 2003, 302(5644): 425-7.
[56] BUNDY F, BASSETT W, WEATHERS M, et al. The pressure-temperature phase and transformation diagram for carbon; updated through 1994 [J]. Carbon, 1996, 34(2): 141-53.
[57] IRIFUNE T, KURIO A, SAKAMOTO S, et al. Ultrahard polycrystalline diamond from graphite [J]. Nature, 2003, 421(6923): 599-600.
[58] KONG P, MINKOV V S, KUZOVNIKOV M A, et al. Superconductivity up to 243 K in the yttrium-hydrogen system under high pressure [J]. Nature communications, 2021, 12(1): 1-9.
[59] 单鹏飞, 王宁宁, 孙建平, et al. 富氢高温超导材料 [J]. 物理, 2021, 50(4): 217-27.
[60] ZHOU D, SEMENOK D V, DUAN D, et al. Superconducting praseodymium superhydrides [J]. Science advances, 2020, 6(9): eaax6849.
[61] CHEN W, SEMENOK D V, HUANG X, et al. High-Temperature Superconducting Phases in Cerium Superhydride with a T c up to 115 K below a Pressure of 1 Megabar [J]. Physical Review Letters, 2021, 127(11): 117001.
[62] KRUGLOV I A, SEMENOK D V, SONG H, et al. Superconductivity of LaH10 and LaH16 polyhydrides [J]. Physical Review B, 2020, 101(2): 024508.
[63] SALKE N P, DAVARI ESFAHANI M M, ZHANG Y, et al. Synthesis of clathrate cerium superhydride CeH9 at 80-100 GPa with atomic hydrogen sublattice [J]. Nature communications, 2019, 10(1): 1-10.
[64] DROZDOV A, KONG P, MINKOV V, et al. Superconductivity at 250 K in lanthanum hydride under high pressures [J]. Nature, 2019, 569(7757): 528-31.
[65] DROZDOV A, EREMETS M, TROYAN I, et al. Conventional superconductivity at 203 kelvin at high pressures in the sulfur hydride system [J]. Nature, 2015, 525(7567): 73-6.
[66] HU Q, KIM D Y, YANG W, et al. FeO2 and FeOOH under deep lower-mantle conditions and Earth’s oxygen–hydrogen cycles [J]. Nature, 2016, 534(7606): 241-4.
[67] BRAZHKIN V. High-pressure synthesized materials: treasures and hints [J]. High Pressure Research, 2007, 27(3): 333-51.
[68] ZHANG L, WANG Y, LV J, et al. Materials discovery at high pressures [J]. Nature Reviews Materials, 2017, 2(4): 1-16.
[69] SOLOZHENKO V L, GREGORYANZ E. Synthesis of superhard materials [J]. Materials Today, 2005, 8(11): 44-51.
[70] XIAO G, GENG T, ZOU B. Emerging functional materials under high pressure toward enhanced properties [J]. ACS Materials Letters, 2020, 2(9): 1233-9.
[71] WANG X, LIU X. High pressure: a feasible tool for the synthesis of unprecedented inorganic compounds [J]. Inorganic Chemistry Frontiers, 2020, 7(16): 2890-908.
[72] YUE Y, GAO Y, HU W, et al. Hierarchically structured diamond composite with exceptional toughness [J]. Nature, 2020, 582(7812): 370-4.
[73] ZHANG S, LI Z, LUO K, et al. Discovery of carbon-based strongest and hardest amorphous material [J]. National Science Review, 2022, 9(1): nwab140.
[74] HUANG Q, YU D, XU B, et al. Nanotwinned diamond with unprecedented hardness and stability [J]. Nature, 2014, 510(7504): 250-3.
[75] TIAN Y, XU B, YU D, et al. Ultrahard nanotwinned cubic boron nitride [J]. Nature, 2013, 493(7432): 385-8.
[76] JI C, ADELEKE A A, YANG L, et al. Nitrogen in black phosphorus structure [J]. Science advances, 2020, 6(23): eaba9206.
[77] TOMASINO D, KIM M, SMITH J, et al. Pressure-induced symmetry-lowering transition in dense nitrogen to layered polymeric nitrogen (LP-N) with colossal Raman intensity [J]. Physical review letters, 2014, 113(20): 205502.
[78] MCMAHAN A, LESAR R. Pressure dissociation of solid nitrogen under 1 Mbar [J]. Physical review letters, 1985, 54(17): 1929.
[79] MAILHIOT C, YANG L, MCMAHAN A. Polymeric nitrogen [J]. Physical Review B, 1992, 46(22): 14419.
[80] 雷力, 蒲梅芳, 冯雷豪, et al. 立方聚合氮 (cg-N) 的高温高压合成 [J]. 高压物理学报, 2018, 32(2): 13-7.
[81] GAO C, WANG J, ZHANG Y, et al. Pressure-Induced Phase Transition of β-RDX Single Crystals [J]. The Journal of Physical Chemistry C, 2021, 125(11): 6418-26.
[82] SUI Z, SUN X, LIANG W, et al. Phase Confirmation and Equation of State of β-HMX under 40 GPa [J]. The Journal of Physical Chemistry C, 2019, 123(50): 30121-8.
[83] YOO C-S, CYNN H. Equation of state, phase transition, decomposition of β-HMX (octahydro-1, 3, 5, 7-tetranitro-1, 3, 5, 7-tetrazocine) at high pressures [J]. The Journal of Chemical Physics, 1999, 111(22): 10229-35.
