[1] WANG L, CHEN B, MA J, et al. Reviving lithium cobalt oxide-based lithium secondary batteries-toward a higher energy density[J]. Chemical Society Reviews, 2018, 47(17): 6505-602.
[2] DINCER I. Renewable energy and sustainable development: a crucial review[J]. Renewable and Sustainable Energy Reviews, 2000, 4(2): 157-75.
[3] ZHITAO E, GUO H, YAN G, et al. Evolution of the morphology, structural and thermal stability of LiCoO2 during overcharge[J]. Journal of Energy Chemistry, 2021, 55: 524-32.
[4] LYU Y, WU X, WANG K, et al. An overview on the advances of LiCoO2 cathodes for lithium-ion batteries[J]. Advanced Energy Materials, 2020, 11(2): 2000982.
[5] GOODENOUGH J B, PARK K S. The Li-ion rechargeable battery: a perspective[J]. Journal of the American Chemical Society, 2013, 135(4): 1167-76.
[6] WHITTINGHAM M S. Electrical energy storage and intercalation chemistry[J]. Science, 1976, 192(4244): 1126-7.
[7] MIZUSHIMA K, JONES P C, WISEMAN P J, et al. LixCoO2 (0[8] TARASCON J M, ARMAND M. Issues and challenges facing rechargeable lithium batteries[J]. Nature, 2001, 414(6861): 359-67.
[9] THACKERAY M M, MANSUETTO M F, BATES J B. Structural stability of LiMn2O4 electrodes for lithium batteries[J]. Journal of Power Sources, 1997, 68(1): 153-8.
[10] MAO M, GAO T, HOU S, et al. A critical review of cathodes for rechargeable Mg batteries[J]. Chemical Society Reviews, 2018, 47(23): 8804-41.
[11] JYOTI J, SINGH B P, TRIPATHI S K. Recent advancements in development of different cathode materials for rechargeable lithium ion batteries[J]. Journal of Energy Storage, 2021, 43: 103112.
[12] ZHANG M, KITCHAEV D A, LEBENS-HIGGINS Z, et al. Pushing the limit of 3d transition metal-based layered oxides that use both cation and anion redox for energy storage[J]. Nature Reviews Materials, 2022, 7: 522–540.
[13] DENG S, ZHU H, WANG G, et al. Boosting fast energy storage by synergistic engineering of carbon and deficiency[J]. Nature Communications, 2020, 11(1): 132.
[14] YASMIN A, SHEHZAD M A, WANG J, et al. La4NiLiO8-shielded layered cathode materials for emerging high-performance safe batteries[J]. ACS Applied Materials & Interfaces, 2020, 12(1): 826-35.
[15] DU C, ZHAO Z, LIU H, et al. The status of representative anode materials for lithium-ion batteries[J]. The Chemical Record, 2023, 23(5): e202300004.
[16] GAO S, WANG N, LI S, et al. A multi-wall Sn/SnO2@Carbon hollow nanofiber anode material for high-rate and long-life lithium-ion batteries[J]. Angewandte Chemie International Edition, 2020, 59(6): 2465-72.
[17] LENG J, WANG Z, LI X, et al. A novel dried plum-like yolk-shell architecture of tin oxide nanodots embedded into a carbon matrix: ultra-fast assembly and superior lithium storage properties[J]. Journal of Materials Chemistry A, 2019, 7(10): 5803-10.
[18] LIU Y-K, ZHAO C-Z, DU J, et al. Research progresses of liquid electrolytes in lithium-ion batteries[J]. Small, 2023, 19(8): 2205315.
[19] SMART M C, RATNAKUMAR B V, SURAMPUDI S. Electrolytes for low-temperature lithium batteries based on ternary mixtures of aliphatic carbonates[J]. Journal of The Electrochemical Society, 1999, 146(2): 486.
[20] ZENG D, YAO J, ZHANG L, et al. Promoting favorable interfacial properties in lithium-based batteries using chlorine-rich sulfide inorganic solid-state electrolytes[J]. Nature Communications, 2022, 13(1): 1909.
[21] YE L, LI X. A dynamic stability design strategy for lithium metal solid state batteries[J]. Nature, 2021, 593(7858): 218-22.
[22] TAKADA K. Progress and prospective of solid-state lithium batteries[J]. Acta Materialia, 2013, 61(3): 759-70.
[23] ZHONG Y, ZHONG L, WANG S, et al. Ultrahigh Li-ion conductive single-ion polymer electrolyte containing fluorinated polysulfonamide for quasi-solid-state Li-ion batteries[J]. Journal of Materials Chemistry A, 2019, 7(42): 24251-61.
