[1] MOEIN M J, LANGENBRUCH C, SCHULTZ R, et al. The physical mechanisms of induced earthquakes[J]. Nature Reviews Earth & Environment, 2023, 4(12): 847-863.
[2] HEALY J, RUBEY W, GRIGGS D, et al. The denver earthquakes[J]. Science, 1968, 161(3848):1301-1310.
[3] ELLSWORTH W L. Injection-induced earthquakes[J]. science, 2013, 341(6142): 1225942.
[4] FENG G L, FENG X T, CHEN B R, et al. A microseismic method for dynamic warning of rockburst development processes in tunnels[J]. Rock Mechanics and Rock Engineering, 2015,48: 2061-2076.
[5] 达姝瑾, 李学贵, 董宏丽, 等. 微地震震源定位方法综述[M]. 吉林大学学报 (地球科学版),2020.
[6] KARASÖZEN E, KARASÖZEN B. Earthquake location methods[J]. GEM-International Journal on Geomathematics, 2020, 11: 1-28.
[7] 张青山. 微地震叠加定位的干涉成像和机器学习研究与应用[D]. 中国科学技术大学,2022.
[8] MILNE J. Earthquakes and other earth movements: Vol. 56[M]. Kegan Paul, Trench, & Company, 1886.
[9] REID H F. The mechanism of the earthquake, the California earthquake of April 18, 1906[J]. Report of the Research Senatorial Commission, Carnegie Institution, Washington, DC, 1910, 2: 16-18.
[10] GEIGER L. Probability method for the determination of earthquake epicentres from the arrival time only[J]. Bull. St. Louis Univ., 1912, 8: 60.
[11] FITCH T J. Compressional velocity in source regions of deep earthquakes: an application of the master earthquake technique[J]. Earth and planetary science Letters, 1975, 26(2): 156-166.
[12] ITO A. High resolution relative hypocenters of similar earthquakes by cross-spectral analysis method[J]. Journal of Physics of the Earth, 1985, 33(4): 279-294.
[13] WALDHAUSER F, ELLSWORTH W L. A double-difference earthquake location algorithm: Method and application to the northern Hayward fault, California[J]. Bulletin of the seismological society of America, 2000, 90(6): 1353-1368.
[14] SHELLY D R, BEROZA G C, IDE S. Non-volcanic tremor and low-frequency earthquake swarms[J]. Nature, 2007, 446(7133): 305-307.
[15] PENG Z, ZHAO P. Migration of early aftershocks following the 2004 Parkfield earthquake[J]. Nature Geoscience, 2009, 2(12): 877-881.
[16] ALLEN R. Automatic phase pickers: Their present use and future prospects[J]. Bulletin of the Seismological Society of America, 1982, 72(6B): S225-S242.
[17] ROSS Z E, MEIER M A, HAUKSSON E, et al. Generalized seismic phase detection with deep learningshort note[J]. Bulletin of the Seismological Society of America, 2018, 108(5A):2894-2901.
[18] DREW J, LESLIE D, ARMSTRONG P, et al. Automated microseismic event detection and location by continuous spatial mapping[C]//SPE Annual Technical Conference and Exhibition? SPE, 2005: SPE-95513.
[19] KAO H, SHAN S J. The source-scanning algorithm: Mapping the distribution of seismic sources in time and space[J]. Geophysical Journal International, 2004, 157(2): 589-594.
[20] ZHANG Q, ZHANG W. An efficient diffraction stacking interferometric imaging location method for microseismic events[J]. Geophysics, 2022, 87(3): KS73-KS82.
[21] ARTMAN B, PODLADTCHIKOV I, WITTEN B. Source location using time-reverse imaging [J]. Geophysical Prospecting, 2010, 58(5): 861-873.
[22] MCMECHAN G A. Determination of source parameters by wavefield extrapolation[J]. Geophysical Journal International, 1982, 71(3): 613-628.
[23] ZHOU Y, ZHANG Q, ZHANG W. PS interferometric imaging condition for microseismic source elastic time-reversal imaging[J]. Geophysical Journal International, 2022, 229(1): 505-521.
[24] MCMECHAN G A, LUETGERT J, MOONEY W. Imaging of earthquake sources in Long Valley caldera, California, 1983[J]. Bulletin of the Seismological Society of America, 1985, 75 (4): 1005-1020.