[84] EREMETS M I, GAVRILIUK A G, TROJAN I A, et al. Single-bonded cubic form of nitrogen [J]. Nature materials, 2004, 3(8): 558-63.
[85] GONCHAROV A F, CROWHURST J C, STRUZHKIN V V, et al. Triple point on the melting curve and polymorphism of nitrogen at high pressure [J]. Physical review letters, 2008, 101(9): 095502.
[86] KVASHNIN A G, ALLAHYARI Z, OGANOV A R. Computational discovery of hard and superhard materials [J]. Journal of Applied Physics, 2019, 126(4).
[87] JI C, LI B, LIU W, et al. Ultrahigh-pressure isostructural electronic transitions in hydrogen [J]. Nature, 2019, 573(7775): 558-62.
[88] LOUBEYRE P, OCCELLI F, DUMAS P. Synchrotron infrared spectroscopic evidence of the probable transition to metal hydrogen [J]. Nature, 2020, 577(7792): 631-5.
[89] 孙莹, 刘寒雨, 马琰铭. 高压下富氢高温超导体的研究进展 [J]. 物理学报, 2021.
[90] 毛河光, 吉诚, 李冰, et al. 超高压下的极端含能材料 [J]. Engineering, 2020.
[91] BORINAGA M, IBAñEZ-AZPIROZ J, BERGARA A, et al. Strong electron-phonon and band structure effects in the optical properties of high pressure metallic hydrogen [J]. Physical review letters, 2018, 120(5): 057402.
[92] DIAS R P, SILVERA I F. Observation of the Wigner-Huntington transition to metallic hydrogen [J]. Science, 2017, 355(6326): 715-8.
[93] BARANOWSKI B. Metal-hydrogen systems at high hydrogen pressures [J]. Hydrogen in Metals II, 1978: 157-200.
[94] FUKAI Y. The metal-hydrogen system: basic bulk properties [M]. Springer Science & Business Media, 2006.
[95] DONG X, OGANOV A R, GONCHAROV A F, et al. A stable compound of helium and sodium at high pressure [J]. Nature Chemistry, 2017, 9(5): 440-5.
[96] ZHANG W, OGANOV A R, GONCHAROV A F, et al. Unexpected stable stoichiometries of sodium chlorides [J]. Science, 2013, 342(6165): 1502-5.
[97] BYKOV M, BYKOVA E, APRILIS G, et al. Fe-N system at high pressure reveals a compound featuring polymeric nitrogen chains [J]. Nature communications, 2018, 9(1): 1-8.
[98] ZHENG H, WANG L, LI K, et al. Pressure induced polymerization of acetylide anions in CaC2 and 107 fold enhancement of electrical conductivity [J]. Chemical Science, 2017, 8(1): 298-304.
[99] YOO C S, NICOL M. Kinetics of a pressure-induced polymerization reaction of cyanogen [J]. The Journal of Physical Chemistry, 1986, 90(25): 6732-6.
[100] WARD M D, TANG W S, ZHU L, et al. Controlled Single-Crystalline Polymerization of C10H8·C10F8 under Pressure [J]. Macromolecules, 2019, 52(20): 7557-63.
[101] TANG W S, STROBEL T A. Pressure-Induced Solid-State Polymerization of Optically-Tunable Diphenyl-Substituted Diacetylene [J]. ACS Applied Polymer Materials, 2019, 1(12): 3286-94.
[102] SUNDAR C S, SAHU P C, SASTRY V S, et al. Pressure-induced polymerization of fullerenes: A comparative study of C60 and C70 [J]. Physical Review B, 1996, 53(13): 8180-3.
[103] LIPP M J, EVANS W J, BAER B J, et al. High-energy-density extended CO solid [J]. Nature materials, 2005, 4(3): 211-5.
[104] HAN J, TANG X, WANG Y, et al. Pressure-Induced Polymerization of Monosodium Acetylide: A Radical Reaction Initiated Topochemically [J]. The Journal of Physical Chemistry C, 2019, 123(50): 30746-53.
[105] EVANS W J, LIPP M J, YOO C S, et al. Pressure-Induced Polymerization of Carbon Monoxide:  Disproportionation and Synthesis of an Energetic Lactonic Polymer [J]. Chemistry of Materials, 2006, 18(10): 2520-31.
[106] CHELAZZI D, CEPPATELLI M, SANTORO M, et al. Pressure-Induced Polymerization in Solid Ethylene [J]. The Journal of Physical Chemistry B, 2005, 109(46): 21658-63.
[107] ZHENG H, WANG L, LI K, et al. Pressure induced polymerization of acetylide anions in CaC 2 and 10 7 fold enhancement of electrical conductivity [J]. Chemical Science, 2017, 8(1): 298-304.
[108] WANG Y, DONG X, TANG X, et al. Pressure-Induced Diels-Alder Reactions in C6H6-C6F6 Cocrystal towards Graphane Structure [J]. Angewandte Chemie International Edition, 2019, 58(5): 1468-73.
[109] SUN J, DONG X, WANG Y, et al. Pressure-Induced Polymerization of Acetylene: Structure-Directed Stereoselectivity and a Possible Route to Graphane [J]. Angewandte Chemie, 2017, 129(23): 6653-7.