[24] CHEN R, LI Q, YU X, et al. Approaching practically accessible solid-state batteries: stability issues related to solid electrolytes and interfaces[J]. Chemical Reviews, 2020, 120(14): 6820-77.
[25] HUANG X, LU Y, SONG Z, et al. Manipulating Li2O atmosphere for sintering dense Li7La3Zr2O12 solid electrolyte[J]. Energy Storage Materials, 2019, 22: 207-17.
[26] UJIIE S, HAYASHI A, TATSUMISAGO M. Preparation and ionic conductivity of (100-x)(0.8Li2S·0.2P2S5)·xLiI glass-ceramic electrolytes[J]. Journal of Solid State Electrochemistry, 2013, 17(3): 675-80.
[27] TUO K, SUN C, LIU S. Recent progress in and perspectives on emerging halide superionic conductors for all-solid-state batteries[J]. Electrochemical Energy Reviews, 2023, 6(1): 17.
[28] WEPPNER W, HUGGINS R A. Ionic conductivity of solid and liquid LiAlCl4[J]. Journal of The Electrochemical Society, 1977, 124(1): 35.
[29] ASANO T, SAKAI A, OUCHI S, et al. Solid halide electrolytes with high lithium-ion conductivity for application in 4 V class bulk-type all-solid-state batteries[J]. Advanced Materials, 2018, 30(44): 1803075.
[30] WANG S, BAI Q, NOLAN A M, et al. Lithium chlorides and bromides as promising solid-state chemistries for fast ion conductors with good electrochemical stability[J]. Angewandte Chemie International Edition, 2019, 58(24): 8039-43.
[31] HAN Y, JUNG S H, KWAK H, et al. Single- or poly-crystalline Ni-rich layered cathode, sulfide or halide solid electrolyte: which will be the winners for all-solid-state batteries?[J]. Advanced Energy Materials, 2021, 11(21): 2100126.
[32] KWAK H, HAN D, LYOO J, et al. New cost-effective halide solid electrolytes for all-solid-state batteries: mechanochemically prepared Fe3+-substituted Li2ZrCl6[J]. Advanced Energy Materials, 2021, 11(12): 2003190.
[33] ZHOU L, ZUO T-T, KWOK C Y, et al. High areal capacity, long cycle life 4 V ceramic all-solid-state Li-ion batteries enabled by chloride solid electrolytes[J]. Nature Energy, 2022, 7(1): 83-93.
[34] KIM W, NOH J, LEE S, et al. Aging property of halide solid electrolyte at the cathode interface[J]. Advanced Materials, 2023, 35: 2301631.
[35] KOCHETKOV I, ZUO T-T, RUESS R, et al. Different interfacial reactivity of lithium metal chloride electrolytes with high voltage cathodes determines solid-state battery performance[J]. Energy & Environmental Science, 2022, 15(9): 3933-44.
[36] LI L, DUAN H, LI J, et al. Toward high performance all-solid-state lithium batteries with high-voltage cathode materials: design strategies for solid electrolytes, cathode interfaces, and composite electrodes[J]. Advanced Energy Materials, 2021, 11(28): 2003154.
[37] ZHENG X, FU E-D, CHEN P, et al. Li3InCl6-coated LiCoO2 for high-performance all solid-state batteries[J]. Applied Physics Letters, 2022, 121(3): 033902.
[38] ZHU Y, HE X, MO Y. Origin of outstanding stability in the lithium solid electrolyte materials: insights from thermodynamic analyses based on first-principles calculations[J]. ACS Applied Materials & Interfaces, 2015, 7(42): 23685-93.
[39] LEE W, MUHAMMAD S, SERGEY C, et al. Advances in the cathode materials for lithium rechargeable batteries[J]. Angewandte Chemie International Edition, 2020, 59(7): 2578-605.
[40] THACKERAY M M, ROSSOUW M H, GUMMOW R J, et al. Ramsdellite-MnO2 for lithium batteries: the ramsdellite to spinel transformation[J]. Electrochimica Acta, 1993, 38(9): 1259-67.
[41] GUMMOW R J, DE KOCK A, THACKERAY M M. Improved capacity retention in rechargeable 4 V lithium/lithium-manganese oxide (spinel) cells[J]. Solid State Ionics, 1994, 69(1): 59-67.
[42] JANG D H, SHIN Y J, OH S M. Dissolution of spinel oxides and capacity losses in 4 V Li / LixMn2O4 cells [J]. Journal of The Electrochemical Society, 1996, 143(7): 2204.