[25] FINK M. Time-reversed acoustics[J]. Scientific American, 1999, 281(5): 91-97.
[26] FINK M, MONTALDO G, TANTER M. Time-reversal acoustics in biomedical engineering[J]. Annual review of biomedical engineering, 2003, 5(1): 465-497.
[27] SAVA P, POLIANNIKOV O. Interferometric imaging condition for wave-equation migration [J]. Geophysics, 2008, 73(2): S47-S61.
[28] MOUSAVI S M, BEROZA G C. Deep-learning seismology[J]. Science, 2022, 377(6607): eabm4470.
[29] PEROL T, GHARBI M, DENOLLE M. Convolutional neural network for earthquake detection and location[J]. Science Advances, 2018, 4(2): e1700578.
[30] ZHU W, BEROZA G C. PhaseNet: a deep-neural-network-based seismic arrival-time picking method[J]. Geophysical Journal International, 2019, 216(1): 261-273.
[31] ZHOU Y, YUE H, KONG Q, et al. Hybrid event detection and phase-picking algorithm using convolutional and recurrent neural networks[J]. Seismological Research Letters, 2019, 90(3): 1079-1087.
[32] MOUSAVI S M, ZHU W, SHENG Y, et al. CRED: A deep residual network of convolutional and recurrent units for earthquake signal detection[J]. Scientific reports, 2019, 9(1): 1-14.
[33] MOUSAVI S M, ELLSWORTH W L, ZHU W, et al. Earthquake transformer—an attentive deep-learning model for simultaneous earthquake detection and phase picking[J]. Nature communications,2020, 11(1): 1-12.
[34] ZHOU Y, YUE H, FANG L, et al. An earthquake detection and location architecture for continuous seismograms: Phase picking, association, location, and matched filter (PALM)[J]. Seismological Society of America, 2022, 93(1): 413-425.
[35] ZHANG M, LIU M, FENG T, et al. LOC-FLOW: An End-to-End Machine Learning-Based High-Precision Earthquake Location Workflow[J]. Seismological Research Letters, 2022.
[36] VAN DEN ENDE M P, AMPUERO J P. Automated seismic source characterization using deep graph neural networks[J]. Geophysical Research Letters, 2020, 47(17): e2020GL088690.
[37] KUANG W, YUAN C, ZOU Z, et al. Autonomous Earthquake Location via Deep Reinforcement Learning[J]. Seismological Research Letters, 2024, 95(1): 367-377.
[38] ZHU W, MOUSAVI S M, BEROZA G C. Seismic signal denoising and decomposition using deep neural networks[J]. IEEE Transactions on Geoscience and Remote Sensing, 2019, 57(11):9476-9488.
[39] TIAN X, ZHANG W, ZHANG X, et al. Comparison of single-trace and multiple-trace polarity determination for surface microseismic data using deep learning[J]. Seismological Research Letters, 2020, 91(3): 1794-1803.
[40] ZHANG Q, ZHANG W, WU X, et al. Deep Learning for Efficient Microseismic Location Using Source Migration-Based Imaging[J]. Journal of Geophysical Research: Solid Earth, 2022, 127 (3): e2021JB022649.
[41] GUTENBERG B, RICHTER C F. Earthquake magnitude, intensity, energy, and acceleration [J]. Bulletin of the Seismological society of America, 1942, 32(3): 163-191.
[42] GUTENBERG B, RICHTER C F. Earthquake magnitude, intensity, energy, and acceleration: (Second paper)[J]. Bulletin of the seismological society of America, 1956, 46(2): 105-145.
[43] DUNCAN P M. Is there a future for passive seismic?[J]. First Break, 2005, 23(6).
[44] BORCEA L, PAPANICOLAOU G, TSOGKA C. Theory and applications of time reversal and interferometric imaging[J]. Inverse Problems, 2003, 19(6): S139.
[45] 周逸成. 微地震单井观测系统的震源逆时成像方法[D]. 中国科学技术大学, 2018.
[46] ZHOU H W, HU H, ZOU Z, et al. Reverse time migration: A prospect of seismic imaging methodology[J]. Earth-science reviews, 2018, 179: 207-227.
[47] AKI K. Quantitative seismology[J]. Theory and method, 1980: 304-308.
[48] FINK M. Time-reversal acousticsin complex environments[J]. geophysics, 2006, 71(4): SI151-SI164.