[110] ZHANG P, GAO D, TANG X, et al. Ordered Van der Waals Hetero-nanoribbon from Pressure-Induced Topochemical Polymerization of Azobenzene [J]. Journal of the American Chemical Society, 2023, 145(12): 6845-52.
[111] LI Y, TANG X, ZHANG P, et al. Scalable high-pressure synthesis of sp2–sp3 carbon nanoribbon via
[4+2] polymerization of 1, 3, 5-triethynylbenzene [J]. The Journal of Physical Chemistry Letters, 2021, 12(30): 7140-5.
[112] WANG X, YANG X, WANG Y, et al. From biomass to functional crystalline diamond nanothread: pressure-induced polymerization of 2, 5-furandicarboxylic acid [J]. Journal of the American Chemical Society, 2022, 144(48): 21837-42.
[113] WANG X, TANG X, ZHANG P, et al. Crystalline fully carboxylated polyacetylene obtained under high pressure as a Li-ion battery anode material [J]. The Journal of Physical Chemistry Letters, 2021, 12(50): 12055-61.
[114] FITZGIBBONS T C, GUTHRIE M, XU E-S, et al. Benzene-derived carbon nanothreads [J]. Nature materials, 2015, 14(1): 43-7.
[115] YUNFAN F, KUO L, HAIYAN Z. Synthesis of Nano-Carbon Materials by High Pressure Solid-State Topochemical Polymerization [J]. Chinese Journal of High Pressure Physics, 2023, 37(6).
[116] YOO C-S. Physical and chemical transformations of highly compressed carbon dioxide at bond energies [J]. Physical Chemistry Chemical Physics, 2013, 15(21): 7949-66.
[117] 王萱, 李阔, 郑海燕, et al. 分子体系的高压化学反应 [J]. 化学通报, 2019, 82(5): 387-98.
[118] TROUT C C, BADDING J. Solid state polymerization of acetylene at high pressure and low temperature [J]. The Journal of Physical Chemistry A, 2000, 104(34): 8142-5.
[119] CEPPATELLI M, SANTORO M, BINI R, et al. Fourier transform infrared study of the pressure and laser induced polymerization of solid acetylene [J]. The Journal of Chemical Physics, 2000, 113(14): 5991-6000.
[120] SCHETTINO V, BINI R. Molecules under extreme conditions: Chemical reactions at high pressure [J]. Physical chemistry chemical physics, 2003, 5(10): 1951-65.
[121] AOKI K, BAER B, CYNN H, et al. High-pressure Raman study of one-dimensional crystals of the very polar molecule hydrogen cyanide [J]. Physical Review B, 1990, 42(7): 4298.
[122] CIABINI L, SANTORO M, GORELLI F A, et al. Triggering dynamics of the high-pressure benzene amorphization [J]. Nature Materials, 2007, 6(1): 39-43.
[123] CHANYSHEV A D, LITASOV K D, RASHCHENKO S V, et al. High-Pressure–High-Temperature Study of Benzene: Refined Crystal Structure and New Phase Diagram up to 8 GPa and 923 K [J]. Crystal Growth & Design, 2018, 18(5): 3016-26.
[124] ZHENG H, LI K, CODY G D, et al. Polymerization of acetonitrile via a hydrogen transfer reaction from CH3 to CN under extreme conditions [J]. Angewandte Chemie International Edition, 2016, 55(39): 12040-4.
[125] GAO D, TANG X, XU J, et al. Crystalline C3N3H3 tube (3, 0) nanothreads [J]. Proceedings of the National Academy of Sciences, 2022, 119(17): e2201165119.
[126] WECK G, LOUBEYRE P, LETOULLEC R. Observation of structural transformations in metal oxygen [J]. Physical review letters, 2002, 88(3): 035504.
[127] LUNDEGAARD L F, WECK G, MCMAHON M I, et al. Observation of an O8 molecular lattice in the ɛ phase of solid oxygen [J]. Nature, 2006, 443(7108): 201-4.
[128] SCHETTINO V, BINI R. Constraining molecules at the closest approach: chemistry at high pressure [J]. Chemical Society Reviews, 2007, 36(6): 869-80.
[129] YANG X, WANG X, WANG Y, et al. From Molecules to Carbon Materials—High Pressure Induced Polymerization and Bonding Mechanisms of Unsaturated Compounds [J]. Crystals, 2019, 9(10): 490.
[130] HUANG Q, YU D, XU B, et al. Nanotwinned diamond with unprecedented hardness and stability [J]. Nature, 2014, 510(7504): 250-3.
[131] TIAN Y, XU B, YU D, et al. Ultrahard nanotwinned cubic boron nitride [J]. Nature, 2013, 493(7432): 385-8.
[132] STACCHIOLA D, AZAD S, BURKHOLDER L, et al. An investigation of the reaction pathway for ethylene hydrogenation on Pd (111) [J]. The Journal of Physical Chemistry B, 2001, 105(45): 11233-9.
[133] RYU Y-J, YOO C-S, KIM M, et al. Hydrogen-doped polymeric carbon monoxide at high pressure [J]. The Journal of Physical Chemistry C, 2017, 121(18): 10078-86.
[134] RYU Y-J, KIM M, LIM J, et al. Dense carbon monoxide to 160 GPa: Stepwise polymerization to two-dimensional layered solid [J]. The Journal of Physical Chemistry C, 2016, 120(48): 27548-54.