[43] JANG D H, OH S M. Electrolyte effects on spinel dissolution and cathodic capacity losses in 4 V Li / LixMn2O4 rechargeable cells[J]. Journal of The Electrochemical Society, 1997, 144(10): 3342.
[44] OHZUKU T, TAKEDA S, IWANAGA M. Solid-state redox potentials for Li[Me1/2Mn3/2]O4 (Me: 3d-transition metal) having spinel-framework structures: a series of 5 volt materials for advanced lithium-ion batteries[J]. Journal of Power Sources, 1999, 81-82: 90-4.
[45] MASQUELIER C, PADHI A K, NANJUNDASWAMY K S, et al. New cathode materials for rechargeable lithium batteries: the 3-D framework structures Li3Fe2(XO4)3(X=P, As)[J]. Journal of Solid State Chemistry, 1998, 135(2): 228-34.
[46] GAUBICHER J, WURM C, GOWARD G, et al. Rhombohedral form of Li3V2(PO4)3 as a cathode in Li-ion batteries[J]. Chem Mater, 2000, 12(11): 3240-2.
[47] FISHER C A J, HART PRIETO V M, ISLAM M S. Lithium battery materials LiMPO4 (M=Mn, Fe, Co, and Ni): insights into defect association, transport mechanisms, and doping behavior[J]. Chemistry of Materials, 2008, 20(18): 5907-15.
[48] LEE J, KITCHAEV D A, KWON D-H, et al. Reversible Mn2+/Mn4+ double redox in lithium-excess cathode materials[J]. Nature, 2018, 556(7700): 185-90.
[49] CHEN R, REN S, KNAPP M, et al. Disordered lithium-rich oxyfluoride as a stable host for enhanced Li+ intercalation storage[J]. Advanced Energy Materials, 2015, 5(9): 1401814.
[50] WANG R, LI X, LIU L, et al. A disordered rock-salt Li-excess cathode material with high capacity and substantial oxygen redox activity: Li1.25Nb0.25Mn0.5O2[J]. Electrochemistry Communications, 2015, 60: 70-3.
[51] LEE J, URBAN A, LI X, et al. Unlocking the potential of cation-disordered oxides for rechargeable lithium batteries[J]. Science, 2014, 343(6170): 519-22.
[52] WU F, YUSHIN G. Conversion cathodes for rechargeable lithium and lithium-ion batteries[J]. Energy & Environmental Science, 2017, 10(2): 435-59.
[53] LIU J, WANG J, NI Y, et al. Recent breakthroughs and perspectives of high-energy layered oxide cathode materials for lithium ion batteries[J]. Mater Today, 2021, 43: 132-65.
[54] KANNO R, KUBO H, KAWAMOTO Y, et al. Phase relationship and lithium deintercalation in lithium nickel oxides[J]. Journal of Solid State Chemistry, 1994, 110(2): 216-25.
[55] ATES M N, JIA Q, SHAH A, et al. Mitigation of layered to spinel conversion of a Li-rich layered metal oxide cathode material for Li-ion batteries[J]. Journal of The Electrochemical Society, 2014, 161(3): A290.
[56] YABUUCHI N. Material design concept of lithium-excess electrode materials with rocksalt-related structures for rechargeable non-aqueous batteries[J]. The Chemical Record, 2019, 19(4): 690-707.
[57] YABUUCHI N, NAKAYAMA M, TAKEUCHI M, et al. Origin of stabilization and destabilization in solid-state redox reaction of oxide ions for lithium-ion batteries[J]. Nature Communications, 2016, 7(1): 13814.
[58] DELMAS C, SAADOUNE I, ROUGIER A. The cycling properties of the LixNi1−yCoyO2 electrode[J]. Journal of Power Sources, 1993, 44(1): 595-602.
[59] ZHECHEVA E, STOYANOVA R. Stabilization of the layered crystal structure of LiNiO2 by Co-substitution[J]. Solid State Ionics, 1993, 66(1): 143-9.
[60] CHUNG S-Y, BLOKING J T, CHIANG Y-M. Electronically conductive phospho-olivines as lithium storage electrodes[J]. Nature Materials, 2002, 1(2): 123-8.
[61] REED J, CEDER G. Charge, potential, and phase stability of layered Li(Ni0.5Mn0.5)O2[J]. Electrochemical and Solid-State Letters, 2002, 5(7): A145.
[62] KANG Y-M, KIM Y-I, OH M-W, et al. Structurally stabilized olivine lithium phosphate cathodes with enhanced electrochemical properties through Fe doping[J]. Energy & Environmental Science, 2011, 4(12): 4978-83.