[49] GAJEWSKI D, TESSMER E. Reverse modelling for seismic event characterizatio [J]. Geophysical Journal International, 2005, 163(1): 276-284.
[50] LARMAT C, GUYER R,JOHNSON P A. Tremorsource location using time reversal: Selecting the appropriate imaging field[J]. Geophysical Research Letters, 2009, 36(22).
[51] AKI K, RICHARDS P G. Quantitative seismology[M]. 2002.
[52] YAN J, SAVA P. Isotropic angle-domain elastic reverse-time migration[J]. Geophysics, 2008,73(6): S229-S239.
[53] XIAO X, LEANEY W S. Local vertical seismic profiling (VSP) elastic reverse-time migration and migration resolution: Salt-flank imaging with transmitted P-to-S waves[J]. Geophysics, 2010, 75(2): S35-S49.
[54] WANG W, MCMECHAN G A. Vector-based elastic reverse time migration[J]. Geophysics, 2015, 80(6): S245-S258.
[55] LI J, SHEN Y, ZHANG W. Three-dimensional passive-source reverse-time migration of converted waves: The method[J]. Journal of Geophysical Research: Solid Earth, 2018, 123(2):1419-1434.
[56] HU N, ZHANG W, XU J, et al. P-and S-wave energy current density vectors dot product imaging condition of source time-reversal imaging[J]. Geophysical Journal International, 2023, 234(3): 2180-2198.
[57] ZHANG W, ZHANG Z, CHEN X. Three-dimensional elastic wave numerical modelling in the presence of surface topography by a collocated-grid finite-difference method on curvilinear grids[J]. Geophysical Journal International, 2012, 190(1): 358-378.
[58] ZHANG W, CHEN X. Traction image method for irregular free surface boundaries in finite difference seismic wave simulation[J]. Geophysical Journal International, 2006, 167(1): 337-353.
[59] MOCZO P, LUCKÁ M, KRISTEK J, et al. 3D displacement finite differences and a combined memory optimization[J]. Bulletin of the Seismological Society of America, 1999, 89(1): 69-79.
[60] HIXON R, HIXON R. On increasing the accuracy of MacCormack schemes for aeroacoustic applications[C]//3rd AIAA/CEAS Aeroacoustics Conference. 1997: 1586.
[61] GRAVES R W. Simulating seismic wave propagation in 3D elastic media using staggered-grid finite differences[J]. Bulletin of the seismological society of America, 1996, 86(4): 1091-1106.
[62] SUN Y C, ZHANG W, CHEN X. 3D seismic wavefield modeling in generally anisotropic media with a topographic free surface by the curvilinear grid finite-difference method[J]. Bulletin of the Seismological Society of America, 2018, 108(3A): 1287-1301.
[63] LEVANDER A R. Fourth-order finite-difference P-SV seismograms[J]. Geophysics, 1988, 53(11): 1425-1436.
[64] BERENGER J P. A perfectly matched layer for the absorption of electromagnetic waves[J]. Journal of computational physics, 1994, 114(2): 185-200.
[65] BASU U, CHOPRA A K. Perfectly matched layers for transient elastodynamics of unbounded domains[J]. International journal for numerical methods in engineering, 2004, 59(8): 1039-1074.
[66] FESTA G, DELAVAUD E, VILOTTE J P. Interaction between surface waves and absorbing boundaries for wave propagation in geological basins: 2D numerical simulations[J]. Geophysical Research Letters, 2005, 32(20).
[67] DROSSAERT F H, GIANNOPOULOS A. A nonsplit complex frequency-shifted PML based on recursive integration for FDTD modeling of elastic waves[J]. Geophysics, 2007, 72(2):T9-T17.
[68] ZHANG W, SHEN Y. Unsplit complex frequency-shifted PML implementation using auxiliary differential equations for seismic wave modeling[J]. Geophysics, 2010, 75(4): T141-T154.
[69] SAAD O M, CHEN Y. Deep denoising autoencoder for seismic random noise attenuation[J]. Geophysics, 2020, 85(4): V367-V376.
[70] KAUR H, FOMEL S, PHAM N. Seismic ground-roll noise attenuation using deep learning[J]. Geophysical Prospecting, 2020, 68(7): 2064-2077.
[71] QIAN F, YIN M, LIU X Y, et al. Unsupervised seismic facies analysis via deep convolutional autoencoders[J]. Geophysics, 2018, 83(3): A39-A43.