[135] ZHANG S, DAI Y, LUO S, et al. Rehybridization of nitrogen atom induced photoluminescence enhancement under pressure stimulation [J]. Advanced Functional Materials, 2017, 27(1): 1602276.
[136] ZHANG J N, KANG H, LI N, et al. Organic solid fluorophores regulated by subtle structure modification: color-tunable and aggregation-induced emission [J]. Chemical science, 2017, 8(1): 577-82.
[137] AN B-K, GIERSCHNER J, PARK S Y. π-Conjugated cyanostilbene derivatives: a unique self-assembly motif for molecular nanostructures with enhanced emission and transport [J]. Accounts of Chemical Research, 2012, 45(4): 544-54.
[138] ZHU S, ZHANG J, TANG S, et al. Surface chemistry routes to modulate the photoluminescence of graphene quantum dots: from fluorescence mechanism to up‐conversion bioimaging applications [J]. Advanced Functional Materials, 2012, 22(22): 4732-40.
[139] VARGHESE S, DAS S. Role of Molecular Packing in Determining Solid-State Optical Properties of π-Conjugated Materials [J]. The Journal of Physical Chemistry Letters, 2011, 2(8): 863-73.
[140] LI Z, LI Z R, MENG H. Organic light-emitting materials and devices [M]. CRC press, 2006.
[141] LI W, CHEN Z, YU H, et al. Wood‐Derived Carbon Materials and Light‐Emitting Materials [J]. Advanced Materials, 2021, 33(28): 2000596.
[142] XU W, LIU B, CAI X, et al. Fluorescent poly(hydroxyurethane): Biocompatibility evaluation and selective detection of Fe(III) [J]. Journal of Applied Polymer Science, 2018, 135(40): 46723.
[143] PARK D-H, HONG J, PARK I S, et al. A Colorimetric Hydrocarbon Sensor Employing a Swelling-Induced Mechanochromic Polydiacetylene [J]. Advanced Functional Materials, 2014, 24(33): 5186-93.
[144] YUAN W Z, GONG Y, CHEN S, et al. Efficient Solid Emitters with Aggregation-Induced Emission and Intramolecular Charge Transfer Characteristics: Molecular Design, Synthesis, Photophysical Behaviors, and OLED Application [J]. Chemistry of Materials, 2012, 24(8): 1518-28.
[145] QIN Z, GAO H, DONG H, et al. Organic Light-Emitting Transistors Entering a New Development Stage [J]. Advanced Materials, 2021, 33(31): 2007149.
[146] ZHANG Y, LI Z, SUN Q, et al. Light‐Emitting Conjugated Organic Polymer as an Efficient Fluorescent Probe for Cu2+ Ions Detection and Cell Imaging [J]. Macromolecular Rapid Communications, 2021, 42(19): 2100469.
[147] SHEN C, WANG J, CAO Y, et al. Facile access to B-doped solid-state fluorescent carbon dots toward light emitting devices and cell imaging agents [J]. Journal of Materials Chemistry C, 2015, 3(26): 6668-75.
[148] ZAMPETTI A, MINOTTO A, CACIALLI F. Near-infrared (NIR) organic light‐emitting diodes (OLEDs): challenges and opportunities [J]. Advanced Functional Materials, 2019, 29(21): 1807623.
[149] SUN H, LIU S, LIN W, et al. Smart responsive phosphorescent materials for data recording and security protection [J]. Nature communications, 2014, 5(1): 1-9.
[150] CHU B, ZHANG H, HU L, et al. Altering Chain Flexibility of Aliphatic Polyesters for Yellow-Green Clusteroluminescence in 38 % Quantum Yield [J]. Angewandte Chemie International Edition, 2022, 61(6): e202114117.
[151] WARD M D, TANG W S, ZHU L, et al. Controlled single-crystalline polymerization of C10H8· C10F8 under pressure [J]. Macromolecules, 2019, 52(20): 7557-63.
[152] WANG L, WANG K, ZOU B, et al. Luminescent chromism of boron diketonate crystals: distinct responses to different stresses [J]. Advanced Materials, 2015, 27(18): 2918-22.
[153] FANETTI S, CITRONI M, BINI R. Pressure-Induced Fluorescence of Pyridine [J]. The Journal of Physical Chemistry B, 2011, 115(42): 12051-8.
[154] LIU H, GU Y, DAI Y, et al. Pressure-induced blue-shifted and enhanced emission: a cooperative effect between aggregation-induced emission and energy-transfer suppression [J]. Journal of the American Chemical Society, 2020, 142(3): 1153-8.
[155] JOHNSON P C, OFFEN H W. Pressure dependence of intersystem crossing in anthracene and two derivatives at 77 K [J]. Chemical Physics Letters, 1970, 6: 505-7.
[156] GU Y, LIU H, QIU R, et al. Pressure-induced emission enhancement and multicolor emission for 1, 2, 3, 4-tetraphenyl-1, 3-cyclopentadiene: controlled structure evolution [J]. The Journal of Physical Chemistry Letters, 2019, 10(18): 5557-62.
[157] YUAN H, WANG K, YANG K, et al. Luminescence properties of compressed tetraphenylethene: the role of intermolecular interactions [J]. The Journal of Physical Chemistry Letters, 2014, 5(17): 2968-73.