[63] DING C X, BAI Y C, FENG X Y, et al. Improvement of electrochemical properties of layered LiNi1/3Co1/3Mn1/3O2 positive electrode material by zirconium doping[J]. Solid State Ionics, 2011, 189(1): 69-73.
[64] LEVI E, LEVI M D, SALITRA G, et al. Electrochemical and in-situ XRD characterization of LiNiO2 and LiCo0.2Ni0.8O2 electrodes for rechargeable lithium cells[J]. Solid State Ionics, 1999, 126(1): 97-108.
[65] SHA O, QIAO Z, WANG S, et al. Improvement of cycle stability at elevated temperature and high rate for LiNi0.5−xCuxMn1.5O4 cathode material after Cu substitution[J]. Materials Research Bulletin, 2013, 48(4): 1606-11.
[66] KIM J, KANG H, GO N, et al. Egg-shell structured LiCoO2 by Cu2+ substitution to Li+ sites via facile stirring in an aqueous copper(ii) nitrate solution[J]. Journal of Materials Chemistry A, 2017, 5(47): 24892-900.
[67] JO M R, KIM Y-I, KIM Y, et al. Lithium-ion transport through a tailored disordered phase on the LiNi0.5Mn1.5O4 surface for high-power cathode materials[J]. ChemSusChem, 2014, 7(8): 2248-54.
[68] MIN S H, JO M R, CHOI S-Y, et al. A layer-structured electrode material reformed by a PO4-O2 hybrid framework toward enhanced lithium storage and stability[J]. Advanced Energy Materials, 2016, 6(7): 1501717.
[69] WANG J, ZHANG X, LIU J, et al. Long-term cyclability and high-rate capability of Li3V2(PO4)3/C cathode material using PVA as carbon source[J]. Electrochimica Acta, 2010, 55(22): 6879-84.
[70] YUAN L-X, WANG Z-H, ZHANG W-X, et al. Development and challenges of LiFePO4 cathode material for lithium-ion batteries[J]. Energy & Environmental Science, 2011, 4(2): 269-84.
[71] XIANG J, CHANG C, YUAN L, et al. A simple and effective strategy to synthesize Al2O3-coated LiNi0.8Co0.2O2 cathode materials for lithium ion battery[J]. Electrochemistry Communications, 2008, 10(9): 1360-3.
[72] KWEON H-J, KIM S J, PARK D G. Modification of LixNi1−yCoyO2 by applying a surface coating of MgO[J]. Journal of Power Sources, 2000, 88(2): 255-61.
[73] OMANDA H, BROUSSE T, MARHIC C, et al. Improvement of the thermal stability of LiNi0.8Co0.2O2 cathode by a SiOx protective coating[J]. Journal of The Electrochemical Society, 2004, 151(6): A922.
[74] WU F, WANG M, SU Y, et al. Effect of TiO2-coating on the electrochemical performances of LiCo1/3Ni1/3Mn1/3O2[J]. Journal of Power Sources, 2009, 191(2): 628-32.
[75] HUANG Y, CHEN J, NI J, et al. A modified ZrO2-coating process to improve electrochemical performance of Li(Ni1/3Co1/3Mn1/3)O2[J]. Journal of Power Sources, 2009, 188(2): 538-45.
[76] PARK B-C, KIM H-B, BANG H J, et al. Improvement of electrochemical performance of Li[Ni0.8Co0.15Al0.05]O2 cathode materials by AlF3 coating at various temperatures[J]. Industrial & Engineering Chemistry Research, 2008, 47(11): 3876-82.
[77] XIONG X, WANG Z, YIN X, et al. A modified LiF coating process to enhance the electrochemical performance characteristics of LiNi0.8Co0.1Mn0.1O2 cathode materials[J]. Materials Letters, 2013, 110: 4-9.
[78] OHZUKU T, UEDA A. Solid-state redox reactions of LiCoO2 (R3m) for 4 Volt secondary lithium cells[J]. Journal of The Electrochemical Society, 1994, 141(11): 2972.
[79] MOLENDA J, STOKŁOSA A, BA̧K T. Modification in the electronic structure of cobalt bronze LixCoO2 and the resulting electrochemical properties[J]. Solid State Ionics, 1989, 36(1): 53-8.
[80] MANTHIRAM A, GOODENOUGH J B. Layered lithium cobalt oxide cathodes[J]. Nature Energy, 2021, 6(3): 323.
[81] HIROOKA M, SEKIYA T, OMOMO Y, et al. Improvement of float charge durability for LiCoO2 electrodes under high voltage and storage temperature by suppressing O1-Phase transition[J]. Journal of Power Sources, 2020, 463: 228127.