[72] LIU M, JERVIS M, LI W, et al. Seismic facies classification using supervised convolutional neural networks and semisupervised generative adversarial networks[J]. Geophysics, 2020, 85 (4): O47-O58.
[73] GENG Z, WANG Y. Automated design of a convolutional neural network with multi-scale filters for cost-efficient seismic data classification[J]. Nature communications, 2020, 11(1):3311.
[74] MOSELEY B, MARKHAM A, NISSEN-MEYER T. Solving the wave equation with physicsinformed deep learning[A]. 2020.
[75] SONG C, ALKHALIFAH T, WAHEED U B. Solving the frequency-domain acoustic VTI wave equation using physics-informed neural networks[J]. Geophysical Journal International, 2021, 225(2): 846-859.
[76] GATTI F, CLOUTEAU D. Towards blending Physics-Based numerical simulations and seismic databases using Generative Adversarial Network[J]. Computer Methods in Applied Mechanics and Engineering, 2020, 372: 113421.
[77] MÜNCHMEYER J, BINDI D, LESER U, et al. The transformer earthquake alerting model: A new versatile approach to earthquake early warning[J]. Geophysical Journal International, 2021, 225(1): 646-656.
[78] KHOSRAVIKIA F, CLAYTON P, NAGY Z. Artificial neural network-based framework for developing ground-motion models for natural and induced earthquakes in Oklahoma, Kansas, and Texas[J]. Seismological Research Letters, 2019, 90(2A): 604-613.
[79] JOZINOVIĆ D, LOMAX A, ŠTAJDUHAR I, et al. Transfer learning: Improving neural network based prediction of earthquake ground shaking for an area with insufficient training data[J]. Geophysical Journal International, 2022, 229(1): 704-718.
[80] BEROZA G C, SEGOU M, MOSTAFA MOUSAVI S. Machine learning and earthquake forecasting—next steps[J]. Nature communications, 2021, 12(1): 4761.
[81] MIGNAN A, BROCCARDO M. Neural network applications in earthquake prediction (1994–2019): Meta-analytic and statistical insights on their limitations[J]. Seismological Research Letters, 2020, 91(4): 2330-2342.
[82] JOHNSON P A, ROUET-LEDUC B, PYRAK-NOLTE L J, et al. Laboratory earthquake forecasting:A machine learning competition[J]. Proceedings of the national academy of sciences, 2021, 118(5): e2011362118.
[83] ARAYA-POLO M, JENNINGS J, ADLER A, et al. Deep-learning tomography[J]. The Leading Edge, 2018, 37(1): 58-66.
[84] DAS V, POLLACK A, WOLLNER U, et al. Convolutional neural network for seismicimpedance inversion[J]. Geophysics, 2019, 84(6): R869-R880.
[85] DAS V, MUKERJI T. Petrophysical properties prediction from prestack seismic data using convolutional neural networks[J]. Geophysics, 2020, 85(5): N41-N55.
[86] MÜNCHMEYER J, BINDI D, LESER U, et al. Earthquake magnitude and location estimation from real time seismic waveforms with a transformer network[J]. Geophysical Journal International, 2021, 226(2): 1086-1104.
[87] MOUSAVI S M, BEROZA G C. Bayesian-deep-learning estimation of earthquake location from single-station observations[A]. 2019.
[88] SMITH J D, ROSS Z E, AZIZZADENESHELI K, et al. HypoSVI: Hypocentre inversion with Stein variational inference and physics informed neural networks[J]. Geophysical Journal International, 2022, 228(1): 698-710.
[89] SEYDOUX L, BALESTRIERO R, POLI P, et al. Clustering earthquake signals and background noises in continuous seismic data with unsupervised deep learning[J]. Nature communications, 2020, 11(1): 3972.
[90] MIN E, GUO X, LIU Q, et al. A survey of clustering with deep learning: From the perspective of network architecture[J]. IEEE Access, 2018, 6: 39501-39514.
[91] BARKAOUI S, LOGNONNÉ P, KAWAMURA T, et al. Anatomy of continuous Mars SEIS and pressure data from unsupervised learning[J]. Bulletin of the Seismological Society of America, 2021, 111(6): 2964-2981.
[92] 张 ZhangAston, 李沐, 美立顿 LiptonZachary C., 等. 动手学深度学习[M]. 动手学深度学习, 2019.