[158] LI N, GU Y, CHEN Y, et al. Pressure-induced emission enhancement and piezochromism of triphenylethylene [J]. The Journal of Physical Chemistry C, 2019, 123(11): 6763-7.
[159] YANG Z, FU Z, LIU H, et al. Pressure-induced room-temperature phosphorescence enhancement based on purely organic molecules with a folded geometry [J]. Chemical Science, 2023, 14(10): 2640-5.
[160] WANG Q, LI S, HE L, et al. Pressure-Induced Emission Enhancement of a Series of Dicyanovinyl-Substituted Aromatics: Pressure Tuning of the Molecular Population with Different Conformations [J]. ChemPhysChem, 2008, 9(8): 1146-52.
[161] HAN J, ZHENG Q, JIN C, et al. Comparative Study on Properties, Structural Changes, and Isomerization of Cis/Trans-Stilbene under High Pressure [J]. The Journal of Physical Chemistry C, 2022.
[162] GU Y, WANG K, DAI Y, et al. Pressure-induced emission enhancement of carbazole: the restriction of intramolecular vibration [J]. The Journal of Physical Chemistry Letters, 2017, 8(17): 4191-6.
[163] LI X, CUI J, BA Q, et al. Multiphotoluminescence from a Triphenylamine Derivative and Its Application in White Organic Light-Emitting Diodes Based on a Single Emissive Layer [J]. Advanced Materials, 2019, 31(23): 1900613.
[164] BRIDGMAN P. Polymorphic transitions of thirty five substances to 50,000 kg/sq cm [J]. Proceedings of the American Academy of Arts and Science, 1937, 72: 207-25.
[165] BRIDGMAN P. The melting curves and compressibilities of nitrogen and argon [M]. Volume V Collected Experimental Papers, Volume V. Harvard University Press. 2013: 2855-86.
[166] LAWSON A, TANG T Y. A diamond bomb for obtaining powder pictures at high pressures [J]. Review of Scientific instruments, 1950, 21(9): 815-.
[167] WEIR C, LIPPINCOTT E, VAN VALKENBURG A, et al. Infrared studies in the 1-to 15-micron region to 30,000 atmospheres [J]. Journal of research of the National Bureau of Standards Section A, Physics and chemistry, 1959, 63(1): 55.
[168] JAMIESON J C, LAWSON A, NACHTRIEB N. New Device for Obtaining X-Ray Diffraction Patterns from Substances Exposed to High Pressure [J]. Review of Scientific instruments, 1959, 30(11): 1016-9.
[169] PIERMARINI G, WEIR C. A diamond cell for X-ray diffraction studies at high pressures [J]. J Res Natl Bur Stans A, 1962, 66: 325-31.
[170] VAN VALKENBURG A. Diamond high pressure windows [J]. Diamond Research, 1964, 1964: 17-20.
[171] MAO H. High-pressure physics: sustained static generation of 1.36 to 1.72 megabars [J]. Science, 1978, 200(4346): 1145-7.
[172] MAO H, BELL P, SHANER J T, et al. Specific volume measurements of Cu, Mo, Pd, and Ag and calibration of the ruby R 1 fluorescence pressure gauge from 0.06 to 1 Mbar [J]. Journal of applied physics, 1978, 49(6): 3276-83.
[173] BARNETT J, BLOCK S, PIERMARINI G. An optical fluorescence system for quantitative pressure measurement in the diamond-anvil cell [J]. Review of scientific instruments, 1973, 44(1): 1-9.
[174] MAO H, XU J-A, BELL P. Calibration of the ruby pressure gauge to 800 kbar under quasi-hydrostatic conditions [J]. Journal of Geophysical Research: Solid Earth, 1986, 91(B5): 4673-6.
[175] DUBROVINSKAIA N, DUBROVINSKY L, SOLOPOVA N A, et al. Terapascal static pressure generation with ultrahigh yield strength nanodiamond [J]. Science advances, 2016, 2(7): e1600341.
[176] 丁琨, 窦秀明, 孙宝权. 压电驱动金刚石对顶砧加压装置的研制和应用 [J]. 物理, 2019, 48(7): 451-5.
[177] MAO H K, BELL P M, SHANER J W, et al. Specific volume measurements of Cu, Mo, Pd, and Ag and calibration of the ruby R1 fluorescence pressure gauge from 0.06 to 1 Mbar [J]. Journal of Applied Physics, 1978, 49(6): 3276-83.
[178] BARNETT J D, BLOCK S, PIERMARINI G J. An Optical Fluorescence System for Quantitative Pressure Measurement in the Diamond-Anvil Cell [J]. Review of Scientific Instruments, 1973, 44(1): 1-9.
[179] MAO H K, XU J, BELL P M. Calibration of the ruby pressure gauge to 800 kbar under quasi-hydrostatic conditions [J]. Journal of Geophysical Research: Solid Earth, 1986, 91(B5): 4673-6.
[180] 韩军. 不饱和金属多碳化物的高压反应研究 [D]; 中国工程物理研究院, 2020.
[181] BESSON J, NELMES R, HAMEL G, et al. Neutron powder diffraction above 10 GPa [J]. Physica B: Condensed Matter, 1992, 180: 907-10.
[182] KLOTZ S, STRäSSLE T, ROUSSE G, et al. Angle-dispersive neutron diffraction under high pressure to 10 GPa [J]. Applied Physics Letters, 2005, 86(3): 031917.