[82] JIANG Y, QIN C, YAN P, et al. Origins of capacity and voltage fading of LiCoO2 upon high voltage cycling[J]. Journal of Materials Chemistry A, 2019, 7(36): 20824-31.
[83] JIANG Y, YAN P, YU M, et al. Atomistic mechanism of cracking degradation at twin boundary of LiCoO2[J]. Nano Energy, 2020, 78: 105364.
[84] WANG L, CHEN B, MA J, et al. Reviving lithium cobalt oxide-based lithium secondary batteries-toward a higher energy density[J]. Chemical Society Reviews, 2018, 47(17): 6505-602.
[85] LI W, LIU X, CELIO H, et al. Mn versus al in layered oxide cathodes in lithium-ion batteries: a comprehensive evaluation on long-term cyclability[J]. Advanced Energy Materials, 2018, 8(15): 1703154.
[86] KANAMURA K, TORIYAMA S, SHIRAISHI S, et al. Studies on electrochemical oxidation of non-aqueous electrolyte on the LiCoO2 thin film electrode[J]. Journal of Electroanalytical Chemistry, 1996, 419(1): 77-84.
[87] EDSTRöM K, GUSTAFSSON T, THOMAS J O. The cathode-electrolyte interface in the Li-ion battery[J]. Electrochimica Acta, 2004, 50(2): 397-403.
[88] ZHANG J-N, LI Q, WANG Y, et al. Dynamic evolution of cathode electrolyte interphase (CEI) on high voltage LiCoO2 cathode and its interaction with Li anode[J]. Energy Storage Materials, 2018, 14: 1-7.
[89] YANO A, SHIKANO M, UEDA A, et al. LiCoO2 Degradation behavior in the high-voltage phase transition region and improved reversibility with surface coating[J]. Journal of The Electrochemical Society, 2017, 164(1): A6116.
[90] KIKKAWA J, TERADA S, GUNJI A, et al. Chemical states of overcharged LiCoO2 particle surfaces and interiors observed using electron energy-loss spectroscopy[J]. The Journal of Physical Chemistry C, 2015, 119(28): 15823-30.
[91] GOODENOUGH J B, PARK K-S. The Li-ion rechargeable battery: a perspective[J]. Journal of the American Chemical Society, 2013, 135(4): 1167-76.
[92] HU E, LI Q, WANG X, et al. Oxygen-redox reactions in LiCoO2 cathode without O-O bonding during charge-discharge[J]. Joule, 2021, 5(3): 720-36.
[93] SHANG T, XIAO D, MENG F, et al. Real-space measurement of orbital electron populations for Li1-xCoO2[J]. Nature Communications, 2022, 13(1): 5810.
[94] KOERVER R, AYGüN I, LEICHTWEIß T, et al. Capacity fade in solid-state batteries: interphase formation and chemomechanical processes in nickel-rich layered oxide cathodes and lithium thiophosphate solid electrolytes[J]. Chemistry of Materials, 2017, 29(13): 5574-82.
[95] KRAYTSBERG A, EIN-ELI Y. Higher, stronger, a review of 5 volt cathode materials for advanced lithium-ion batteries[J]. Advanced Energy Materials, 2012, 2(8): 922-39.
[96] YANG X, WANG C, YAN P, et al. Pushing lithium cobalt oxides to 4.7 V by lattice-matched interfacial engineering[J]. Advanced Energy Materials, 2022, 12: 2200197.
[97] LIU J, WANG J, NI Y, et al. Tuning interphase chemistry to stabilize high-voltage LiCoO2 cathode material via spinel coating[J]. Angewandte Chemie International Edition, 2022, 61: e202207000.
[98] CHEN Z, DAHN J R. Improving the capacity retention of LiCoO2 cycled to 4.5 V by heat-treatment[J]. Electrochemical and Solid-State Letters, 2004, 7(1): A11.
[99] CHEN Z, DAHN J R. Methods to obtain excellent capacity retention in LiCoO2 cycled to 4.5 V[J]. Electrochimica Acta, 2004, 49(7): 1079-90.
[100] G. G. AMATUCCI J M T, L. C. KLEIN. CoO2, The end member of the LixCoO2 solid solution[J]. Journal of The Electrochemical Society, 1996, 143 1114.
[101] HUANG Y, ZHU Y, FU H, et al. Mg-pillared LiCoO2 : towards stable cycling at 4.6 V[J]. Angewandte Chemie International Edition, 2021, 60(9): 4682-8.
[102] ZHANG J-N, LI Q, OUYANG C, et al. Trace doping of multiple elements enables stable battery cycling of LiCoO2 at 4.6 V[J]. Nature Energy, 2019, 4(7): 594-603.