[93] ZHANG A, LIPTON Z C, LI M, et al. Dive into Deep Learning[M/OL]. Cambridge University Press, 2023. https://D2L.ai.
[94] RUMELHART D E, HINTON G E, WILLIAMS R J. Learning representations by backpropagating errors[J]. nature, 1986, 323(6088): 533-536.
[95] HINTON G E, OSINDERO S, TEH Y W. A fast learning algorithm for deep belief nets[J]. Neural computation, 2006, 18(7): 1527-1554.
[96] GLOROT X, BORDES A, BENGIO Y. Deep sparse rectifier neural networks[C]//Proceedings of the fourteenth international conference on artificial intelligence and statistics. JMLR Workshop and Conference Proceedings, 2011: 315-323.
[97] MAAS A L, HANNUN A Y, NG A Y, et al. Rectifier nonlinearities improve neural network acoustic models[C]//Proc. icml: Vol. 30. Atlanta, GA, 2013: 3.
[98] BRIDLE J. Training stochastic model recognition algorithms as networks can lead to maximum mutual information estimation of parameters[J]. Advances in neural information processing systems, 1989, 2.
[99] LECUN Y, BOTTOU L, BENGIO Y, et al. Gradient-based learning applied to document recognition[J]. Proceedings of the IEEE, 1998, 86(11): 2278-2324.
[100] BOSER B E, GUYON I M, VAPNIK V N. A training algorithm for optimal margin classifiers[C]//Proceedings of the fifth annual workshop on Computational learning theory. 1992: 144- 152.
[101] BROMLEY J, GUYON I, LECUN Y, et al. Signature verification using a” siamese” time delay neural network[J]. Advances in neural information processing systems, 1993, 6.
[102] SCHOLKOPF B, SUNG K K, BURGES C J, et al. Comparing support vector machines with Gaussian kernels to radial basis function classifiers[J]. IEEE transactions on Signal Processing, 1997, 45(11): 2758-2765.
[103] MORGAN J N, SONQUIST J A. Problems in the analysis of survey data, and a proposal[J].Journal of the American statistical association, 1963, 58(302): 415-434.
[104] BREIMAN L. Random forests[J]. Machine learning, 2001, 45: 5-32.
[105] KRIZHEVSKY A, SUTSKEVER I, HINTON G E. Imagenet classification with deep convolutional neural networks[J]. Advances in neural information processing systems, 2012, 25.
[106] HE K, ZHANG X, REN S, et al. Spatial pyramid pooling in deep convolutional networks for visual recognition[J]. IEEE transactions on pattern analysis and machine intelligence, 2015, 37 (9): 1904-1916.
[107] LECUN Y, BOTTOU L, ORR G B, et al. Efficient backprop[M]//Neural networks: Tricks of the trade. Springer, 2002: 9-50.
[108] KROGH A, HERTZ J. A simple weight decay can improve generalization[J]. Advances in neural information processing systems, 1991, 4.
[109] IOFFE S, SZEGEDY C. Batch normalization: Accelerating deep network training by reducing internal covariate shift[C]//International conference on machine learning. pmlr, 2015: 448-456.
[110] HINTON G E, SRIVASTAVA N, KRIZHEVSKY A, et al. Improving neural networks by preventing co-adaptation of feature detectors[A]. 2012.
[111] SRIVASTAVA N. Improving neural networks with dropout[J]. University of Toronto, 2013, 182(566): 7.
[112] SRIVASTAVA N, HINTON G, KRIZHEVSKY A, et al. Dropout: a simple way to prevent neural networks from overfitting[J]. The journal of machine learning research, 2014, 15(1): 1929-1958.
[113] BOUTHILLIER X, KONDA K, VINCENT P, et al. Dropout as data augmentation[A]. 2015.
[114] GIRSHICK R, DONAHUE J, DARRELL T, et al. Rich feature hierarchies for accurate object detection and semantic segmentation[C]//Proceedings of the IEEE conference on computer vision and pattern recognition. 2014: 580-587.
[115] GIRSHICK R. Fast r-cnn[C]//Proceedings of the IEEE international conference on computer vision. 2015: 1440-1448.
[116] REN S, HE K, GIRSHICK R, et al. Faster r-cnn: Towards real-time object detection with region proposal networks[J]. Advances in neural information processing systems, 2015, 28.