[183] 房雷鸣, 陈喜平, 谢雷, et al. CMRR 中子科学平台的高压中子衍射技术及应用 [J]. 高压物理学报, 2020, 34(5): 050104-1.
[184] 史钰, 陈喜平, 谢雷, et al. 基于巴黎-爱丁堡压机的高压中子衍射技术 [J]. 物理学报, 2019, 11.
[185] Sample Environment of the SNAP Instrument [Z]. https://neutrons.ornl.gov/snap/sample. 2022
[186] FEDOTENKO T, DUBROVINSKY L, APRILIS G, et al. Laser heating setup for diamond anvil cells for in situ synchrotron and in house high and ultra-high pressure studies [J]. Review of Scientific Instruments, 2019, 90(10).
[187] KIM K J. Characteristics of synchrotron radiation; proceedings of the AIP conference proceedings, F, 1989 [C]. American Institute of Physics.
[188] PRESCHER C, PRAKAPENKA V B. DIOPTAS: a program for reduction of two-dimensional X-ray diffraction data and data exploration [J]. High Pressure Research, 2015, 35(3): 223-30.
[189] PETŘíČEK V, DUŠEK M, PALATINUS L. Crystallographic computing system JANA2006: general features [J]. Zeitschrift für Kristallographie-Crystalline Materials, 2014, 229(5): 345-52.
[190] KRESSE G, HAFNER J. Ab initio molecular dynamics for liquid metals [J]. Physical review B, 1993, 47(1): 558.
[191] KRESSE G, FURTHMüLLER J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set [J]. Computational materials science, 1996, 6(1): 15-50.
[192] SHAM L J, KOHN W. One-particle properties of an inhomogeneous interacting electron gas [J]. Physical Review, 1966, 145(2): 561.
[193] PERDEW J P, BURKE K, ERNZERHOF M. Generalized gradient approximation made simple [J]. Physical review letters, 1996, 77(18): 3865.
[194] LI J, LIU Y, MA W, et al. Tri-explosophoric groups driven fused energetic heterocycles featuring superior energetic and safety performances outperforms HMX [J]. Nature Communications, 2022, 13(1): 5697.
[195] KLAPöTKE T M. Chemistry of high-energy materials [M]. Walter de Gruyter GmbH & Co KG, 2022.
[196] MEYER R, KöHLER J, HOMBURG A. Explosives [M]. John Wiley & Sons, 2016.
[197] YIN P, ZHANG Q, SHREEVE J N M. Dancing with energetic nitrogen atoms: versatile N-functionalization strategies for N-heterocyclic frameworks in high energy density materials [J]. Accounts of chemical research, 2016, 49(1): 4-16.
[198] BADGUJAR D, TALAWAR M, ASTHANA S, et al. Advances in science and technology of modern energetic materials: an overview [J]. Journal of hazardous materials, 2008, 151(2-3): 289-305.
[199] KLAPöTKE T M. High energy density materials [M]. Springer, 2007.
[200] YOO C, IOTA V, CYNN H, et al. Disproportionation and other transformations of N2O at high pressures and temperatures to lower energy, denser phases [J]. The Journal of Physical Chemistry B, 2003, 107(24): 5922-5.
[201] XIAO H, AN Q, GODDARD III W A, et al. Formation of the–N (NO) N (NO)–polymer at high pressure and stabilization at ambient conditions [J]. Proceedings of the National Academy of Sciences, 2013, 110(14): 5321-5.
[202] YOO C-S, KIM M, LIM J, et al. Copolymerization of CO and N2 to extended CON2 framework solid at high pressures [J]. The Journal of Physical Chemistry C, 2018, 122(24): 13054-60.
[203] RAZA Z, PICKARD C J, PINILLA C, et al. High energy density mixed polymeric phase from carbon monoxide and nitrogen [J]. Physical Review Letters, 2013, 111(23): 235501.
[204] BERNARD S, CHIAROTTI G L, SCANDOLO S, et al. Decomposition and polymerization of solid carbon monoxide under pressure [J]. Physical review letters, 1998, 81(10): 2092.
[205] SUN J, KLUG D D, PICKARD C J, et al. Controlling the bonding and band gaps of solid carbon monoxide with pressure [J]. Physical Review Letters, 2011, 106(14): 145502.
[206] SUN C, GUO W, ZHU J, et al. High-energy-density polymeric carbon oxide: Layered solids under pressure [J]. Physical Review B, 2021, 104(9): 094102.
[207] POREZAG D, PEDERSON M R. Infrared intensities and Raman-scattering activities within density-functional theory [J]. Physical Review B, 1996, 54(11): 7830-6.
[208] KWON J E, PARK S Y. Advanced Organic Optoelectronic Materials: Harnessing Excited-State Intramolecular Proton Transfer (ESIPT) Process [J]. Advanced Materials, 2011, 23(32): 3615-42.
[209] LI Z, KONG J, WANG F, et al. Polyhedral oligomeric silsesquioxanes (POSSs): an important building block for organic optoelectronic materials [J]. Journal of Materials Chemistry C, 2017, 5(22): 5283-98.
[210] WU H, YING L, YANG W, et al. Progress and perspective of polymer white light-emitting devices and materials [J]. Chemical Society Reviews, 2009, 38(12): 3391-400.