[103] TEBBE J L, HOLDER A M, MUSGRAVE C B. Mechanisms of LiCoO2 cathode degradation by reaction with Hf and protection by thin oxide coatings[J]. ACS Applied Materials & Interfaces, 2015, 7(43): 24265-78.
[104] KIM S H, KIM C-S. Improving the rate performance of LiCoO2 by Zr doping[J]. Journal of Electroceramics, 2008, 23(2-4): 254-7.
[105] YANO A, SHIKANO M, UEDA A, et al. LiCoO2 degradation behavior in the high-voltage phase transition region and improved reversibility with surface coating[J]. Journal of The Electrochemical Society, 2016, 164(1): A6116-A22.
[106] LIU Q, SU X, LEI D, et al. Approaching the capacity limit of lithium cobalt oxide in lithium ion batteries via lanthanum and aluminium doping[J]. Nature Energy, 2018, 3(11): 936-43.
[107] LI B, XIA D. Anionic redox in rechargeable lithium batteries[J]. Advanced Materials, 2017, 29(48): 1701054.
[108] NATURE ENERGYKONG W, ZHANG J, WONG D, et al. Tailoring Co3d and O2p band centers to inhibit oxygen escape for stable 4.6 V LiCoO2 cathodes[J]. Angewandte Chemie International Edition, 2021, 60(52): 27102-12.
[109] LAI Y, XIE H, LI P, et al. Ion-migration mechanism: an overall understanding of anionic redox activity in metal oxide cathodes of Li/Na-ion batteries[J]. Advanced Materials, 2022: e2206039.
[110] ENSLING D, CHERKASHININ G, SCHMID S, et al. Nonrigid band behavior of the electronic structure of LiCoO2 thin film during electrochemical Li deintercalation[J]. Chemistry of Materials, 2014, 26(13): 3948-56.
[111] ZHAO E, LI Q, MENG F, et al. Stabilizing the oxygen lattice and reversible oxygen redox chemistry through structural dimensionality in lithium-rich cathode oxides[J]. Angewandte Chemie International Edition, 2019, 58(13): 4323-7.
[112] ZHAO E, WANG H, YIN W, et al. Spatiotemporal-scale neutron studies on lithium-ion batteries and beyond[J]. Applied Physics Letters, 2022, 121(11): 110501.
[113] LI J, JIANG Y F, WANG Q, et al. A general strategy for preparing pyrrolic-N(4) type single-atom catalysts via pre-located isolated atoms[J]. Nature Communications, 2021, 12(1): 6806.
[114] CAI M, DONG Y, XIE M, et al. Stalling oxygen evolution in high-voltage cathodes by lanthurization[J]. Nature Energy, 2023, 8: 159–168.
[115] KONG W, WONG D, AN K, et al. Stabilizing the anionic redox in 4.6 V LiCoO2 cathode through adjusting oxygen magnetic moment[J]. Advanced Functional Materials, 2022, 32(31): 2202679.
[116] NIEMöLLER A, JAKES P, EICHEL R-A, et al. In operando EPR investigation of redox mechanisms in LiCoO2[J]. Chemical Physics Letters, 2019, 716: 231-6.
[117] HUANG H, LI Z, GU S, et al. Dextran sulfate lithium as versatile binder to stabilize high-voltage LiCoO2 to 4.6 V[J]. Advanced Energy Materials, 2021, 11(44): 2101864.
[118] WANG J, ZHANG Q, SHENG J, et al. Direct and green repairing of degraded LiCoO2 for reuse in lithium-ion batteries[J]. National Science Review, 2022, 9(8): nwac097.
[119] WANG J, JIA K, MA J, et al. Sustainable upcycling of spent LiCoO2 to an ultra-stable battery cathode at high voltage[J]. Nature Sustainability, 2023, 6: 797–805.
[120] WANG Y, ZHANG Q, XUE Z C, et al. An in situ formed surface coating layer enabling LiCoO2 with stable 4.6 V high-voltage cycle performances[J]. Advanced Energy Materials, 2020, 10(28): 2001413.
[121] LI M, WANG C, CHEN Z, et al. New concepts in electrolytes[J]. Chemical Reviews, 2020, 120(14): 6783-819.
[122] WANG C, FU K, KAMMAMPATA S P, et al. Garnet-type solid-state electrolytes: materials, interfaces, and batteries[J]. Chemical Reviews, 2020, 120(10): 4257-300.
[123] XIA W, ZHAO Y, ZHAO F, et al. Antiperovskite electrolytes for solid-state batteries[J]. Chemical Reviews, 2022, 122(3): 3763-819.