[117] LIU W, ANGUELOV D, ERHAN D, et al. Ssd: Single shot multibox detector[C]//Computer Vision–ECCV 2016: 14th European Conference, Amsterdam, The Netherlands, October 11–14,2016, Proceedings, Part I 14. Springer, 2016: 21-37.
[118] REDMON J, DIVVALA S, GIRSHICK R, et al. You only look once: Unified, real-time object detection[C]//Proceedings of the IEEE conference on computer vision and pattern recognition.2016: 779-788.
[119] REDMON J, FARHADI A. YOLO9000: better, faster, stronger[C]//Proceedings of the IEEE conference on computer vision and pattern recognition. 2017: 7263-7271.
[120] REDMON J, FARHADI A. Yolov3: An incremental improvement[A]. 2018.
[121] BOCHKOVSKIY A, WANG C Y, LIAO H Y M. Yolov4: Optimal speed and accuracy of object detection[A]. 2020.
[122] GE Z, LIU S, WANG F, et al. Yolox: Exceeding yolo series in 2021[A]. 2021.
[123] LI C, LI L, JIANG H, et al. YOLOv6: A single-stage object detection framework for industrial applications[A]. 2022.
[124] WANG C Y, BOCHKOVSKIY A, LIAO H Y M. YOLOv7: Trainable bag-of-freebies sets new state-of-the-art for real-time object detectors[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2023: 7464-7475.
[125] SZEGEDY C, LIU W, JIA Y, et al. Going deeper with convolutions[C]//Proceedings of the IEEE conference on computer vision and pattern recognition. 2015: 1-9.
[126] NEUBECK A, VAN GOOL L. Efficient non-maximum suppression[C]//18th international conference on pattern recognition (ICPR’06): Vol. 3. IEEE, 2006: 850-855.
[127] BODLA N, SINGH B, CHELLAPPA R, et al. Soft-NMS–improving object detection with one line of code[C]//Proceedings of the IEEE international conference on computer vision. 2017:5561-5569.
[128] JIANG B, LUO R, MAO J, et al. Acquisition of localization confidence for accurate object detection[C]//Proceedings of the European conference on computer vision (ECCV). 2018: 784-799.
[129] LIU S, HUANG D, WANG Y. Adaptive nms: Refining pedestrian detection in a crowd[C]// Proceedings of the IEEE/CVF conference on computer vision and pattern recognition. 2019:6459-6468.
[130] DENG J, DONG W, SOCHER R, et al. Imagenet: A large-scale hierarchical image database [C]//2009 IEEE conference on computer vision and pattern recognition. Ieee, 2009: 248-255.
[131] ZHEBEL O, EISNER L. Simultaneous microseismic event localization and source mechanism determination[J]. Geophysics, 2015, 80(1): KS1-KS9.
[132] ZHEBEL O, EISNER L. Simultaneous microseismic event localization and source mechanism determination: 82nd Annual International Meeting, SEG[J]. Expanded Abstracts, doi, 2012,10: 1190.
[133] ANIKIEV D, VALENTA J, STANĚK F, et al. Joint location and source mechanism inversion of microseismic events: Benchmarking on seismicity induced by hydraulic fracturing[J]. Geophysical Journal International, 2014, 198(1): 249-258.
[134] SIMONYAN K, ZISSERMAN A. Very deep convolutional networks for large-scale image recognition[A]. 2014.
[135] 李庶林. 试论微震监测技术在地下工程中的应用[J]. 地下空间与工程学报, 2009, 1.
[136] XU J, ZHANG W, LIANG X, et al. Joint microseismic moment-tensor inversion and location using P-and S-wave diffraction stacking[J]. Geophysics, 2021, 86(6): KS137-KS150.
[137] FARR T G, ROSEN P A, CARO E, et al. The shuttle radar topography mission[J]. Reviews of geophysics, 2007, 45(2).
[138] LI Z, YONG P, HUANG J, et al. Elastic wave reverse time migration based on vector wavefield seperation[J]. Journal of China University of Petroleum (in Chinese), 2016, 40(1): 42-48.
[139] ATKINSON G M, EATON D W, IGONIN N. Developments in understanding seismicity triggered by hydraulic fracturing[J]. Nature Reviews Earth & Environment, 2020, 1(5): 264-277.
[140] YANG S, HU J, ZHANG H, et al. Simultaneous earthquake detection on multiple stations via a convolutional neural network[J]. Seismological Society of America, 2021, 92(1): 246-260.
修改评论