[211] WöHRLE D, MEISSNER D. Organic Solar Cells [J]. Advanced Materials, 1991, 3(3): 129-38.
[212] HOPPE H, SARICIFTCI N S. Organic solar cells: An overview [J]. Journal of Materials Research, 2004, 19(7): 1924-45.
[213] RüHLE S. Tabulated values of the Shockley–Queisser limit for single junction solar cells [J]. Solar Energy, 2016, 130: 139-47.
[214] SHOCKLEY W, QUEISSER H J. Detailed Balance Limit of Efficiency of p‐n Junction Solar Cells [J]. Journal of Applied Physics, 1961, 32(3): 510-9.
[215] LI X, CUI J, BA Q, et al. Multiphotoluminescence from a Triphenylamine Derivative and Its Application in White Organic Light-Emitting Diodes Based on a Single Emissive Layer [J]. Advanced Materials, 2019, 31(23): 1900613.
[216] MISRA R, MARAGANI R, GAUTAM P, et al. Tetracyanoethylene substituted triphenylamine analogues [J]. Tetrahedron Letters, 2014, 55(51): 7102-5.
[217] CRAIG N C, KRASNOSHCHEKOV S V. Vibrational spectroscopy of tolane; Coriolis coupling between Raman-active modes of g symmetry [J]. Molecular Physics, 2019, 117(9-12): 1059-68.
[218] FLOCK M, BOSSE L, KAISER D, et al. A time-resolved photoelectron imaging study on isolated tolane: observation of the biradicalic 1Au state [J]. Physical Chemistry Chemical Physics, 2019, 21(24): 13157-64.
[219] HIURA H, TAKAHASHI H. Time-resolved resonance Raman spectroscopy of diphenylacetylene: structures and dynamics of the lowest excited triplet state, radical cation, and radical anion [J]. The Journal of Physical Chemistry, 1992, 96(22): 8909-15.
[220] SHIMOJIMA A, TAKAHASHI H. Ab initio study of geometries and force fields of diphenylacetylene in the ground state, radical cation, radical anion, and lowest excited triplet state [J]. The Journal of Physical Chemistry, 1993, 97(36): 9103-12.
[221] COMPANION A L. Theory and Applications of Diffuse Reflectance Spectroscopy; proceedings of the Developments in Applied Spectroscopy, Boston, MA, F 1965, 1965 [C]. Springer US.
[222] KUBELKA P, & MUNK, F. An article on optics of paint layers [J]. Z Tech Phys, 1931.
[223] MAKUŁA P, PACIA M, MACYK W. How To Correctly Determine the Band Gap Energy of Modified Semiconductor Photocatalysts Based on UV–Vis Spectra [J]. The Journal of Physical Chemistry Letters, 2018, 9(23): 6814-7.
[224] BROWN E V, GRANNEMAN G R. Cis-trans isomerism in the pyridyl analogs of azobenzene. Kinetic and molecular orbital analysis [J]. Journal of the American Chemical Society, 1975, 97(3): 621-7.
[225] STAHL W, SCHWARZ W, SUNDQUIST A R, et al. cis-trans isomers of lycopene and β-carotene in human serum and tissues [J]. Archives of Biochemistry and Biophysics, 1992, 294(1): 173-7.
[226] MOSS G P. Basic terminology of stereochemistry (IUPAC Recommendations 1996) [J]. Pure and Applied Chemistry, 1996, 68(12): 2193-222.
[227] HARTLEY G S. 113. The cis-form of azobenzene and the velocity of the thermal cis→trans-conversion of azobenzene and some derivatives [J]. Journal of the Chemical Society (Resumed), 1938, (0): 633-42.
[228] HARTLEY G S. The Cis-form of Azobenzene [J]. Nature, 1937, 140(3537): 281-.
[229] BRANDTS J F, HALVORSON H R, BRENNAN M. Consideration of the Possibility that the slow step in protein denaturation reactions is due to cis-trans isomerism of proline residues [J]. Biochemistry, 1975, 14(22): 4953-63.
[230] BANDARA H M D, BURDETTE S C. Photoisomerization in different classes of azobenzene [J]. Chemical Society Reviews, 2012, 41(5): 1809-25.
[231] SCHMIDT M W, TRUONG P N, GORDON M S. .pi.-Bond strengths in the second and third periods [J]. Journal of the American Chemical Society, 1987, 109(17): 5217-27.
[232] DUGAVE C, DEMANGE L. Cis−Trans Isomerization of Organic Molecules and Biomolecules:  Implications and Applications [J]. Chemical Reviews, 2003, 103(7): 2475-532.
[233] WEISS J M, DOWNS C R. THE PHYSICAL PROPERTIES OF MALEIC, FUMARIC AND MALIC ACIDS [J]. Journal of the American Chemical Society, 1923, 45(4): 1003-8.
[234] STRAIN H H. cis-trans Isomeric Carotenoids, Vitamins a and Arylpolyenes [J]. Journal of the American Chemical Society, 1963, 85(7): 1025-.
[235] KINSELLA J E, BRUCKNER G, MAI J, et al. Metabolism of trans fatty acids with emphasis on the effects of trans,trans-octadecadienoate on lipid composition, essential fatty acid, and prostaglandins: an overview [J]. The American Journal of Clinical Nutrition, 1981, 34(10): 2307-18.