[124] SHUO SUN, C-Z Z, HONG YUAN, et al. Eliminating interfacial O-involving degradation in Li-rich Mn-based cathodes for all-solid-state lithium batteries[J]. Science Advances, 2022, 8: eadd5189.
[125] SIDA HUO L S, WENDONG XUE, LI WANG, HONG XU, et al. Challenges of stable ion pathways in cathode electrode for all-solid-state lithium batteries: a review[J]. Advanced Energy Materials, 2023, 13: 2204343.
[126] TOBY B H, VON DREELE R B. GSAS-II: the genesis of a modern open-source all purpose crystallography software package[J]. Journal of Applied Crystallography, 2013, 46(2): 544-9.
[127] VAN DEN BERGH W, KARGER L, MURUGAN S, et al. Single crystal layered oxide cathodes: the relationship between particle size, rate capability, and stability[J]. ChemElectroChem, 2023, 10(18): e202300165.
[128] ZHANG Z, JIA W, FENG Y, et al. An ultraconformal chemo-mechanical stable cathode interface for high-performance all-solid-state batteries at wide temperatures[J]. Energy & Environmental Science, 2023, 16(10): 4453-63.
[129] ZHU Z, YU D, SHI Z, et al. Gradient-morph LiCoO2 single crystals with stabilized energy density above 3400 Wh L−1[J]. Energy & Environmental Science, 2020, 13(6): 1865-78.
[130] KONAR R, MAITI S, SHPIGEL N, et al. Reviewing failure mechanisms and modification strategies in stabilizing high-voltage LiCoO2 cathodes beyond 4.55 V[J]. Energy Storage Materials, 2023, 63: 103001.
[131] LANGDON J, MANTHIRAM A. A perspective on single-crystal layered oxide cathodes for lithium-ion batteries[J]. Energy Storage Materials, 2021, 37: 143-60.
[132] ZHANG S D, QI M Y, GUO S J, et al. Advancing to 4.6 V review and prospect in developing high-energy-density LiCoO2 cathode for lithium-ion batteries[J]. Small Methods, 2022, 6(5): e2200148.
[133] ZHANG S, ZHAO F, WANG S, et al. Advanced high-voltage all-solid-state Li-ion batteries enabled by a dual-halogen solid electrolyte[J]. Advanced Energy Materials, 2021, 11(32): 2100836.
[134] QIU J, LIU X, CHEN R, et al. Enabling stable cycling of 4.2 V high-voltage all-solid-state batteries with PEO-based solid electrolyte[J]. Advanced Functional Materials, 2020, 30(22): 1909392.
[135] LI S, SUN Y, LI N, et al. Porosity development at Li-rich layered cathodes in all-solid-state battery during in situ delithiation[J]. Nano Letters, 2022, 22(12): 4905-11.
[136] FAMPRIKIS T, CANEPA P, DAWSON J A, et al. Fundamentals of inorganic solid-state electrolytes for batteries[J]. Nature Materials, 2019, 18(12): 1278-91.
[137] LI X, LIANG J, YANG X, et al. Progress and perspectives on halide lithium conductors for all-solid-state lithium batteries[J]. Energy & Environmental Science, 2020, 13(5): 1429-61.
[138] LIANG J, LI X, WANG S, et al. Site-occupation-tuned superionic LixScCl3+x halide solid electrolytes for all-solid-state batteries[J]. Journal of the American Chemical Society, 2020, 142(15): 7012-22.
[139] WANG K, REN Q, GU Z, et al. A cost-effective and humidity-tolerant chloride solid electrolyte for lithium batteries[J]. Nature Communications, 2021, 12(1): 4410.
[140] ZHU Y, WU D, YANG X, et al. Microscopic investigation of crack and strain of LiCoO2 cathode cycled under high voltage[J]. Energy Storage Materials, 2023, 60: 102828.
[141] ZHANG J, WONG D, ZHANG Q, et al. Reducing Co/O band overlap through spin state modulation for stabilized high capability of 4.6 V LiCoO2 [J]. Journal of the American Chemical Society, 2023, 145(18): 10208–10219.
[142] KIM S Y, KAUP K, PARK K-H, et al. Lithium ytterbium-based halide solid electrolytes for high voltage all-solid-state batteries[J]. ACS Materials Letters, 2021, 3(7): 930-8.
[143] YU X, WANG L, MA J, et al. Selectively wetted rigid-flexible coupling polymer electrolyte enabling superior stability and compatibility of high-voltage lithium metal batteries[J]. Advanced Energy Materials, 2020, 10(18): 1903939.
[144] ZHOU W, WANG Z, PU Y, et al. Double-layer polymer electrolyte for high-voltage all-solid-state rechargeable batteries[J]. Advanced Materials, 2019, 31(4): 1805574.