[236] WANG Y, LI Q. Light-Driven Chiral Molecular Switches or Motors in Liquid Crystals [J]. Advanced Materials, 2012, 24(15): 1926-45.
[237] QIN L, LIU X, YU Y. Soft Actuators of Liquid Crystal Polymers Fueled by Light from Ultraviolet to Near Infrared [J]. Advanced Optical Materials, 2021, 9(7): 2001743.
[238] MAHIMWALLA Z, YAGER K G, MAMIYA J-I, et al. Azobenzene photomechanics: prospects and potential applications [J]. Polymer Bulletin, 2012, 69(8): 967-1006.
[239] HUBBARD R, WALD G. CIS-TRANS ISOMERS OF VITAMIN A AND RETINENE IN THE RHODOPSIN SYSTEM [J]. Journal of General Physiology, 1952, 36(2): 269-315.
[240] HU Y, LI Z, LAN T, et al. Photoactuators for Direct Optical-to-Mechanical Energy Conversion: From Nanocomponent Assembly to Macroscopic Deformation [J]. Advanced Materials, 2016, 28(47): 10548-56.
[241] GU Y, SHAO G, TIAN Z, et al. Two different emission enhancement of trans-stilbene crystal under high pressure: Different evolution of structure [J]. Chinese Physics B, 2021, 31(1): 017901.
[242] WANG L, YE K-Q, ZHANG H-Y. Organic materials with hydrostatic pressure induced mechanochromic properties [J]. Chinese Chemical Letters, 2016, 27(8): 1367-75.
[243] LEWIS F D, WEIGEL W. Excited State Properties of Donor− Acceptor Substituted Trans-Stilbenes: The M Eta-Amino Effect [J]. The Journal of Physical Chemistry A, 2000, 104(34): 8146-53.
[244] HARADA J, OGAWA K. Invisible but common motion in organic crystals: a pedal motion in stilbenes and azobenzenes [J]. Journal of the American Chemical Society, 2001, 123(44): 10884-8.
[245] TAYLOR T W J, MURRAY A R. 395. Isomeric change in certain stilbenes [J]. Journal of the Chemical Society (Resumed), 1938, (0): 2078-86.
[246] SANTORO A V, BARRETT E J, HOYER H W. Kinetics of cis-trans isomerization by differential thermal analysis [J]. Journal of the American Chemical Society, 1967, 89(17): 4545-6.
[247] KISTIAKOWSKY G B, SMITH W R. Kinetics of Thermal Cis-Trans Isomerization. III [J]. Journal of the American Chemical Society, 1934, 56(3): 638-42.
[248] DOUGLAS C. NECKERS D H V, GüNTHER VON BüNAU. Advances in Photochemistry [M]. 1994.
[249] BORTOLUS P, CAUZZO G. Thermal isomerization of stilbene and styrylpyridines in the liquid state [J]. Transactions of the Faraday Society, 1970, 66(0): 1161-4.
[250] MINEZAWA N, GORDON M S. Photoisomerization of Stilbene: A Spin-Flip Density Functional Theory Approach [J]. The Journal of Physical Chemistry A, 2011, 115(27): 7901-11.
[251] KAWAGUCHI Y. The new photoisomerization mechanism of stilbene [J]. The Journal of Chemical Physics, 1994, 100(12): 8856-68.
[252] HAN W-G, LOVELL T, LIU T, et al. Density Functional Studies of the Ground- and Excited-State Potential-Energy Curves of Stilbene cis–trans Isomerization [J]. ChemPhysChem, 2002, 3(2): 167-78.
[253] ZHANG D, DERA P K, ENG P J, et al. High pressure single crystal diffraction at PX^2 [J]. JoVE (Journal of Visualized Experiments), 2017, (119): e54660.
[254] FEDOTENKO T, DUBROVINSKY L, APRILIS G, et al. Laser heating setup for diamond anvil cells for in situ synchrotron and in house high and ultra-high pressure studies [J]. Review of Scientific Instruments, 2019, 90(10): 104501.
[255] WANG Z, LI R, CHEN L, et al. Precise Molecular Design of a Pair of New Regioisomerized Fluorophores With Opposite Fluorescent Properties [J]. Frontiers in Chemistry, 2022, 9.
[256] CHEN L, LI R, WANG X, et al. New Rofecoxib-Based Mechanochromic Luminescent Materials and Investigations on Their Aggregation-Induced Emission, Acidochromism, and LD-Specific Bioimaging [J]. The Journal of Physical Chemistry B, 2022, 126(8): 1768-78.
[257] PANUNTO T W, URBANCZYK-LIPKOWSKA Z, JOHNSON R, et al. Hydrogen-bond formation in nitroanilines: the first step in designing acentric materials [J]. Journal of the American Chemical Society, 1987, 109(25): 7786-97.

所在学位评定分委会
物理学
国内图书分类号
O469
来源库
人工提交
成果类型学位论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/765821
专题南方科技大学
理学院_物理系
推荐引用方式
GB/T 7714
韩军. 不饱和分子高压聚合和性能研究[D]. 深圳. 南方科技大学,2024.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可 操作
12031306-韩军-物理系.pdf(13441KB)----限制开放--请求全文
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[韩军]的文章
百度学术
百度学术中相似的文章
[韩军]的文章
必应学术
必应学术中相似的文章
[韩军]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。