[145] HOANG H A, KIM D. High voltage stable solid-state lithium battery based on the nano-conductor imbedded flexible hybrid solid electrolyte with hyper-ion conductivity and thermal, mechanical, and adhesive stability[J]. Chemical Engineering Journal, 2022, 435: 135092.
[146] YANG Q, HUANG J, LI Y, et al. Surface-protected LiCoO2 with ultrathin solid oxide electrolyte film for high-voltage lithium ion batteries and lithium polymer batteries[J]. Journal of Power Sources, 2018, 388: 65-70.
[147] MA J, LIU Z, CHEN B, et al. A strategy to make high voltage LiCoO2 compatible with polyethylene oxide electrolyte in all-solid-state lithium ion batteries[J]. Journal of The Electrochemical Society, 2017, 164(14): A3454.
[148] LIN Z, GUO X, ZHANG R, et al. Molecular structure adjustment enhanced anti-oxidation ability of polymer electrolyte for solid-state lithium metal battery[J]. Nano Energy, 2022, 98: 107330.
[149] WANG Y, ZHANG Q, XUE Z-C, et al. An in situ formed surface coating layer enabling LiCoO2 with stable 4.6 V high-voltage cycle performances[J]. Advanced Energy Materials, 2020, 10(28): 2001413.
[150] FENG L, YIN Z-W, WANG C-W, et al. Glassy/Ceramic Li2TiO3/LixByOz analogous “solid electrolyte interphase” to boost 4.5 V LiCoO2 in sulfide-based all-solid-state batteries[J]. Advanced Functional Materials, 2023, 33(16): 2210744.
[151] KONG W, ZHANG J, WONG D, et al. Tailoring Co3d and O2p band centers to inhibit oxygen escape for stable 4.6 V LiCoO2 cathodes[J]. Angewandte Chemie International Edition, 2021, 60(52): 27102-12.
[152] YE X, LIANG J, HU J, et al. An ultra-thin polymer electrolyte for 4.5 V high voltage LiCoO2 quasi-solid-state battery[J]. Chemical Engineering Journal, 2023, 455: 140846.
[153] WANG Z, WANG Z, GUO H, et al. Mg doping and zirconium oxyfluoride coating co-modification to enhance the high-voltage performance of LiCoO2 for lithium ion battery[J]. Journal of Alloys and Compounds, 2015, 621: 212-9.
[154] HU B, GENG F, SHEN M, et al. A multifunctional manipulation to stabilize oxygen redox and phase transition in 4.6 V high-voltage LiCoO2 with sXAS and EPR studies[J]. Journal of Power Sources, 2021, 516: 230661.
[155] WANG C-W, ZHANG S-J, LIN C, et al. Mechanochemical reactions between polyanionic borate and residue Li2CO3 on LiCoO2 to stabilize cathode/electrolyte interface in sulfide-based all-solid-state batteries[J]. Nano Energy, 2023, 108: 108192.
[156] XU G, LUO L, LIANG J, et al. Origin of high electrochemical stability of multi-metal chloride solid electrolytes for high energy all-solid-state lithium-ion batteries[J]. Nano Energy, 2022, 92: 106674.
[157] KIM D H, OH D Y, PARK K H, et al. Infiltration of solution-processable solid electrolytes into conventional li-ion-battery electrodes for all-solid-state li-ion batteries[J]. Nano Letters, 2017, 17(5): 3013-20.
[158] XIE J, ZHAO J, LIU Y, et al. Engineering the surface of LiCoO2 electrodes using atomic layer deposition for stable high-voltage lithium ion batteries[J]. Nano Research, 2017, 10(11): 3754-64.
[159] LI J, JI Y, SONG H, et al. Insights into the interfacial degradation of high-voltage all-solid-state lithium batteries[J]. Nano-Micro Letters, 2022, 14(1): 191.
[160] HU L, WANG J, WANG K, et al. A cost-effective, ionically conductive and compressible oxychloride solid-state electrolyte for stable all-solid-state lithium-based batteries[J]. Nature Communications, 2023, 14(1): 3807.
[161] SUN S, ZHAO C-Z, YUAN H, et al. Eliminating interfacial O-involving degradation in Li-rich Mn-based cathodes for all-solid-state lithium batteries[J]. Science Advances, 8(47): eadd5189.
[162] WU Y, ZHOU K, REN F, et al. Highly reversible Li2RuO3 cathodes in sulfide-based all solid-state lithium batteries[J]. Energy & Environmental Science, 2022, 15(8): 3470-82.
修改评论